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ABSTRACT
As an increasingly large number of OWL ontologies become
available on the Semantic Web and the descriptions in the
ontologies become more complicated, finding the cause of
errors becomes an extremely hard task even for experts. Ex-
isting ontology development environments provide some lim-
ited support, in conjunction with a reasoner, for detecting
and diagnosing errors in OWL ontologies. Typically these
are restricted to the mere detection of, for example, unsat-
isfiable concepts. We have integrated a number of simple
debugging cues generated from our description logic rea-
soner, Pellet, in our hypertextual ontology development en-
vironment, Swoop. These cues, in conjunction with exten-
sive undo/redo and Annotea based collaboration support in
Swoop, significantly improve the OWL debugging experi-
ence, and point the way to more general improvements in
the presentation of an ontology to new users.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Answer/reason extraction

General Terms
Human Factors

Keywords
OWL, ontology engineering, explanation, Semantic Web

1. INTRODUCTION
Now that OWL is a W3C Recommendation, one can ex-

pect that a much wider community of users and developers
will be exposed to the expressive description logic SHIF(D)
and SHOIN(D) which are the basis of OWL-DL. These users
and developers are likely not to have a lot of experience with
knowledge representation, much less logic-based KR, much
less description logic based KR. For such people, having ex-
cellent documentation, familiar techniques, and helpful tools
is a fundamental requirement.

In this paper, we discuss the problem of debugging OWL-
DL ontologies. In particular, we focus on the diagnosis and
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correction of unsatisfiable concepts. Unsatisfiable concepts
are those which cannot be true of any possible individual,
that is, they are equivalent to the empty set (or, in de-
scription logic terms, to the bottom concept, or, in OWL
lingo, to owl:Nothing).1 Unsatisfiable concepts are usually
a fundamental modeling error, as they cannot be used to
characterize any individual. Unsatisfiable concepts are also
quite easy for a reasoner to detect and for a tool to display.
However, determining why a concept in an ontology is un-
satisfiable can be a considerable challenge even for experts
in the formalism and in the domain, even for modestly sized
ontologies. The problem worsens significantly as the number
and complexity of axioms of the ontology grows.

When new modelers encounter realistic cases of unsatisfi-
ability, they are often a loss at what to do. The tool has told
them there is a problem, but given them no help in fixing
it. This has two negative general consequences inhibiting
adoption and effective use of OWL ontologies: either devel-
opers tend to under specify their concepts to “avoid” error
(at least, to avoid “fatal” error) or they give up on ontologies
altogether.

We believe that good debugging support will give users
control and a sense of control over their modeling. This en-
courages them to experiment more freely with expressions,
but also helps them come to understand their ontologies
through the debugging process. As when debugging pro-
grams, mere identification of where an exception or error
occurs is not sufficient for generally successful debugging as
confidence that a fix is a successful fix depends on the pro-
grammers general understanding of the code.

In this paper, we describe some first steps in providing
debugging support for unsatisfiable concepts in the Swoop
OWL ontology browser and editor. We have explored both
black box and glass box generation of debugging clues by
a description logic tableau reasoner, in this case, our OWL
reasoner Pellet.

2. DETECTING DEFECTS
Before diagnosing a problem with an ontology one has

to detect the problem. Reliably detecting all semantic de-
fects (at least, in principle) is a core motivation for limiting
the expressiveness of knowledge representation formalisms
to that with tractable — or “pratical” — decision proce-
dures. It is also helpful and familiar to programmers to see

1In the file naming scheme in this paper, we bind the prefixes
‘owl’ to ‘http://www.w3.org/2002/07/owl#’,
‘rdf’ to ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’,
and ‘rdfs’ to ‘http://www.w3.org/2000/01/rdf-schema#’.
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a list of errors and warnings as such lists propose an agenda
for working with the ontology. Of course, the trap here is
becoming so focused on fixing “compiler” errors that you
fail to test whether you met the specification. In general, it
is easier to fix a syntax error than correct a subtle bug in
the program’s logic or a race condition in a threaded appli-
cation. In some cases, the difference is due to the difficulty
of finding the defect that is the real cause of the problem.

In Section 2, we discuss several classes of errors for OWL
ontologies in terms of the standard techniques for detecting
these errors and for presenting them to a user.

