
Automating Metadata Generation:
the Simple Indexing Interface

Kris Cardinaels, Michael Meire, Erik Duval
Dept. Computerwetenschappen, Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
{kris.cardinaels, michael.meire, erik.duval}@cs.kuleuven.ac.be

ABSTRACT
In this paper, we focus on the development of a framework for
automatic metadata generation. The first step towards this
framework is the definition of an Application Programmer Interface
(API), which we call the Simple Indexing Interface (SII). The
second step is the definition of a framework for implementation of
the SII. Both steps are presented in some detail in this paper. We
also report on empirical evaluation of the metadata that the SII and
supporting framework generated in a real-life context.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Information Storage and Retrieval –
Content Analysis and Indexing

General Terms
Design, Algorithms, Experimentation

Keywords
Learning Objects, Metadata Generation

1. INTRODUCTION
One of the main concerns in learning technology research is the
problem of acquiring the critical mass to establish real reuse. There
are several aspects to the solution of this problem. Many projects
focus on the creation of content and how this can be made easier,
faster or cheaper [25, 14]. Other projects focus on interoperability
aspects [11]. The aspect we focus on in this paper is the creation of
metadata. Without appropriate metadata no learning content will be
really reusable because it will be difficult or impossible to identify
and retrieve it.

Learning object metadata has been researched in several projects.
One great achievement was the development of the IEEE LOM
standard [17], based on the original ARIADNE pedagogical header
definition, and adopted in the widely deployed ADL SCORM
reference model [1]. The creation of these metadata, however,
currently turns out to be a problem for most systems:

• Most reuse initiatives are still struggling to achieve critical
mass,

• Many learning objects only have a very limited set of
metadata associated to them [20].

We consider several reasons why users often do not make the
learning objects available for reuse or do not create metadata for
those objects (see also [12, 14]). Most importantly, the current tools
available for metadata creation are not user friendly. Most tools
directly relate to some standard and present that standard to the
users. The user has to fill in a substantial number of electronic
forms. However, the standards were not meant to be visible to end
users. A direct representation of these standards on forms makes it
very difficult and time consuming to fill out the correct values for
the metadata in substantial quantities. The slogan that “electronic
forms must die” addresses this specific concern.

A possible solution to this problem is the automatic creation of
learning object metadata. In this way, the users do not have to
bother with the metadata if they do not want to. This can be
compared with search engines on the web that index web pages in
the background without any intervention of the creator or the host of
the site. In our approach, if the user wants to correct, add or delete
metadata, he will still be able to do so, but most users will not need
to spend time on it.

In this paper, we introduce a framework to set up an automatic
metadata generation system as a web service. This web service
generates IEEE Learning Object Metadata although in the future
other metadata schemas should be supported as well. Depending on
the type of learning object document, the created set can be rather
small or more extensive. We at least try to generate a metadata set
that contains all the mandatory elements defined in the ARIADNE
Application Profile [2].

2. AUTOMATIC METADATA CREATION

2.1 Introduction
In many learning management systems, metadata can be associated
with learning objects manually, or they can be generated partially by
the system (see Figure 1). It is our opinion that manual creation of
metadata might be feasible in small deployments, but that it is not an
option for larger deployments where a considerable number of
learning objects are to be managed for each user. The system should
offer functions comparable to search engines and classifiers for the
web (see also [21]). Search engines index web pages automatically
without manual intervention of the users or the creators of the pages.

If learning management systems can offer a similar functionality for
learning objects, the users will provide much more easily a great
number of learning objects and real reuse will become feasible.

.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

548

Figure 1: A combination of manually and automatically filled in

metadata in the Blackboard LMS

2.2 Metadata sources
In [4] and [5], we already introduced different methods for
automatic metadata generation. Metadata can be extracted from
different sources that are available to the system. We distinguish
four main categories of metadata sources:

1. Document content analysis: One obvious source for
metadata about an object is the object itself. An object-
based indexer generates metadata using the object
independent from any specific usage. Typical content
analyzers are keyword extractors, language analyzers for
text documents or pattern recognizers for images.

2. Document context analysis: When an object is used in a
specific context and data about that context are available,
we can rely on the context to obtain information about the
object itself. One single learning object typically can be
deployed in several contexts which provide us with
metadata about it. Section 2.3 provides more details on
this kind of metadata source.

3. Document usage: Real use of objects can provide us with
more flexible and lively metadata than the sometimes
more “theoretical” values provided by other metadata
sources, or even by human indexers. Systems that track
and log the real use of documents by learners are therefore
a valuable source. These logs for example store the time
spent reading a document or solving exercises. This
metadata source category could be considered as a “usage
context”, and as such as a special case of document
context analysis.

