
WebPod: Persistent Web Browsing Sessions with
Pocketable Storage Devices

Shaya Potter
Department of Computer Science

Columbia University, New York, NY, USA

spotter@cs.columbia.edu

Jason Nieh
Department of Computer Science

Columbia University, New York, NY, USA

nieh@cs.columbia.edu

ABSTRACT
We present WebPod, a portable system that enables mobile
users to use the same persistent, personalized web brows-
ing session on any Internet-enabled device. No matter what
computer is being used, WebPod provides a consistent brows-
ing session, maintaining all of a user’s plugins, bookmarks,
browser web content, open browser windows, and browser
configuration options and preferences. This is achieved by
leveraging rapid improvements in capacity, cost, and size
of portable storage devices. WebPod provides a virtualiza-
tion and checkpoint/restart mechanism that decouples the
browsing environment from the host, enabling web browsing
sessions to be suspended to portable storage, carried around,
and resumed from the storage device on another computer.
WebPod virtualization also isolates web browsing sessions
from the host, protecting the browsing privacy of the user
and preventing malicious web content from damaging the
host. We have implemented a Linux WebPod prototype and
demonstrate its ability to quickly suspend and resume web
browsing sessions, enabling a seamless web browsing expe-
rience for mobile users as they move among computers.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—checkpoint/re-
start ; C.2.4 [Computer-Communication Networks]: Di-
stributed Systems—Distributed applications

General Terms
Design, Experimentation, Measurement, Performance

Keywords
web browsing, checkpoint/restart, portable storage, virtual-
ization, process migration

1. INTRODUCTION
In today’s world of commodity computers and broadband

network connectivity, computer users are more mobile than
ever. Users make use of computers at home, school and
work. Computers are so much a part of daily life that many
pervasive devices, such as cell phones and PDAs, are as-
similating usage patterns, such as web browsing, e-mail and

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

instant messaging, that were once limited to regular desktop
computers.

A key problem that mobile users encounter is that they
lack a common environment as they move around. The com-
puter at the office is configured differently from the com-
puter at home, which is different from the computer at the
library. These locations can have different sets of software
installed, which can make it difficult for a user to complete a
task as the necessary software might not be available. Simi-
larly, mobile users want consistent access to their files, which
is difficult to guarantee as they move around.

Given the ubiquity of web browsers on modern computers,
many traditional applications are becoming web-enabled.
Common applications such as e-mail [4, 5] and instant mes-
saging [1] have been ported to a web services environment
that is usable from within a simple web browser. The ad-
vantage of this approach is that users effectively store their
data on centrally managed servers which can be accessed
wherever they go on any networked computer.

However, even by making applications accessible from a
web browser, users are still constrained in their ability to
browse effectively from any computer because of important
missing data commonly stored in web browsers. This data
includes bookmarks, cookies, and browser history, which en-
able web browsers to function in a much more useful manner.
The problem that occurs when a user moves between com-
puters is that this data, which is specific to a web browser
installation, cannot move with the user.

From a security point of view, this state also provides a
large trail of bread crumbs that a malicious user can try
to make use of after a user has finished using a computer.
From cookies, to page view history, and the web browser’s
web page cache, a record of usage can be recorded by a
web browser not under the user’s control. Users who have
reason to want to protect their privacy, would be wary to
use applications, such as web browsers, that record state
and are not under their control.

Mobile users are also inconvenienced when attempting to
use web browsers when they are moving around, especially
when they pick up and move on short notice. While many
web based applications are stateless, such as instant mes-
saging, others, such as e-mail, contain important state, such
as messages a user is in the process of composing. While
many e-mail applications support the ability to save draft
e-mail messages, this does not occur automatically. Simi-
larly, while a user can attempt to bookmark all the pages
he is looking at, he cannot restart his state as it was when
he resumes it on a new computer.

603



Web users also depend on an assorted set of applications
to be available on the computers they are using, such as
Adobe Acrobat Reader for viewing PDF files. If the appli-
cation is already installed on the host, the web browser can
make use of it. Otherwise, the user is unable to complete
the task at hand. Some web-based applications have been
created to fill the needs of common applications, such as
an application that converts PDF files to simple image files
viewable from a web browser. However, these solutions are
application-specific and often quite limited. For instance,
converting PDF files to simple image files would cut out
useful features that are available in the native application,
such as the ability to search the PDF.

If users were allowed to install software on the comput-
ers, this would help alleviate this problem, but users would
then potentially be forced to debug web browsing problems
on each computer they used to attempt to identify miss-
ing applications. In practice, this would severely limit the
number of machines that users could use as most system
administrators would consider it to be a security hole to let
regular users install untrusted applications onto their sys-
tems. This effectively limits this approach to being used by
more computer-savvy users moving among machines already
under their control.

To address these problems, we introduce WebPod, a port-
able system that enables mobile users to obtain the same
persistent, personalized web browsing experience from any
Internet-enabled device. WebPod leverages the rise of com-
modity storage devices that can easily fit in a user’s pocket
yet store large amounts of data. Such pocketable storage de-
vices range from flash memory sticks that can hold 1 GB of
data, to Apple iPods that can hold 60 GB of data. WebPod
decouples a user’s web browsing session from the underlying
computer so that it can be suspended to a portable storage
device, carried around easily, and simply resumed from the
storage device on a completely different computer. WebPod
provides this functionality without modifying, recompiling
or relinking any applications or the operating system kernel,
and with only a negligible performance impact.

WebPod operates by encapsulating a user’s web browsing
session in a virtualized execution environment and storing
all state associated with the session on the portable storage
device. WebPod virtualization decouples web browsing ses-
sions from the underlying operating system environment by
introducing a private virtual namespace that provides con-
sistent, host-independent naming of system resources. Web-
Pod also virtualizes the display so that a web browsing ses-
sion can be scaled to different display resolutions that may
be available as a user moves from one computer to another.
This enables a web browsing session to run in the same way
on any host despite differences that may exist among differ-
ent host operating system environments and display hard-
ware. Furthermore, WebPod virtualization protects the un-
derlying host from untrusted applications that a user may
run as part of a web browsing session. WebPod virtual-
ization also prevents other applications from outside of the
web browsing session that may be running on the host from
accessing any of the session’s data, protecting the browsing
privacy of the user.