Debugging programs can be done with nothing but a text
editor and print statements, but compilers, lint tools, sym-
bolic debuggers, tracers, inspectors, code browsers, and all
the various convenience tools that modern programming en-
vironments supply make a difference in both the success of
and the satisfaction with detecting and fixing bugs. For on-
tologies, the situation is similar, except that ontology lan-
guages and their semantics are, as a rule, alien to develop-
ers. Thus, the tools have to go much further in organizing
and presenting the information supplied by the reasoner and
existing in the ontology. We are developing our OWL on-
tology browser/editor, Swoop, toward being something akin
to an integrated development environment (IDE) for ontolo-
gies. Instead of a programming environment model, we have
taken the “Web” part of the Web Ontology Language to
heart and used the familiar Web browser interface as our
primary inspiration. As we show below, with the right cues,
hypermedia traversal proves to be an effective debugging
modality.

2.1 Unsatisfiable Concepts
Like many OWL editors, Swoop uses a description logic

reasoner to determine which named concepts in the ontology
are unsatisfiable. Typically, if the ontology can be processed
at all, the reasoner can check each concept in the ontology
for satisfiability. The process of satisfiability checking causes
the class tree to rearrange itself, if necessary, and various
inferred relationships to be associated with a class definition.
In Figure 1, the unsatisfiable concepts show up with a red
tinted icon in the class tree and are displayed as subclasses
of the empty concept, owl:Nothing. In the definition display
of an unsatisfiable class (the right pane in Figure 1), the
class is shown to be equivalent to owl:Nothing.

In the toy koala ontology2, this display is fairly effective.
There are three unsatisfiable, rather simple concepts. Ef-
fective browsing support is probably sufficient for debug-
ging these concepts with ease. Swoop’s Web browser-like,
hypermedia-driven interface makes it fairly easy to probe
and detect the problematic classes — all of which contain
exactly the same modeling error, in two cases, by sharing
the exact same problematic expression. The situation is
considerably different when faced with the 144 unsatisfiable
concepts of an OWL version of the Tambis ontology. The
OWL was generated by a conversion script and a number of
errors crept in during that process. Many of the unsatisfi-
able concepts depend in simple ways on other unsatisfiable
concepts, so that a brute force going down the list correct-
ing each concept in turn is unlikely to produce correct re-
sults, or, at best, will be pointlessly exhausting. In one
case, three changes repaired over seventy other unsatisfiable

2http://protege.stanford.edu/plugins/owl/owl-
library/koala.owl ontology is used in the Protégé tutorial

Figure 1: The class Koala has been found to be un-
satisfiable, that is, a subclass of owl:Nothing.

classes. Given the highly non-local effects of assertions in
a logic like OWL, it is not sufficient to take on defects in
isolation.

By definition, if a program can detect whether a class is
unsatisfiable, then it is a reasoner. Satisfiability checking
just is an inference service. In our work, we tend to use our
tableau based description logic reasoner, Pellet. Pellet has a
number of advantages: It natively supports OWL, including
a repairable subset of OWL Full; it has extensive support
for XML Schema datatypes; it has ABox (a.k.a., instance)
support; it covers the broadest range of OWL DL of any rea-
soner that we know, including both SHIN(D), SHON(D),
SHIO(D), and various subsets of their union, SHOIN(D)
(a.k.a., OWL DL); it is open source and in active, public
development. The last is very important for certain debug-
ging strategies which require access to the internals of the
reasoner, as we will discuss in the next section. Pellet is
not as mature or developed or, as a consequence, fast for
many tasks as Racer, FaCT, or FaCT++. It is fast enough
for a number of realistic and real ontologies so that lack of
responsiveness is not a problem for our experimentation.

2.2 Inconsistent Ontologies
Inconsistent ontologies are also fairly easy for a reasoner

to detect, if it can process the ontology at all. In fact,
in tableau reasoners, unsatisfiability testing is reduced to
a consistency test by positing that there is a member of
the to be tested class and doing a consistency check on the
resultant knowledge base (KB). However, unlike with mere
unsatisfiable classes, an inconsistent ontology is, on the face
of it, very difficult for a reasoner to do further work with.
Since anything at all follows from a contradiction, no other
results from the reasoner (e.g., with regard to the subsump-
tion hierarchy) are useful. We can see how the naive appli-
cation of the reasoner to an inconsistent ontology marks all
the classes as unsatisfiable, even though, in this example, no
class is “in itself” unsatisfiable.