4. Composite documents structure: In some cases, learning
objects are parts of a whole but stored separately [5]. In
such a case, the metadata available for the whole is an
interesting source for metadata about a component. Not
only is the enclosing object a source, also the sibling
components can provide relevant metadata (also look at
[28]). For example, one slide in a slide show often gives
relevant context about the content of the next slide.
This could be considered as a special case of document
context, namely “aggregation related context”. It also
closely relates to the issue of “content packaging”.

Therefore in the future we will look at things like SCORM
Content Packages and IMS Content Packaging.

The first category is rather straightforward to understand and does
not need much further explanation. The third and fourth are not yet
further investigated by us. Therefore we will not elaborate on them
here. We are however in the process of also dealing with those kind
of metadata sources in our framework. The second category, the
context analysers, is worth some more explanation.

2.3 Context analysers
Learning objects can be used in several contexts; each context
contains metadata that might be usable for the automatic indexers.
Some typical context types we can observe are:

• Creator profiles
In [4], we classified this indexation as profile-based
indexation. Every learning object is authored by one or
more people. Quite often information about these people
is available from different sources. A creator or indexer
profile groups this information, so that it can be used
when generating metadata for a document of that person.
Those profiles can both be generated manually and
automatically. In the manual case, the user provides some
pre-filled templates with information that is likely to be
correct for most of the learning objects.
The profile can also be filled in (semi-)automatically. At
the K.U.Leuven, for example, course information for each
teacher is available on websites and personnel information
is available in the administrative SAP backbone. Course
information includes metadata about the audience of the
course, the language in which the course is taught, the
duration of the sessions, and so on.

• Learning content management systems

If learning objects are stored together with their metadata,
available metadata can be used as a source for newly
introduced learning objects. This information is typically
used if the new object is related to another object already
stored in the system (as a new version of the existing one,
for example) [3]. Moreover, similarity searches [4] can be
used to search for similar objects in the system, so that
their existing metadata can be used to create new
metadata.

• Learning management systems

Learning management systems can provide rich contextual
information, like the courses in which the object is used,
how many times the document was used or downloaded,
etc. As such, it actually does both document context
analysis and document usage analysis.

3. DIFFERENT SOURCES – DIFFERENT
VALUES
Relying on different sources of metadata augments the process of
generating metadata automatically. However, the sources may
generate different values for the same metadata element. In this
section, we present the options we have to overcome this problem.
First we discuss the need for “correct” metadata, without requiring a

549

formal approved metadata set for each learning object. Then we
present four options in solving conflicts between indexers.

3.1 Correctness of metadata
In the first implementation of the ARIADNE Knowledge Pool
System, we used to distinguish between validated and unvalidated
pedagogical headers or metadata instances. A newly introduced
metadata instance for a learning object was given the status
‘unvalidated’ and only validators could change the status to
‘validated’. Validation was a process of checking the metadata
values for their correctness. If some of the values in the metadata
were incorrect, the validator could change those values or the
original indexer had to modify them. Note that the validation
process did not focus on the learning object, but rather on the
metadata [10].

Quite quickly, however, it became clear that this system did not
work as expected. Only validated learning objects could be used in
the ARIADNE system, other objects would not be included in the
results to queries. So, any user that introduced new material had to
wait until validation before it could be deployed in a course. A
certain pressure was put on the validators to do their job quickly, but
probably also inaccurately.

The same problem arises in other systems, even if those systems
spend a lot of effort on the validation process. For example, the
Merlot [18] system uses peer review for their contents, but only
about ten percent has been reviewed: in the Science and Technology
category 465 of 4536 documents had a peer review record
associated in the database at the time of writing.

The question we ask ourselves is whether metadata can be incorrect.
The difficulty is that we cannot define correctness in terms of right
or wrong in case of metadata – or at least not for all metadata
elements. Of course some values may be “better” than others, but
that does not necessarily imply that the latter values should not be
used.

3.2 Conflicts between indexers
The framework we present in the next section uses different classes
of indexers that can work in isolation from each other. Each indexer
generates values for some metadata elements, and as such a subset of
a metadata set. These subsets have to be combined into one
resulting metadata record for the learning object.