WebPod virtualization is combined with a checkpoint/re-
start mechanism. This enables a user to suspend the entire
web browsing session to the portable storage device so that
it can be migrated between physical computers by simply

moving the storage device to a new computer and resuming
the session there. WebPod ensures that file system state
as well as process execution state associated with the web
browsing session are preserved on the portable storage de-
vice.

The result is that WebPod enables users to maintain a
common web browsing environment, no matter what com-
puter they are using. Users can easily carry their web browser
sessions with them, without lugging around a bulky laptop
or being restricted to a more portable device without suf-
ficient display size. Since WebPod does not rely on any of
the application resources of the underlying host machine,
web browser helper applications and plug-ins that users ex-
pect to be available will always be available using WebPod.
A WebPod user’s cookies, bookmarks, and other browser
state are also always available as they are stored within the
web browsing session. Since WebPod provides a fast check-
point/restart mechanism, user’s can quickly save their entire
web browsing environment when they have to change loca-
tions, without the need to manually attempt to save all the
individual elements of their state. Mobile users can simply
unplug the device from the computer, move onto a new com-
puter and plug in, and restart their session from the device
to pick up where they left off.

We have implemented a WebPod prototype for use with
commodity PCs running Linux and measured its perfor-
mance. Our experimental results with real web applications
demonstrate that WebPod has very low virtualization over-
head and can migrate web browsing sessions with sub-second
checkpoint and restart times. We show that WebPod can
reconstitute a user’s web browsing session an order of mag-
nitude faster than if a user had to reopen the same set of
web browser windows without WebPod. Our results also
show that a complete WebPod browsing session including
file system state requires less than 256 MB of storage. Web-
Pod’s modest storage requirements enable it to be used with
the smallest form factor USB drives available on the market
today, which are smaller than a person’s thumb and can be
conveniently carried on a key chain or in a user’s pocket.

This paper focuses on the design and implementation of
the WebPod virtualization and checkpoint/restart mecha-
nisms. Section 2 presents the overall WebPod architecture
and usage model. Section 3 motivates the need for Web-
Pod virtualization and describes how this is done. Section 4
describes the WebPod checkpoint/restart mechanisms that
enable WebPod to be used across operating system envi-
ronments with different kernel versions. Section 5 presents
experimental results measuring the performance of the Web-
Pod system. Section 6 discusses related work. Finally we
present some concluding remarks and directions for future
work.

2. WEBPOD USAGE MODEL
WebPod is architected as a simple end user device that

users can carry in their pockets. A WebPod session can be
easily populated with the complete set of applications used
in a user’s normal web browsing environment so that envi-
ronment is available on any computer. To the user, a Web-
Pod session appears no different than private computer even
though it runs on a host that may be running other appli-
cations. Those applications running outside of the WebPod
session are not visible to a user within a WebPod session.
To provide strong security, the WebPod stores the session

604



on an encrypted file system. Therefore, even if the WebPod
device is lost or stolen, an attacker will just be able to use
it as his own personal storage device.

A user starts WebPod by simply plugging in a WebPod
portable storage device into the computer. The computer
detects the device and automatically tries to restart the
WebPod session. This involves first authenticating the user
by asking for a password. Authentication can also be done
without passwords by using biometric technology in the form
of built-in fingerprint readers available on some USB drives
[13]. Once a user is authorized, WebPod mounts its en-
crypted file system, restarts its web browsing session, and
attaches a WebPod viewer to the session to make the associ-
ated set of web browser windows available and visible to the
user. Applications running in a WebPod session appear to
the underlying operating system just like other applications
that may be running on the host machine, and they make
use of the host’s network interface in the same manner.

Once WebPod is started, a user can commence web brows-
ing using the available web browsing environment. When
the user wants to leave the computer, the user simply closes
the WebPod viewer. This causes the WebPod session to be
quickly checkpointed to the WebPod storage device, which
can then be unplugged and carried around by the user.
When another computer is ready to be used, the user simply
plugs in the WebPod device and the session is restarted right
where it left off. With WebPod, there is no need for a user to
manually launch the web browser, reopen web browser win-
dows, and reload web content. WebPod’s checkpoint/restart
functionality maintains a user’s web browsing session persis-
tently as a user moves from one computer to another.

WebPod is simpler than a traditional computer in that
it only provides a web browsing application environment,
not an entire operating system environment. There is no
operating system installed on the WebPod device. Web-
Pod instead makes use of the operating system environment
available on the host computer into which it is plugged in.
This provides two important benefits for WebPod users in
terms of startup speed and management complexity. Since
there is no operating system on the WebPod device, there
is no need to boot a new operating system environment to
use WebPod or attempt to configure an operating system to
operate on the particular host machine that is being used.
Since only WebPod applications need to be restarted, this
minimizes startup costs for using WebPod and ensures that
WebPod can be used on any machine on which a compatible
operating system is running. Furthermore, since WebPod
does not provide an operating system there is no need for
WebPod users to maintain and manage an operating system
environment, reducing management complexity.

WebPod protects web browsing sessions by isolating each
session in its own private execution environment. Other
user-level applications running on the same machine are not
able to access any state associated with a WebPod session,
protecting the browsing privacy of a WebPod user. WebPod
does rely on the host hardware and operating system ker-
nel as is common practice for web users today. As a result,
it does not protect users from attacks that may arise from
tampered hardware or a compromised operating system ker-
nel.

WebPod provides a consistent usage environment compat-
ible with the web services model. Because WebPod is small
and travels with the user, there is a risk of loss of the de-

vice and its associated data. However, this risk is limited to
loss of browser state such as bookmarks and cookies since
all important user data does not reside on the local device
but is always stored by web services on centrally managed
servers. WebPod state is already encrypted on the storage
device to minimize the damage suffered if the device is lost or
stolen. To reduce the risk of browser data loss further, Web-
Pod is backed up periodically when it returns to the user’s
own computer, in the same manner as a user synchronizes
a PDA. Alternatively, WebPod can be incrementally backed
up automatically using a network backup service whenever
it is plugged in to a networked computer. Backup would
only done when the web browsing session is not actively be-
ing used to avoid impacting the user’s browsing experience.
In either case, if a WebPod device is lost, the user’s web
browsing session can be easily restored from backup onto
another device.