2.3 Syntax, Species, and Complexity
Syntactic issues loom large in OWL for a number of rea-

sons including the baroque exchange syntax, RDF/XML,
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the use of URIs (and their abbreviations), and the fact that,
for OWL DL, there is yet another layer of syntactic structure
on top of the corresponding RDF graph. To make matters
worse, OWL DL imposes a number of restrictions on the
form of the graph in order for it to count as an instance of the
OWL DL “species”. These restrictions are quite onerous for
authors and easy to violate as, in general, importing is not
species safe: importing an OWL Lite document into another
may result in an OWL Full document, and an OWL DL doc-
ument importing either an OWL Lite or OWL DL document
may become OWL Full. Even OWL Full, the superset of the
rest, may become OWL DL or Lite upon an import. The
WebOnt working group defined a category of OWL proces-
sor for so-called species validation, and though there were
serious fears of the complexity and implementation of such
validation, several implementations have emerged and ap-
pear to be reliable. However, mere species validation does
not tell the whole story. The species distinctions were sup-
posed to track expressivity well enough to give an indication
of the type of reasoner that may be used. OWL Full is un-
decidable and there was no real production experience with
building reasoners for such a logic. Most interesting sub-
sets of OWL DL have proof theories, practical algorithms,
and actual optimized implementations. Ordinarily, OWL
DL reasoners cannot handle OWL Full ontologies, however,
not all OWL Fullisms are pernicious to a DL system. For
example, often a missing type assertion can be guessed from
the context, given a background assumption that the mod-
eler is trying to stay in OWL DL. Furthermore, a subset
of OWL Full seems to be, even without serious “repair”,
amenable to standard description logic techniques, or can
be made so. Determining those cases, and heuristically re-
pair the other ones, has emerged as a surprising important
tool in the current OWL debugging kit. There is pressure
in many communities to stay inside OWL DL or even OWL
Lite.

Finally, the OWL species are very coarse grained. The
description logic community has long categorized various
description logics by constructing mnemonic names that en-
code the precise expressivity of the particular logic, e.g.,
the logic SH extended by inverse roles is SHI and again
with qualified cardinality restrictions is SHIQ. Understand-
ing what the minimal logic one’s KB falls into seems to be
a help, not only in simply understanding one’s KB, but also
for diagnosing performance issues, or even the mere appli-
cability of certain reasoners.

2.4 Subtler Defects
Some defects thus far discussed are not necessarily de-

fects. There are occasions for defining an unsatisfiable con-
cept, and clearly whether the species your ontology falls into
is a bug or a feature is a matter for the modeler to decide.
Similarly, there are inference services that a reasoner can
provide that can help detect features of the ontology that
may or may not be a defect, depending on the modeler’s
intent. For example, it can be inferred that “parents of at
least three children” is a subclass of “parents with at least
two children”, even if there is no explicit assertion of that
relationship. So, if for some reason the expected or desired
(non)subsumption or class membership does not hold, the
reasoner can detect and report this. But it cannot distin-
guish between desirable (non)subsumptions and undesired
ones. Thus, the problem of organizing the subsumptions

for analysis is more difficult than the problem of organiz-
ing the set of unsatisfiable concepts in the OWL version of
the Tambis ontology, with the exception of the subsumption
hierarchy itself. Even there, requiring modelers to simply
inspect a large hierarchy is unhelpful.

We will not deal with the detection and debugging of these
subtler, domain and modeler dependent defects, focusing, in
this paper, on debugging unsatisfiable concepts. Since mod-
eling defectiveness is very dependent on the modeler’s intent,
we believe that effective debugging requires the expression of
that intent to the system. In other words, we suspect testing
and test cases are the right modality for dealing with some
of these defects.

3. DIAGNOSING UNSATISFIABILITY
When faced with a detected unsatisfiable concept, one

must perform a diagnosis, that is, come to understand the
underlying causes of the unsatisfiability and determine which
are problematic. Once the diagnosis is completed, various
remedies can be considered and their costs and benefits eval-
uated. We distinguish two families of reasoner-based tech-
niques for supporting diagnosis: glass box and black box
techniques. In glass box techniques, information from the
internals of the reasoner is extracted and presented to the
user. Sometimes the implementation is altered in order to
improve the information returned (which, as with many de-
bugging techniques, can slow things down, if only by voiding
optimizations). In black box techniques, the reasoner is used
as an oracle for a certain set of questions e.g., the standard
description logic inferences (subsumption, satisfiability, etc.)