The subsets of metadata that different indexers generate can overlap.
In this case, there may arise a conflict between the indexers, that has
to be solved. There are several strategies to solve the conflicts;
depending on the element, one strategy might work better than
another:

1. Include all the generated values in the resulting
metadata set,

2. Propose the options to the user and let him/her
decide which one to use,

3. Try to find out which indexers are the most likely to
be correct and use their value in the result,

4. Apply heuristics to decide on the value.
The first option – including all the values in the resulting set – is the
easiest to implement and might be feasible for some metadata

elements. For example, a list of concepts could contain all the
keywords extracted by several indexers. In some systems, however,
the metadata set is strictly defined so we cannot implement this as an
overall strategy for all the elements.

The second option could be used in a small system with only a low
number of new entries per week or month. In larger systems,
however, we would lose all the benefits of automatic indexing as the
user has to spend time on controlling all the values and decide
which one to use.

In our opinion, the third option is most interesting in many cases.
Every generated value will get an associated value which is the
degree of certainty of the indexer about that value. We call this value
the confidence value in our framework. Every indexer determines
such a value for the metadata elements it generates. In case of
conflict, this strategy will prefer a value with a higher confidence
value over one with a lower value.

The fourth option applies in certain cases if heuristics are known
about the metadata elements. In that case, the heuristic will provide
the solution about the conflict. An example element for which
heuristics can apply is the document language. A lot of families of
languages exist and in those families the differences between
languages might be very small. For example Italian and Catalan are
closely related to each other but are different languages; the same
applies to Afrikaans and Dutch. If one indexer decides the language
is Catalan, the heuristic might say to use Italian. In either case, if the
document is used in an Italian or a Catalan environment, the users
will understand the contents and thus be able to use the object.
Applying Catalan for the document language however could be
more precise but the value Italian is not wrong.

4. AUTOMATIC INDEXING FRAMEWORK
The overall structure of our framework is depicted in Figure 2. For
now, the idea is that learning object metadata can be derived from
two different types of sources, which represent category 1 and 2 in
section 2.2.1 The first source is the learning object itself; the second
is the context in which the learning object is used. Metadata derived
from the object itself is obtained by content analysis, such as
keyword extraction, language classification and so on. The contexts
typically are learning management systems in which the learning
objects are deployed. A learning object context provides us with
extra information about the learning object that we can use to define
the metadata.
Following this idea, the framework consists of two major groups of
classes that generate the metadata, namely Object-based indexers
and Context-based indexers. The object-based indexers generate
metadata based on the learning object itself, isolated from any other
learning object or learning management system. The second class of
indexers uses a context to generate metadata. By working this way,
the framework is easily extensible for new learning object types and
new contexts. To be complete, the framework also has some
Extractors that for example extract the text and properties from a
PowerPoint-file, and a MetadataMerger that can combine the results
of the different indexers into one set of metadata.

1 As noted above, in the future we certainly will also look at

options 3 and 4.

550

Figure 2: Overall Structure of the Automatic Indexing

Framework
Figure 3 and Figure 4 explain the hierarchies of the indexers more in
detail. Of course, these hierarchies are extensible with other
indexers.

4.1 ContextBasedIndexer
We already explained the use of contexts for learning object
indexing. There is, however, one subclass that needs more
explanation: FilesystemContextBasedIndexer. A learning object as
a file is always stored in some context of the operating system it
belongs to. This class represents that file system and contains
metadata that the file system stores about the object. Depending on
the file system, the metadata attributes vary.

We also implemented some specific LMS contexts. Currently we
have classes that generate metadata for a Blackboard document, or
an OpenCourseWare object. Basically, these classes mine the
consistent context that courses in both environments display. For
example, Blackboard maintains information about the user logged in
(a reasonable candidate author of learning objects newly
introduced), about the domain that the course covers (a reasonable
candidate for the domain of the learning objects that the course
includes), etc. Similarly, the OCW web site is quite consistent in
how it makes that kind of information available to end users. Our
indexer for OCW basically mines this consistent structure for
relevant metadata about the learning objects referenced in the course
web site.

Figure 3: The Class Hierarchy of ContextBasedIndexer

4.2 ObjectBasedIndexer
These indexers often work together with the Extractor classes, to
generate metadata that is derivable from the learning object contents.
Several specific learning object formats can be implemented as
subclasses of MimeBasedIndexer. These classes are able to deal
with a particular type of files like pdf documents.

Furthermore, there is a language indexer, that can determine the
language of a piece of text.

The ArchiveIndexer class is used to handle bundled learning objects,
such as different web pages with links between them or pictures
included.

In the future, this category of indexers can be extended by using for
example Artificial Intelligence techniques. There exist libraries like
iVia [27] that allow for things like keyword extraction, automatic
document summarization, etc. We should also look at the domain of
information retrieval to see what exists already in that domain.