3. WEBPOD VIRTUALIZATION
To provide a private and mobile execution environment

for web browsing sessions, WebPod virtualizes the under-
lying host operating system and display. WebPod virtual-
ization is necessary to enable WebPod browsing sessions to
be decoupled from the underlying host on which it is being
executed. This is essential to allow WebPod applications to
be isolated from the underlying system and other applica-
tions, to be checkpointed on one machine and restarted on
another, and to be displayed on hosts with different display
hardware and display resolution. Given the large existing
base of web applications and commodity operating systems,
WebPod virtualization is designed to be completely trans-
parent to work with existing unmodified applications and
operating system kernels.

3.1 Operating System Virtualization
To understand the need for operating system virtualiza-

tion, we briefly discuss how applications execute in the con-
text of commodity operating systems. When an application
runs, the operating system associates a process or set or pro-
cesses with it. Operating system resource identifiers, such
as process IDs (PIDs), must remain constant throughout
the life of a process to ensure its correct operation. Web
applications commonly manipulate these operating system
resource identifiers as they execute. However, these identi-
fiers are only local unique to a particular operating system
instance. When an application is moved from one computer
to another, there is no guarantee that the destination oper-
ating system can provide the same identifiers to the migrated
application’s processes. Those identifiers may already be in
use by other processes running on the destination system,
preventing the migrated process from executing correctly.

WebPod virtualizes the underlying host operating system
by encapsulating web browsing sessions within a host in-
dependent, virtualized view of the operating system. This
virtualization approach builds upon our previous work on
MobiDesk [3] and the previous work of one of the authors
on Zap [9].

WebPod virtualization provides each web browsing ses-
sion with its own virtual private namespace. For exam-
ple, a WebPod session contains its own host independent
view of operating system resources, such as PID/GID, IPC,
memory, file system, and devices. The namespace is the
only means for the processes associated with running Web-

605



Pod application instances to access the underlying operat-
ing system. WebPod introduces this namespace to decouple
processes associated with applications running in WebPod
sessions from the underlying host operating system.

The WebPod namespace is private in that only processes
within the session can see the namespace, and the names-
pace in turn masks out resources that are not contained
in the session. Processes inside the session appear to one
another as normal processes, and they are able to communi-
cate using traditional IPC mechanisms. On the other hand,
no IPC interaction is possible across the session’s bound-
ary, because outside processes on the WebPod host are not
part of the private namespace. Processes inside a session
and those outside of it are only able to communicate over
RPC mechanisms, traditionally used to communicate across
computers. As a result, processes within the namespace are
isolated from processes outside of the namespace as though
those within the namespace were running on a private com-
puter.

The namespace is virtual in that all operating system
resources, including processes, user information, files, and
devices, are accessed through virtual identifiers. Virtual
identifiers are distinct from the host-dependent, physical re-
source identifiers used by the operating system. The ses-
sion’s namespace uses virtual identifiers to provide a host-
independent view of the system, which remains consistent
throughout a process’s and session’s lifetime. Since the
session’s namespace is separate from the underlying host
namespace, it can preserve naming consistency for its pro-
cesses, even in the presence of changes to the underlying
operating system.

The WebPod namespace enables WebPod processes to
be isolated from the host system, checkpointed to its stor-
age device, and transparently restarted on another machine.
The private virtual namespace provides consistent, virtual
resource names for WebPod processes to enable WebPod
sessions to migrate from one machine to another. Names
within a session are trivially assigned in a unique manner
in the same way that traditional operating systems assign
names, but such names are localized to the session. Since
the namespace is virtual, there is no need for it to change
when the session is migrated, ensuring that identifiers re-
main constant throughout the life of the process, as required
by applications that use such identifiers. Since the names-
pace is private to the WebPod session, processes within the
session can be migrated as a group, while avoiding resource
naming conflicts among other processes running on the host.

As an additional benefit, the private virtual namespace
enables the WebPod session to be securely isolated from the
host by providing complete mediation to all operating sys-
tem resources. Since the only resources within the WebPod
session are the ones that are accessible to the owner of the
session, a compromised session is limited in its ability to
affect any activities running on the host outside of the ses-
sion. Similarly, since any attempts by processes outside of
the session to interact with processes running inside of the
session must also occur through operating system resources,
WebPod is able to filter out those interactions as well.

WebPod virtualizes the operating system instance by us-
ing mechanisms that translate between the session’s virtual
resource identifiers and the operating system resource iden-
tifiers. For every resource accessed by a process in a ses-
sion, the virtualization layer associates a virtual name to

an appropriate operating system physical name. When an
operating system resource is created for a process in a ses-
sion, the physical name returned by the system is caught,
and a corresponding private virtual name created and re-
turned to the process. Similarly, any time a process passes
a virtual name to the operating system, the virtualization
layer catches and replaces it with the corresponding physical
name. The key virtualization mechanisms used are a system
call interposition mechanism and the chroot utility with file
system stacking for file system resources.

WebPod virtualization uses system call interposition to
virtualize operating system resources, including process iden-
tifiers, keys and identifiers for IPC mechanisms such as se-
maphores, shared memory, and message queues, and net-
work addresses. System call interposition wraps existing
system calls to check and replace arguments that take vir-
tual names with the corresponding physical names, before
calling the original system call. Similarly, wrappers are used
to capture physical name identifiers that the original system
calls return, and return corresponding virtual names to the
calling process running inside the session. Session virtual
names are maintained consistently as a session migrates from
one machine to another and are remapped appropriately to
underlying physical names that may change as a result of
migration. Session system call interposition also masks out
processes inside of a session from processes outside of the
session to prevent any interprocess host dependencies across
the session boundary.