3.1 Glass box techniques

3.1.1 Clashes
There are many different ways for the axioms in an on-

tology to cause an inconsistency. But these different com-
binations boil down to some basic contradictions in the de-
scription of an individual. Tableaux algorithms apply trans-
formation rules to individuals in the ontology until no more
rules are applicable or an individual has a clash. The basic
set of clashes in a tableaux algorithm are:

• Atomic An individual belongs to a class and its com-
plement.

• Cardinality An individual has a max cardinality re-
striction but is related to more distinct individuals.

• Datatype A literal value violates the (global or local)
range restrictions on a datatype property.

As a minimum requirement for the clash information to
be useful for diagnosis, the reasoner should explain some de-
tails about the clash, e.g. which class and its complement
is causing the clash. However, it is not easy to usefully
present this clash information to the user. For example, the
normalization and decomposition of expressions required in
reasoning can obscure the error by getting away from the
concepts actually used by the modeler, or the clash may in-
volve some individuals that were not explicitly present in
the ontology, but generated by the reasoner in order to try
to adhere to some constraint. Those generated individuals
may not even exist (or be relevant) in all models. For exam-
ple, if an individual has a owl:someValuesFrom restriction
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Figure 2: The explanation of unsatisfiability for class
Mad Cow includes the description of an anonymous
individual created by the reasoner. It is easy to see
the connection between the path that identifies the
individual and the existential restrictions in the Mad

Cow definition.

on a property, the reasoner would generate a new anony-
mous individual that is the value of that property. Since
these individuals (as with bnodes that exist in the original
ontology) do not have a name (URI) associated with them,
we can only use paths of properties to identify these indi-
viduals. This adds the extra burden to the user to make the
connections between the identification path and the restric-
tions in the concept’s definition but this is not always a big
problem as illustrated in Figure 2 that shows an example
from the Mad Cow ontology3.

Depending on the reasoner’s capabilities it is possible to
increase the granularity of the clash explanations. For exam-
ple, if an individual has two conflicting cardinality restric-
tions on a property, (e.g. ≥ 2 child and ≤ 1 child), then
it is possible for the reasoner to detect this clash without
generating individuals by just checking such obvious contra-
dictions in cardinality restrictions. Generating explanations
specific to these cases makes it easier for the user to see the
relation between the clash and the existing axioms in the
ontology.

It is important to note that tableau expansion rules may
find many different clashes during a satisfiability test. Due
to the non-determinism caused by the OWL constructors
such as owl:unionOf and owl:maxCardinality4, some of the
clashes do not reflect an error in the ontology but simply
guide the tableau rules to the correct model. Therefore,
the question is how to identify the inconsistency-revealing
clashes from intermediary clashes. It turns out that de-
pendency directed backjumping technique can be utilized
to make this distinction.

Dependency directed backjumping is an optimization tech-
nique that adds an extra label to the type and property as-
sertions so that the branch numbers that caused the tableau

3The Mad Cow ontology is used in OilEd tutorials
4When there is a maxCardinality restriction on a property
and more values are provided for that property, reasoner is
forced to assign equivalence between some of these values
in order to satisfy the cardinality restriction. There might
be multiple different combinations to select the individuals,
thus the choice is non-deterministic, i.e reasoner tries every
different possibility.

algorithm to add those assertions are tracked. Obviously, as-
sertions that exist in the original ontology and the assertions
that were added as a result of only deterministic rule appli-
cations will not depend on any branch. This means these
assertions are direct consequence of the axioms in the ontol-
ogy and affect every interpretation. If a clash found during
tableau expansion does not depend on any non-deterministic
branch, the reasoner will stop applying the rule as it is obvi-
ous that there is no way to fix the problem by trying different
branches.

When the reasoner is known to use dependency directed
backjumping (all existing DL reasoners —Racer, Fact, Pel-
let — use this technique), then looking at the last clash to
explain an unsatisfiability is generally enough (though, one
should verify this by examining the dependency set infor-
mation of the clash). Of course, it is still possible that the
inconsistency is due to the fact that all the different non-
deterministic branches failed for different reasons. A simple
concept description that illustrates this problem is A v B

u C u (¬B t ¬C). Concept A is unsatisfiable because it is
either a subclass of ¬B or ¬C (due to the disjunction). How-
ever, neither is possible since they both cause a clash with
other concepts in the conjunction. In this setting, it is not
enough to present the last clash as it will not be accurate.
This problem can be overcome when all the clashes encoun-
tered are recorded and the dependency set of the last clash is
examined to find the relevant set of clashes for the inconsis-
tency. Unfortunately, in this case it is harder to understand
the problem as the user is expected to look at all the dif-
ferent clash reasons. This is due, of course, to the harder
nature of the problem itself.