WebPod virtualization employs the chroot utility and file
systems stacking to provide each session with its own file sys-
tem namespace. The WebPod session’s file system is totally
contained within its portable storage device, which guaran-
tees that the same files can be made consistently available as
the session is migrated from one computer to another. More
specifically, when a WebPod session is created or restarted
on a host, a private directory is created in the host. This
directory serves as a staging area for the session’s virtual
file system. Within the directory, the session’s file system
will be mounted from the device. The chroot system call
is then used to set the staging area as the root directory
for the session, thereby achieving file system virtualization
with negligible performance overhead. This method of file
system virtualization provides an easy way to restrict access
to files and devices from within a session. This can be done
by simply not including file hierarchies and devices within
the session’s file system namespace. If files and devices are
not mounted within the session’s virtual file system, they
are not accessible to the session’s processes.

Commodity operating systems are not built to support
multiple namespaces securely. File system virtualization
must address the fact that there are multiple ways to break
out of a chrooted environment, especially when the chroot

system call is allowed to be used in a session. The primary
way WebPod provides security is by disallowing the priv-
ileged root user from being used within the session. The
WebPod session’s file system virtualization also enforces the
chrooted environment and ensures that the session’s file sys-
tem are the only files accessible to processes within session,
by using a simple form of file system stacking to implement
a barrier. This barrier directory prevents processes within
the session from traversing it. Since the processes are not
allowed to traverse the directory, they are unable to access
files outside of the session’s file system namespace. There-

606



fore, by combining the inability for WebPod processes to
access any files outside of the WebPod storage device’s file
system, as well as the inability for the processes to run with
privilege, the processes are confined to the WebPod session
and can’t affect change on the WebPod host.

3.2 Display Virtualization
To understand the need for display virtualization, we briefly

discuss how applications typically interact with the display
subsystem of a machine. Modern graphical applications such
as web browsers display their output to a window system,
which then processes the display commands to a video device
driver to be rendered to the computer’s framebuffer so that
it appears on the computer’s screen. The display state as-
sociated with an application is distributed at different times
between the window system and the hardware framebuffer.
When an application is moved from one computer to an-
other, it is important that all of its display state be cap-
tured so that the application can be properly redisplayed
on the destination system. However, a window system may
contain display state for many applications and identifying
and extracting the display state for a particular applica-
tion in an application transparent manner is difficult. Since
framebuffer hardware varies from one system to another, ex-
tracting the display state for a particular application from
a particular framebuffer in a manner that is portable across
different systems is also difficult given that such state is of-
ten tied closely to the specifics of the particular physical
display device used.

WebPod virtualizes the display associated with a web
browsing session so that it can be viewed on different hosts
that may have different display systems available. This dis-
play virtualization approach builds upon our previous work
on MobiDesk [3] and the previous work of one of the authors
on THINC [2].

WebPod virtualization provides each web browsing ses-
sion with its own virtual display server and virtual device
driver to decouple the display of the web browsing session
from the display subsystem of the host. The virtual display
server provides a WebPod session with its own window sys-
tem separate from the window system on the host, thereby
separating WebPod application display state from other ap-
plications running on the host outside of the WebPod ses-
sion. The display server is considered a part of the WebPod
session and is checkpointed when the WebPod session is sus-
pended and restarted when the WebPod session is resumed.
Our WebPod prototype implementation uses an XFree86 4.3
server as its own display server.

Instead of rendering display commands to a real device
driver associated with a physical display device on the host,
the virtual display server directs its commands to a virtual
device driver representing a virtual display device associated
with the WebPod session. The virtual display device pro-
cesses display commands and directs their output to memory
instead of a framebuffer. This approach abstracts away the
specific implementation of video card features into a high
level view that is applicable to all video cards. Since the de-
vice state is not in the physical device but in the virtualized
WebPod session, this simplifies display state management
during checkpointing and restarting a WebPod session. As
a result, checkpointing the WebPod’s display state can be
done by simply saving the associated memory instead of ex-
tracting display state from the host-specific framebuffer.

WebPod’s virtual display device is a video hardware layer
approach allows it to take full advantage of existing infras-
tructure and hardware interfaces, while maximizing host
resources and requiring minimal computation on the host.
Furthermore, new video hardware features can be supported
with at most the same amount of work necessary for sup-
porting them in traditional desktop display drivers. While
there is some loss of semantic display information at the
low-level video device driver interface, our experiments with
web applications indicate that the vast majority of appli-
cation display commands issued can be mapped directly to
standard video hardware primitives. In addition, WebPod
provides direct video support by leveraging alternative YUV
video formats natively supported by almost all off-the-shelf
video cards available today. Video data can simply be trans-
ferred from the WebPod’s virtual display driver to the host’s
video hardware, which automatically does inexpensive, high
speed, color space conversion and scaling.

Rather than sending display commands to local display
hardware, the WebPod virtual video driver packages up dis-
play commands associated with a user’s computing session,
writes them to memory, and enables them to be viewed us-
ing a WebPod viewer application that runs in the context
of the window system on the host. The viewer is completely
decoupled though from the rest of the WebPod display sys-
tem. All it does it read the persistent display state managed
by the WebPod display system. The viewer can be discon-
nected and reconnected to the WebPod session at any time
without loss of display information since it does not main-
tain any persistent display state.

The WebPod display system is designed so that a session
can be viewed from multiple locations at the same time.
While it is being viewed on the local host in which the Web-
Pod device is plugged in, it can be shared with another user
running a WebPod viewer on a remote host. This facilitates
collaboration among users. To allow WebPod to be viewed
locally or across a network, WebPod implements a simple,
low-level, minimum-overhead display protocol. The proto-
col mimics the operations most commonly found in display
hardware, allowing the host to do little more than take pro-
tocol commands sent from a WebPod session to a viewer
and forward them to their local video hardware to be dis-
played, thus reducing the latency of display processing. To
support host devices that can support varying resolutions,
this protocol allows the viewer to be resolution independent
and scale the display appropriately.

4. WEBPOD CHECKPOINT/RESTART
WebPod virtualization enables one to continue using a sin-

gle WebPod session across many disparate computers that
are separately managed. WebPod combines its virtualiza-
tion with a checkpoint-restart mechanism that allows the
WebPod device to be checkpointed, transported and restarted
across computers with different hardware and operating sys-
tem kernels. WebPod is limited to migrating between ma-
chines with a common CPU architecture, and where kernel
differences are limited to maintenance and security patches.
These patches often correspond to changes in minor version
numbers of the kernel. For example, the Linux 2.4 kernel
has more than 25 minor versions.

Migration is limited to these kinds of minor kernel ver-
sion changes because major version changes are allowed to
break application compatibility, which may cause running

607



processes to break. Even with minor versions changes, there
can be significant changes in kernel code. For example, dur-
ing the Linux 2.4 series of kernels, the entire VM subsys-
tem was extensively modified to change the page replace-
ment mechanism. Similarly, migration is limited to scenar-
ios where the application’s execution semantics, such as how
threads are implemented or dynamic linking is performed,
stay constant. On the Linux kernel, this is not an issue as
these semantics are enforced by user-space libraries. Since
the session’s user-space libraries migrate with it, the seman-
tics stay constant.

To support migration across different kernels, WebPod’s
checkpoint-restart mechanism employs an intermediate for-
mat to represent the state that needs to be saved. Although
the internal state that the kernel maintains on behalf of pro-
cesses can be different across kernels, the high-level proper-
ties of the process are much less likely to change. WebPod
captures the state of a process in terms of this higher-level
semantic information rather than the kernel specific data.
For example, part of the state associated with a Unix socket
connection consists of the directory entry of the socket, its
superblock information, and a hash key. It may be pos-
sible to save all of this state in this form and successfully
restore on a different machine running the same kernel. But
this representation is of limited portability across different
kernels. On the other hand, a high-level representation con-
sisting of a four tuple: {virtual source pid, source fd, virtual
destination pid, destination fd}, is highly portable. This
is because the semantics of a process identifier and a file
descriptor are standard across different kernels.

WebPod’s intermediate representation format is chosen
such that it offers the degree of portability needed for mi-
grating between different kernel minor versions. If the rep-
resentation of state is too high-level, the checkpoint-restart
mechanism could become complicated and impose additional
overhead. For example, the WebPod system saves the ad-
dress space of a process in terms of discrete memory regions
called VM areas. As an alternative, it may be possible to
save the contents of a process’s address space and denote
the characteristics of various portions of it in more abstract
terms. However, this would call for an unnecessarily compli-
cated interpretation scheme and make the implementation
inefficient. The VM area abstraction is standard even across
major Linux kernel revisions. WebPod views the VM area
abstraction as offering sufficient portability in part because
the organization of a process’s address space in this manner
has been standard across all Linux kernels and has never
changed since its inception.

WebPod leverages high-level native kernel services in or-
der to transform the intermediate representation of the check-
pointed image into the complete internal state required by
the target kernel. Continuing with the previous example,
WebPod restores a Unix socket connection using high-level
kernel functions as follows. First, two new processes are cre-
ated with virtual PIDs as specified in the four tuple. Then,
each one creates a Unix socket with the specified file de-
scriptor and one socket is made to connect to the other.
This procedure effectively recreates the original Unix socket
connection without depending on many internal kernel de-
tails.

This use of high-level functions helps with general porta-
bility when using WebPod for migration. Security patches
and minor version kernel revisions commonly involve modi-

fying the internal details of the kernel while high-level prim-
itives remain unchanged. As such high-level functions are
usually made available to kernel modules through exported
kernel symbol interface, the WebPod system is able to per-
form cross-kernel migration without requiring modifications
to the kernel.

To eliminate possible dependencies on low-level kernel de-
tails, WebPod’s checkpoint-restart mechanism requires pro-
cesses to be suspended prior to being checkpointed. Sus-
pending processes creates a quiescent state necessary to guar-
antee the correctness of the checkpointed image, and it also
minimizes the amount of information that needs to be saved.
As a representative example, consider the case of semaphore
wait queues. Although semaphore values can be easily ob-
tained and restored through well known interfaces, saving
and restoring the state of the wait queue involves the ma-
nipulation of kernel internals. However, by taking advantage
of existing semantics which direct the kernel to release a pro-
cess from a wait queue upon receipt of a signal, WebPod is
able to empty the wait queues by suspending all processes,
and therefore avoid having to save the state of the queue.

Finally, we must ensure that any changes in the system
call interfaces are properly accounted for. As WebPod has
a virtualization layer that uses system call interposition to
maintain namespace consistency, a change in the semantics
for any system call intercepted could be an issue in migrating
across different kernel versions. But such changes usually do
not occur, as it would require system libraries to be rewrit-
ten. In other words, WebPod virtualization is protected
from such changes in the same way legacy applications are
protected. However, new system calls could be added from
time to time. Such system calls could have implications to
the encapsulation mechanism. For instance, across all Linux
2.4 kernels, there were two new system calls that used iden-
tifiers that needed to be intercepted and virtualized, gettid
and tkill.

Since processes within a WebPod session only have access
to devices through the virtual device drivers provided by the
WebPod, it makes it simple to checkpoint the device specific
data associated with the processes. In particular, since the
WebPod display system is built using its own virtual dis-
play device driver which is not tied to any specific hardware
device, such virtual device state can be more easily check-
pointed. Because the virtual device state is totally stored in
regular memory, it’s a simple matter of saving that state on
checkpoint and restoring it on restart. When the WebPod
viewer on the host reconnects to the virtual display driver,
it is able to display the complete display.

WebPod’s checkpoint mechanism preserves all application
state necessary to restart the application at a later time in
exactly the same state as it was when it was checkpointed,
with one notable exception. WebPod does not preserve open
network connections as part of its checkpointed state. Web-
Pod closes all open network connections before it check-
points the browsing session. When WebPod is restarted,
web applications will need to reconnect to the appropriate
servers as opposed to reusing previous connections. How-
ever, the need to reestablish network connections does not
result in any user-perceived differences for most web appli-
cations. Web browsers were originally designed using HTTP
1.0 without persistent connections, so that browsers fre-
quently reconnect to web servers during normal operation.
While persistent HTTP connections are known to provide

608



better performance, most users are completely oblivious to
whether persistent or nonpersistent connections are used.
Previous work has demonstrated that additional infrastruc-
ture can be used to preserve open network connections dur-
ing migration [9]. However, we opted for a simpler design
with WebPod given the ability of web applications to easily
reestablish network connections without any user-perceived
changes in application behavior.