3.1.2 Sets of support
The clash information provides hints about the cause of

the inconsistency. However, it does not specify which set
of axioms are causing this inconsistency — essential infor-
mation for the user trying to fix the problem. Finding the
source of the problem manually may still take some reason-
able effort, especially when the descriptions in the ontology
are complex. It is possible to extend the reasoner to keep
track of the source axioms for assertions in a way similar to
the dependency sets discussed earlier.

Naturally, the assertions in the ontology will depend on
themselves only. New assertions added by the tableau rules
will depend on a union of axioms which needs to be com-
puted according to the triggering rule. For example, suppose
we have two assertions:

{x rdf:type C, C rdfs:subClassOf D}

The reasoner will add the additional assertion

{x rdf:type D}

which will depend on both of the above assertions. As the
reasoner continues applying the tableau rules the explana-
tion sets for each assertions needs to be updated as well as
the dependency set information. When an inconsistency-
revealing clash is discovered (as explained above) the ex-
planation set can also be presented along with the clash
information. Figure 3 shows the set of axioms found by
the reasoner as the source of the unsatisfiability for concept
koala:Koala.

Presenting the set of support axioms provides more in-
sight about the problem, but unfortunately it is much harder
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Figure 3: The set of axioms that support the in-
consistency of Koala concept is displayed in debug
mode.

to compute compared to the clash information. The rea-
soner needs to maintain extra data structures to track the
source and this introduces additional memory and compu-
tation consumption. But a bigger issue here, as noted in the
previous section, is the internal modifications done by the
reasoner such as normalization and absorption that com-
bines and transforms the axioms from the ontology. Nor-
malization induces a less critical problem because it is still
possible to establish the relation between the normalized
class expression and the class expression used in the ontol-
ogy. However, the absorption method combines axioms from
different parts of the ontology to create simpler subclass rela-
tions in order to eliminate General Concept Inclusion (GCI)
axioms that substantially decrease the performance of rea-
soner. Disabling absorption optimization makes it relatively
easier to compute the support sets. However, handling on-
tologies with complex structure, such as the Tambis ontol-
ogy, is not feasible at all without absorption. In this case,
it is more practical to use the black-box techniques as ex-
plained in the next section.

3.2 Black box techniques

3.2.1 Browsing and rendering concepts
As noted earlier, ontology engineering tools have to go a

long way in presenting the information supplied by the rea-
soner in a form conducive to understanding and debugging
the ontology. Swoop has a debug mode wherein the ba-
sic rendering of entities is augmented with information ob-
tained from a reasoner. Different rendering styles, formats,
and icons are used to highlight key entities and relationships
that that are likely to be helpful to debugging process.

For example, all inferred relationships (axioms) in a spe-
cific entity definition are italicized and are obviously not
editable directly. In the future, we plan to extend this fea-
ture by displaying the reasoning chain for the simple, yet
non-trivial inferences by pointing to related definitions and
axioms (e.g., C is an intersection of (D,..) implies C is a sub-
class of D), but for now, simply highlighting them separately
is useful to the ontology modeler as they can (potentially)
point to unintended assertions. On a similar note, in the
case of multiple ontologies, i.e., when one ontology imports

Figure 4: The class gene-part is unsatisfiable on two
counts: its defined as an intersection of an unsatis-
fiable class (dna-part) and an unsatisfiable class ex-
pression (∃partof.gene), both highlighted using red
tinted icons.

another, all imported axioms in a particular entity definition
are italicized as well. Highlighting them helps the modeler
differentiate between explicit assertions in a single context
and the net assertions (explicit plus implied) in a larger
context (using imports), and can also reveal unintended se-
mantics.

In addition, all unsatisfiable named classes, and even class
expressions, are marked with red icons whenever rendered
— a useful pointer for identifying dependencies between in-
consistencies. In Figure 4 (the Tambis ontology), note how
simply looking at the class definition of gene-part makes
the reason for the inconsistency apparent: it is an subclass
of the inconsistent class dna-part and the inconsistent class
expression ∃partof.gene. The hypertextual navigation fea-
ture of Swoop allows the user to follow these dependencies
easily, and reach the root cause of the inconsistency, e.g.,
the class which is independently inconsistent in its defini-
tion (i.e., no red icons in its definition). In this manner, the
UI guides the user in locating and understanding bugs in
the ontology by narrowing them down to their exact source.