5. EXPERIMENTAL RESULTS
We implemented WebPod as three components, a simple

viewer application for accessing a WebPod browsing session,
an unmodified XFree86 4.3 display server with a WebPod
virtual display device driver, and a loadable kernel module
in Linux that requires no changes to the Linux kernel. We
present some experimental results using our Linux prototype
to quantify the overhead of using the WebPod environment
on various applications.

Experiments were conducted on three IBM PC machines,
each with a 933 MHz Intel Pentium-III CPU and 512 MB
RAM. The machines each had a 100 Mbps NIC and were
connected to one another via 100 Mbps Ethernet and a
3Com Superstack II 3900 switch. Two machines were used
as hosts for running WebPod and the other was used as a
web server for measuring web benchmark performance. To
demonstrate the ability of WebPod to operate across dif-
ferent operating system distributions and kernels, each ma-
chine was configured with a different Linux distribution and
Linux kernel version. One machine ran Debian Stable with a
Linux 2.4.18 kernel and the other running Debian Unstable
with a Linux 2.4.21 kernel.

We used a 40 GB Apple iPod as the WebPod portable
storage device, though a much smaller USB memory drive
could have been used. Each PC machine provided a FireWire
connection which could be used to connect to the iPod. We
built an unoptimized WebPod file system by bootstrapping
a Debian GNU/Linux installation onto the iPod and in-
stalling a simple KDE 2.2.2 system and the Konqueror 2.2.2
web browser that comes with it, as well as the Black-Box
1.4.5 window manager. We also remove the extra packages
needed to boot a full Linux system as WebPod is just a
lightweight web browsing environment, not a full operating
system. This resulted in a 163 MB file system image. This
easily fits in the iPod with plenty of storage capacity to
spare, and also easily fits in common USB memory drives
that can store 256 MB, 512 MB and even 1 GB. Our unop-
timized WebPod file system could be even smaller if the file
system was built from scratch instead by just installing the
exact programs and libraries that are needed.

To measure the cost of WebPod virtualization, we used a
range of benchmarks that represent various operations that
occur in a web browsing environment and measured their
performance on both our Linux WebPod prototype and a
vanilla Linux system. We used a set of microbenchmarks
that represent operations executed by web browsers as well
as a real web browsing application benchmark. Table 1
shows the six benchmarks we used along with their perfor-
mance on a vanilla Linux system in which all benchmarks
were run from a local disk. These benchmarks were then
run for comparison purposes in the WebPod portable stor-
age environment. To obtain accurate, repeatable results, we
rebooted the system between measurements. Additionally,
the system call micro-benchmarks directly used the TSC

Name Description Linux

getpid average getpid runtime 350 ns
ioctl average runtime for the FIONREAD

ioctl
427 ns

semget-
semctl

IPC Semaphore variable is created
and removed

1370 ns

fork-
exit

process forks and waits for child which
calls exit immediately

44.7 us

fork-sh process forks and waits for child to run
/bin/sh to run a program that prints
“hello world” then exits

3.89 ms

iBench Measures the average time it takes to
load a set of web pages

826 ms

Table 1: Benchmark Description

 0

 0.5

 1

 1.5

 2

IBenchforkshforkexitsemaphoreioctlgetpid

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Plain Linux

 0

 0.5

 1

 1.5

 2

IBenchforkshforkexitsemaphoreioctlgetpid

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

WebPod

Figure 1: WebPod Virtualization Overhead

register available on Pentium CPUs to record timestamps
at the significant measurement events. Each timestamp’s
average cost was 58 ns. The files for the benchmarks were
stored on the WebPod’s iPod based file system. All of these
benchmarks were performed in a WebPod environment run-
ning on the PC machine running Debian Unstable with a
Linux 2.4.18 kernel. Figure 1 shows the results of run-
ning our benchmarks under both configurations, with the
vanilla Linux configuration normalized to one, time to run
the benchmark, a small number is better for all benchmarks
results.

Figure 1 shows that WebPod virtualization overhead is
small. WebPod incur less than 10% overhead for most of
the micro-benchmarks and less than 4% overhead for the
iBench application workload. The overhead for the sim-
ple system call getpid benchmark is only 7% compared to
vanilla Linux, reflecting the fact that WebPod virtualization
for these kinds of system calls only requires an extra pro-
cedure call and a hash table lookup. The most expensive
benchmarks for WebPod is semget+semctl which took 51%
longer than vanilla Linux. The cost reflects the fact that our
untuned WebPod prototype needs to allocate memory and
do a number of namespace translations. Kernel semaphores
are widely used by web browsers such as Mozilla and Kon-
queror to perform synchronization. The ioctl benchmark
also has high overhead, because of the 12 separate assign-
ments it does to protect the call against malicious processes.
This is large compared to the simple FIONREAD ioctl that
just performs a simple dereference. However, since the ioctl
is simple, we see that it only adds 200 ns of overhead over any

609



 0.01

 0.1

 1

 10

 100

10 Browser
Windows

5 Browser
Windows

1 Browser
Window

T
im

e 
(s

)

 

Checkpoint

 0.01

 0.1

 1

 10

 100

10 Browser
Windows

5 Browser
Windows

1 Browser
Window

T
im

e 
(s

)

 

Restart

 0.01

 0.1

 1

 10

 100

10 Browser
Windows

5 Browser
Windows

1 Browser
Window

T
im

e 
(s

)

 

Blank

 0.01

 0.1

 1

 10

 100

10 Browser
Windows

5 Browser
Windows

1 Browser
Window

T
im

e 
(s

)

 

Scripted

Figure 2: WebPod Checkpoint/Restart vs. Scripted
Startup Latency

ioctl. As can be seen, there’s minimal overhead for func-
tions such as fork and the fork/exec combination. This is
indicative of what happens when the web browser loads a
plugin, such as Adobe Acrobat, where the web browser runs
the acrobat process in the background.

Figure 1 shows that WebPod has low virtualization over-
head for real applications as well as micro-benchmarks. This
is illustrated by the performance on the iBench benchmark,
which is a modified version of the Web Text Page Load test
from the Ziff-Davis i-Bench 1.5 benchmark suite. It consists
of a JavaScript controlled load of a set of web pages from
the web benchmark server. iBench also uses the JavaScript
to measure how long it takes to download and process each
web page, then determine the average download time per
page. The pages contain both text and bitmap graphics,
with pages varying in the proportions of text and graphics.
The graphics are embedded images in GIF and JPEG for-
mats. Our results show that running the iBench benchmark
in the WebPod environment vs running in vanilla Linux from
local SCSI storage incurs no performance overhead.

To measure the cost of checkpointing and restarting Web-
Pod sessions as well as demonstrating WebPod’s ability to
improve the way a user works with a web browser, we mi-
grated multiple WebPod sessions containing different num-
bers of open browser windows between the two separate ma-
chines described above. Figure 2 shows how long it takes
to checkpoint and restart WebPod sessions containing vary-
ing numbers of open browser windows. We compare this
against how long it would take to automatically open the
same browsers windows via a shell script. We compared the
performance when each browser window was opened with
a blank page, then compared the performance when each
browser window was opened was the last visited page for
the given window.

Figure 2 shows that it is significantly faster to checkpoint
and restart a WebPod web browsing session than it is to
have to start the same kind of web browsing session from
scratch. Checkpointing and restarting a WebPod even with
ten browser windows opened each take well under a second.
This enables a WebPod user to very quickly disconnect from
a machine after a web browsing session has been completed
and plug-in to another machine and immediately start web

1 Browser 5 Browsers 10 Browsers
Checkpoint 25 MB 35 MB 46 MB
File System 163 MB 163 MB 163 MB
Total 188 MB 198 MB 209 MB

Table 2: WebPod Storage Requirements

browsing again. Some usability studies have shown that
web pages should take less than one second to download for
the user to experience an uninterrupted browsing process [8].
These results show that WebPod performance is fast enough
that the latencies incurred in disconnecting and plugging-in
are even less than the one second threshold for users to ex-
perience an uninterrupted browsing process. Furthermore,
the fact that these experiments were run across two different
machines with two different operating system environments
and kernels demonstrates the ability of WebPod to work
across different software environments.

In contrast, Figure 2 shows that starting a web browsing
session the traditional way of starting the web browser appli-
cation and opening a number of windows is much slower than
the one second threshold for an uninterrupted web browsing
process. Starting up a browsing session takes seven sec-
onds when opening ten browser windows each with a blank
page and takes twelve seconds when opening the same set
of browser windows with actual web content. Even starting
a web browsing session by opening a single browser window
takes more than a second for both cases. Note that these
experiments provide a conservative comparison as they were
conducted with a local web server connected via a 100 Mbps
LAN connection. In the more common case when the web
server is located further away from the host over a WAN
connection, the latency for starting a web browsing session
without WebPod will be even worse.

Figure 2 shows that checkpointing and restarting a Web-
Pod browsing session with web browser windows opened
with actual web content is faster than just opening the same
set of browser windows with blank pages without WebPod.
The performance difference is even greater when comparing
against the case without WebPod when actual web content
is downloaded into each browser window. This is not an
apples to apples comparison, as the script loads the lat-
est version of the page from the web server. This provides
a different restart model from WebPod, which restarts the
web browser windows with the web content that was saved
when the WebPod session was checkpointed. The WebPod
approach allows one to easily access the web data that was
available when the checkpoint occurred, preserving informa-
tion that may no longer be available using a normal startup
without WebPod, which only provides access to what is cur-
rently available from the respective web server.

Table 2 shows the amount of storage needed to store the
checkpointed web browsing sessions using WebPod for each
of three browsing sessions with different numbers of web
browser windows opened. The results reported show check-
pointed image sizes without applying any compression tech-
niques to reduce the image size. These results show that
the checkpointed state that needs to be saved is very mod-
est and easy to store on any portable storage device. Given
the modest size of the checkpointed images, there is no need
for any additional compression which would reduce the min-
imal storage demands but add additional latency due to the
need to compress and decompress the checkpointed images.

610



The checkpointed image size in all cases was less than 50
MB. Our results show that total WebPod storage require-
ment, including both the checkpointed image size and the
file system size, is much less than what can fit in a small 256
MB USB drive.

Our measurements focus on the performance aspects of
WebPod to demonstrate that it provides good web brows-
ing performance. Another important aspect of demonstrat-
ing the benefits of the WebPod browsing experience would
be to conduct WebPod usability studies. While our own in-
formal experience with WebPod has been positive, we have
not yet conducted realistic usability studies involving web
users from a more diverse user population that would include
less experienced computer users. This remains an important
area of future work.

6. RELATED WORK
The emergence of cheap, portable storage devices has led

to the development of web browsers for USB drives, includ-
ing Stealth Surfer [12] and Portable Firefox [10]. These ap-
proaches only provide the ability to run a web browser on
a USB drive. Unlike WebPod, they do not provide an en-
tire web browsing environment. The various programs and
plug-ins that a user depends to make there web experience
more comfortable, do not work within this environment.

M-Systems and SanDisk have recently proposed the U3 [15]
platform for providing a standard way to allow USB drives
to store data and launch applications. Only limited infor-
mation is currently available about U3. No U3 products
currently exist and no U3 prototypes have been announced
to date. However, the platform does have the potential to
provide a more general framework than web browsers that
can run on a USB drive. Unlike WebPod, U3 focuses on
launching applications and storing user data, but does not
address the needs of mobile users in providing persistent
application sessions that can be checkpointed and restarted.

SoulPad [11] provides a solution similar to WebPod but
based on using Knoppix Linux and VMware [16] on a USB
drive. Knoppix Linux provides a Linux operating system
that can boot from a USB drive for certain hardware plat-
forms. VMware provides a virtual machine monitor (VMM)
that enables an entire operating system environment and its
applications to be suspended and resumed from disk. Soul-
Pad is designed to take over the host computer it is plugged
into by booting its own operating system. SoulPad then
launches a VMware VM that runs the migratable operating
system environment. Unlike WebPod, SoulPad does not rely
on any software installed on the host. However, it requires
minutes to start up given the need to boot and configure
an entire operating system for the specific host being used.
WebPod is designed specifically for mobile web users, which
enables it to be much more lightweight. WebPod requires
less storage so that it can operate on smaller USB drives and
does not require rebooting the host into another operating
system so that it starts up much faster.