Also note that the class expressions themselves can be
rendered as regular classes, displaying information such as
sub/super classes of a particular expression (by clicking on
the associated CE icon, see Figure 5). This sort of ad hoc
“on-demand” querying (e.g., find all subclasses of a specific
query expression) helps reveal otherwise hidden dependen-
cies. Consider the case of the inconsistent class Koala de-
picted in Figure 5, which contains three labeled regions (the
figure makes use of the Comparator feature in Swoop, dis-
cussed in Section 6). Region 1 shows the definition of the
Koala class in terms of its subclass-of axioms: note the pres-
ence of the class expression ∃isHardWorking.false and the
named class Marsupials mentioned here. Now, clicking on
the class expression reveals that its an inferred subclass of
Person (Region 2), and clicking on Marsupials shows that
its defined as disjoint-with class Person (Region 3). Thus,
the contradiction is found – an instance of Koala is forced
to be an instance of Person and ¬Person at the same time,
and the bug can be fixed accordingly.
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Figure 5: The class Koala is unsatisfiable because
(1) Koala is a subclass of ∃isHardWorking.false and
Marsupials; (2) ∃isHardWorking.false is a subclass of
Person; and (3) Marsupials is a subclass of ¬Person
(disjoint)

While promising, there are severe limitations with this
straightforward navigational approach (similar to the prob-
lems with naive structural analysis) due to the fact that con-
structs in expressive description logics can have highly non-
local effects. Consider the case when the user has navigated
(by following hyperlinks) to the apparent root cause (class)
of a set of related inconsistencies, that is, one that, in our
display, has no obvious dependencies on other unsatisfiable
concepts. There are a few such cases in the Tambis ontol-
ogy, for example, the class Carbon (Figure 6). Interestingly,
not only is Carbon apparently a root, but it is a significant
one. Removing the unsatisfiability bug in Carbon resolves
the unsatisfiability of seventy-seven classes in the ontology.
Here, determining the exact reason for the unsatisfiability
is non-trivial, given the clash explanation provided by the
reasoner — all we know is an instance of Carbon is forced to
be an instance of two disjoint classes (in this case, arbitrary
class expressions). At this point, a glass box approach would
seek to determine the set of support of the clash, which, pre-
sumably, would gather all the relevant axioms even if they
did not explicitly mention Carbon. However, this gathering
does not necessarily situate the axioms in the classes defi-
nition. Some black box techniques can help highlight these
dependencies, such as:

1. Based on the type of clash causing the unsatisfiability
(See Section 3.1.1 for the explanation of these types),
one could conduct a relevant search to find likely clash
generating candidates. Here it means to search for
all known (asserted+inferred) equivalents and comple-
ments of the class Carbon.

2. Instead of simply checking the unsatisfiability of a sin-
gle class expression in the entity definition (which is
the default Swoop modality), one could check the un-
satisfiability of a group of expressions that when taken
together are likely to generate a clash. Various heuris-
tics can be used to select such expressions, for e.g.,
grouping multiple restrictions on the same property.

Figure 6: The class Carbon in the Tambis ontology
is independently unsatisfiable, and is a root cause of
numerous other (dependent) inconsistencies in the
ontology.

3. By examining the details of the clash provided by Pel-
let, one could identify key entities and expressions listed
in the details, and search for possible paths (graphs)
explicitly defined in the ontology that link the current
unsatisfiable class to those entities and expressions.
Identifying such paths is critical in understanding how
clashes generate and propagate.

These techniques can also be used with reasoners that do
not have glass box support and will not acquire it. This may
be simply because the reasoner is propriety or just closed
source, or it might be too difficult to alter. More impor-
tant, some ontologies may be too large and complex to be
processed without full optimization. In this case, the loss of
trace information is dwarfed by the loss of any information
at all.

4. DIAGNOSING INCONSISTENT KBS
Many of the techniques discussed in the prior section are,

in fact, applicable to the diagnosis of inconsistent KBs, with
a few slight twists. This should be no surprise as unsatisfi-
ability detection is performed by attempting to generate an
inconsistent KB. Thus, the glass box techniques for diagnos-
ing unsatisfiable concepts in principle work to help diagnose
inconsistent KBs.