Providing virtualization, checkpoint, and restart capabil-
ities using a VMM such as VMware represents an interest-
ing alternative to the WebPod operating system virtualiza-
tion approach. VMMs virtualize the underlying machine
hardware while WebPod virtualizes the operating system.
VMMs can checkpoint and restart an entire operating sys-
tem environment. However, unlike WebPod, VMMs cannot
checkpoint and restart web applications without also check-

pointing and restarting the operating system. WebPod vir-
tualization operates at a finer granularity than virtual ma-
chine approaches by virtualizing individual sessions instead
of complete operating system environments. Using VMMs
can be more space and time intensive due to the need to in-
clude the operating system on the portable storage device.

A number of other approaches have explored the idea of
virtualizing the operating system environment to provide
application isolation. FreeBSD’s Jail mode [6] provides a
chroot like environment that processes can not break out of.
More recently, Linux Vserver [7] and Solaris Zones [14] offer
a similar virtual machine abstraction to the WebPod session.
Unlike WebPod, all of these approaches require substantial
in-kernel modifications to support the abstraction, and none
of them provide the checkpoint/restart functionality avail-
able using WebPod.

Thin-client systems such as MobiDesk [3] provide an al-
ternative usage model that also provides many of the ben-
efits of WebPod. Such systems push all application logic
to centrally managed servers and provide a simple viewer
application that runs on the client to transmit user input
to the server and display updates back to the client. Since
all application logic runs on the server, mobile web users
can access a consistent web browsing environment from any
Internet-enabled device by simply connecting to the thin-
client server. Unlike WebPod which is self-contained and
runs locally on the host where the user is currently located,
thin clients require access to additional server infrastructure.

7. CONCLUSIONS AND FUTURE WORK
We have introduced WebPod, a portable system that en-

hances the web browsing experience of mobile users by pro-
viding them with the same persistent, personalized web brows-
ing session wherever they are located and on whatever com-
puter they are using. WebPod allows an entire web session
to be stored on a small portable storage device that can be
easily carried on a key chain or in a user’s pocket. Web-
Pod is more than just a web browser as it stores everything
necessary for web browsing, including all helper applications
and plug-ins.

WebPod provides its functionality by virtualizing operat-
ing system and display resources, decoupling a web browsing
session from the host on which it is currently running. Web-
Pod virtualization works together with a checkpoint/restart
mechanism to enable WebPod users to suspend their web
browsing sessions, move around, and resume their respective
sessions at a later time on any computer right where they
left off. WebPod’s ability to migrate web browser sessions
between differently configured and administered computers
provides improved end user mobility.

We have implemented and evaluated the performance of
a WebPod prototype in Linux. Our implementation demon-
strates that WebPod supports web applications without any
changes to the applications or the underlying host oper-
ating systems kernels. Our experimental results with real
web applications shows that WebPod has low virtualiza-
tion overhead and can migrate web sessions with sub-second
checkpoint/restart times, providing superior mobility sup-
port than other proposed solutions. WebPod is unique in
it’s ability to provide a complete, persistent, and consistent
web browser environment that is not limited to a single ma-
chine.

WebPod raises a number of interesting research areas.

611



WebPod focuses on improving web usage for mobile users,
but the same principles could be applied to other applica-
tion domains as well. WebPod leverages available portable
storage technologies, but it would be worthwhile to consider
what additional benefits might be possible by adding some
processing capabilities on a portable device, such as enhanc-
ing user privacy and security on untrusted computers. Fi-
nally, as portable storage devices increase in capacity and
ubiquity, the decoupling of storage from the computer may
open new directions in how computers should be designed
and how they will be used in the future.

8. ACKNOWLEDGMENTS
This work was supported in part by NSF grants ANI-

0240525, CNS-0426623, and an IBM SUR Award.

9. REFERENCES
[1] AOL Instant Messenger - AIM Express.

http://www.aim.com/get_aim/express/.

[2] R. Baratto, J. Nieh, and L. Kim. Thinc: A remote
display architecture for thin-client computing.
Technical Report CUCS-027-04, Department of
Computer Science, Columbia University, July 2004.

[3] R. Baratto, S. Potter, G. Su, and J. Nieh. MobiDesk:
Mobile Virtual Desktop Computing. In Proceedings of
the Tenth Annual ACM International Conference on
Mobile Computing and Networking (MobiCom 2004),
Philadelphia, PA, Sept. 2004.

[4] GMail. https://gmail.google.com/.

[5] Hotmail. http://www.hotmail.com.

[6] P.-H. Kamp and R. N. M. Watson. Jails: Confining
the omnipotent root. In 2nd International SANE
Conference, MECC, Maastricht, The Netherlands,
May 2000.

[7] Linux VServer Project.
http://www.linux-vserver.org/.

[8] J. Nielsen. Designing Web Usability: The Practice of
Simplicity. New Riders Publishing, Indianapolis,
Indiana, 2000.

[9] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
Design and Implementation of Zap: A System for
Migrating Computing Environments. In Proceedings of
the Fifth Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston, MA, Dec. 2002.

[10] Portable Firefox. http:
//johnhaller.com/jh/mozilla/portable_firefox/.

[11] M. Raghunath, C. Narayanaswami, C. Caster, and
R. Caceres. Reincarnating pcs with portable soulpads.
Technical Report RC23418 (W0411-057), IBM
Research Division Thomas J. Watson Research
Center, Nov. 2004.

[12] Stealth Surfer. http://www.stealthsurfer.biz/.

[13] Trek Thumbdrive TOUCH.
http://www.thumbdrive.com/touch.htm/.

[14] A. Tucker and D. Comay. Solaris zones: Operating
system support for server consolidaiton, May 2004.

[15] U3 Platform. http://www.u3.com.

[16] VMware, Inc. http://www.vmware.com.

612