However, one fundamental problem with inconsistent on-
tologies is that any conclusion can be drawn from an in-
consistent set of premises. As a result, the satisfiability of
concepts and concept expressions cannot be computed. Fig-
ure 7 shows the result of adding an instance to an individual
concept Koala where all the classes in the ontology become
unsatisfiable due to this inconsistency. The ontology view
shows the reason explaining which individual is causing the
problem but looking at the assertions for this individual will
not reveal anything useful simply because all the concepts
and concept expressions would be shown inconsistent. The
inconsistency of the KB needs to be solved in order for the
reasoner to provide useful information that would help to
fix the problem!
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Figure 7: When the ontology is inconsistent due to
an assertion about an individual, all the classes end
up inconsistent because reasoner can infer anything
from an inconsistent ontology.

Fortunately, the situation is not completely desperate as
some improvements are possible depending on the type of
problem in the KB. First, let us present a categorization of
the different kind of reasons for inconsistent KBs:

1. Inconsistency of Assertions about Individuals There
are no unsatisfiable classes in the ontology but there
are conflicting assertions about one individual, e.g., an
individual is asserted to belong to two disjoint classes
or an individual has a cardinality restriction but re-
lated to more individuals.

2. Individuals Related to Unsatisfiable Classes There is
an unsatisfiable class description and one individual is
asserted to belong to that class or has an existential
restriction to the unsatisfiable.

3. Defects in Class Axioms Involving Nominals It might
be the case that inconsistency is not directly caused
by type or property assertions, i.e., ABox assertions,
but caused by class axioms that involve nominals, i.e.,
TBox axioms. Nominals are simply individuals men-
tioned in owl:oneOf and owl:hasValue constructs. As
an example consider the following set of axioms:

MyFavoriteColor = { Blue }
PrimaryColors = { Red, Blue, Yellow }
MyFavoriteColor v ¬PrimaryColors

These axioms obviously cause an inconsistency because
the enumerated MyFavoriteColor and PrimaryColors

share one element, i.e., individual named Blue, but
they are still defined to be disjoint. The final effect is
similar as defining an individual to belong to an un-
satisfiable concept but there is no direct type assertion
in the ontology.

Depending on the type of inconsistency there are differ-
ent options to be taken. In the first two cases, it is possible
to remove all assertions about individuals while reasoning
is being done. Since removing assertions about individuals
would obviously fix the inconsistency, reasoner can process

the ontology and present more reasonable results (note that
the UI would still present the whole set of axioms and as-
sertions from the ontology).

For the first type of inconsistency, clash information would
point to the individual that contains the problem (as already
seen in Figure 7) and the details pane for the individual
would flag the inconsistent concept expression (similar to
the inconsistent expressions in class descriptions as shown in
Section 3.2.1. For the second type of inconsistency, removing
the assertions about individuals would immediately reveal
the unsatisfiable concept because all the other classes would
now be satisfiable. Of course, there may be more than one
defect in the ontology and each of these inconsistencies need
to be solved separately in order to fix the overall problem.

The third type of inconsistency is very different in nature
because even removing all the assertions about individuals
from the reasoner would not solve the problem. It is required
to get rid of the problematic class axioms in order to make
the ontology consistent. In this case, we need to make use of
the glass box techniques to find the set of supporting axioms
for the problem and try to fix the problem by examining this
information along with the asserted facts.

5. EXPLORING REMEDIES
Thus far we have focused on bug detection and diagnosis,

that is, the initial information gathering phase of the debug-
ging process. That phase is focused on helping the modeler
understand the problem. Once there is understanding, then
the modeler needs to take action. However, often there are
a number of possible alternative actions (or sets of actions)
that would correct the bug, or, in spite of all the debug-
ging information supplied by the system, the source of the
problem is unclear. At this point, a programmer will tend
to start experimenting with possible changes. Part of good
debugging support for OWL ontologies is making such ex-
perimentation safe, easy, and effective.

Swoop has an ontology versioning feature that supports
ad hoc undo/redo of changes (with logging) coupled with
the ability to checkpoint and archive different ontology ver-
sions. Such a feature can play a vital role in ontology de-
bugging. Consider the scenario in which a user starts with
an inconsistent ontology version, performs a set of changes
in succession (undoing and redoing as necessary), in order
to reach a final consistent version. Here the change logs give
a direct pointer to the source of inconsistency. The check-
pointing allows the user to switch between versions easily
exploring different modeling alternatives.

Alternately, if the user has two different ontology versions,
one consistent and the other inconsistent, a diff between the
versions can be performed using Swoop’s Concise Format
Renderer in order to determine possible change paths be-
tween the versions. By examining these change paths, and
noting the common bug-producing changes, users can find
and eliminate erroneous entity-definitions and axioms in the
ontology.

Once a series of changes has proven effective in removing
the defect and seems sensible, the modeler can use Swoop’s
integrated Annotea client to publish the set of changes plus a
commentary. Other subscribers to the Annotea store can see
these changes and commentary in context they were made,
apply the changes to see their effect, and publish responses.
These exchanges persist, providing a repository of real cases
for subsequent modelers to study.
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Finally, in Swoop we have a provision to store and com-
pare OWL entities via the Comparator panel. Snapshots
of Items can be added to this placeholder at any time and
that view will persist there until the user decides to remove
or replace them at a later stage. Upon adding an entity, a
time-stamped snapshot of it is saved (with hyperlinks and
all), thus providing a reference point for future tasks. The
significance of the Comparator was amply demonstrated in
Section 3.2.1 (see Figure 5) where we studied the unsatisfi-
ability bug in the class Koala by saving snapshots of related
classes and expressions in the Comparator, and browsing
them to identify the exact cause for the bug.

6. RELATED WORK
There has long been significant interest in explaining in-

ferences to the non-sophisticated user when implementing
reasoning services for Description Logic (DL) systems. In [4]
the author provides explanations as proof fragments based
on standard structural subsumption algorithms for the CLAS-
SIC KR system. The method has been extended for ALC
reasoning in [2] wherein the authors use a modified sequent
calculus to explain a tableaux based proof.

The Inference Web Infrastructure [6] comprised using a
web-based registry for information sources, reasoners, etc.,
and a portable proof specification language for sharing ex-
planations. So, reasoners (such as Pellet) which generate
explanations using the above techniques could publish their
explanation and explanation generating capability to inter-
ested clients (such as Swoop).

On the other hand, [8] propose non-standard reasoning
algorithms (for ALC TBoxes) based on minimization of ax-
ioms using Boolean methods, and demonstrate promising
results on the DICE terminology. Their approach which
deals with axiom and concept pinpointing is directly related
to our work, and we need to investigate it further for possible
improvements to our solution.

[5] outline some critical usability issues in (deductive) DL
systems based on real world empirical analysis. The paper
covers a wide range of knowledge-access concerns such as
explanations, error handling and pruning and identify key
minimal usability requirements for each.

As for explanation support in Ontology editing toolkits,
popular editors such as Protégé [7] and OilEd [1] provide
very little or no explanation for reasoning and ontology de-
bugging beyond what was discussed in Section 2. This is
due, in part, to the lack of support for glass box techniques
in available reasoners The recently released OntoTrack [3]
goes a step further in this direction by giving “instant rea-
soning feedback” (using quasi natural language) for a limited
fraction of OWL Lite, with a glass box approach is based on
[2].

7. CONCLUSION & FUTURE WORK
In this paper we have presented a suite of features inte-

grated into the OWL ontology browser and editor — Swoop,
designed to aid modelers in debugging inconsistency related
errors in their ontologies. We are, in general, focused on the
whole user experience. Moving around the ontology should
be trivial and the hypertextual navigation supports this.
Also, instead of shifting into a completely separate debug-
ging mode, we augment the existing display with additional
cues that the user can follow using familiar techniques. We

make alterations both easy and safe and encourage the shar-
ing of experiences and successes. Thus far, reactions from
our user base has been very encouraging.

We have focused on the obvious, and for obvious things
the debugging cues work well. Tambis has proven to be a
very useful challenge, but we need to gather a wider set of
realistic cases, particularly those with non-local interactions.
We plan to conduct formal user studies to test both the
relative effectiveness of individual cues and of the holistic
experience.

Our experience has been that the process of debugging
can assist understanding of an ontology, both by providing
motivation and by providing guidance. For example, the
Tambis ontology is large, complex, and describes an unfa-
miliar domain. But each author quickly learned quite a bit
about the ontology (and even of the domain) by trying to
understand the various unsatisfiabilities. This suggests that
using similar techniques for identifying and displaying de-
pendencies would be effective in helping users explore and
come to understand new ontologies.
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