The size of these classes may vary. At the moment, most classes can
generate values for about 5 metadata elements. Depending on the
complexity to generate these values, the classes contain only a few
lines of code to several tens of lines.

Figure 4: The Class Hierarchy of ObjectBasedIndexer

4.3 Implementing Specific Indexers
Developers wanting to implement their own indexer classes extend
the above base classes. Indexers that handle documents or objects
of a specific type, e.g. Microsoft PowerPoint files, should extend the
ObjectBasedIndexer class. If a specific learning object context like
a specific learning management system, should be handled, the
ContextBasedIndexer is the appropriate super class. This is what we,
for example, did for the Blackboard LMS case, as explained in
section Error! Reference source not found.. We now briefly
explain the interfaces that must be implemented to create these
specific indexers.

The overall interface Indexer is only defined to have a general type
for the different indexer classes. There are no methods defined in
this interface. It is extended by the ObjectBasedIndexer and
ContextBasedIndexer.

The method in the ObjectBasedIndexer interface that has to be
implemented is defined as follows:

public void addMetadata(

DataHandler lo,
String fileHandle,
AriadneMetadataWithConfidenceValue
metadata);

In our framework implementation, this method is called by the
indexing service which accepts a learning object and calls the
appropriate indexers to create metadata. The first argument in the
method is a reference to the learning object itself. The second
argument is the file name for the learning object, which is included

551

as an auxiliary argument to make the implementation easier. The
last parameter is the metadata object to which the new metadata will
be added.

The class ContextBasedIndexer defines a similar method to create
metadata and another method to retrieve a reference to the learning
object within the context:

public void addMetadata(

AriadneMetadataWithConfidenceValue
metadata);

public DataHandler getDataHandler();

4.4 Using the classes
We now briefly describe the use of the above presented classes to
generate metadata for a learning object in some context(s). If
someone wants to obtain metadata, some distinct steps have to be
followed:

1. The user has to identify what are the object and the contexts
within which the object resides. To simplify this, we introduce
a new class, that identifies the learning object, or the context
that a learning object resides in, called a MetadatasourceId.
This top-level class is an abstract class which must be sub-
classed by specific classes for each context in which learning
objects can be identified. Examples of MetadatasourceId
classes are FileSystemMetadatasourceId,
BBMetadatasourceId and OCWMetadatasourceId. The last
one for example identifies the “OpenCourseWare” context of
an OCW document. Concretely, this identifier is nothing more
than the URL location of the OCW document, as from that
URL we can fully identify the OCW document. The
FileSystem context is the one we use to identify the learning
object in the context of the OS file system, and so in no
specific context of a LMS.

2. The identifying objects we just made, are then fed to the
system, which uses the identifiers to create the correct Indexer
instances for the metadata generation. The decision on which
indexers are applicable for the document is made based on the
file type (for example MS PowerPoint) or defined by the
context that is provided.

3. For each Indexer instance associated with the learning object,
the system sends a request to create metadata for that object.

4. As described in section 3 we need conflict resolving between
different metadata instances. For now, we only implement
strategy 3, which comes down to working with degrees of
certainty for generated metadata values, and choosing the
one(s) with the best confidence value. This is implemented by
the MetadataMerger and
AriadneMetadataWithConfidenceValue classes. The last one
represents the metadata instance, with associated confidence
values for each metadata element. When adding an element to
the instance, the confidence values are checked. Only if the
confidence value for the new element is higher than the
current one, the new one replaces the old one. Otherwise, the
old value is preserved. The MetadataMerger class can merge
to existing metadata instances into one, according to the same
strategy. In next versions of the framework, we want to make
it more flexible, allowing other merging strategies as well.

5. AN AUTOMATIC INDEXING SERVICE
We implemented the above framework as a web service. We briefly
explain the methods of this service which we call the Simple
Indexing Interface: in essence, this is an application programmer’s
interface to implement the services. This interface is being
developed as a part of our research on the development of a global
framework for learning object web services. The first initiative in
this context has led to the development of the Simple Query
Interface standard [24], a definition of web services that enable
querying Learning Object Repositories in a standardized way. Our
specification for the indexing interface closely relates to SQI and
uses the same design principles.

The different methods that should be implemented are given in
Table 1. A typical course of action is illustrated in Figure 5.

Session handling methods
 startSession

 endSession

Session Configuration
 setMetadataLanguage

 setConflictHandlingMethod

 setMetadataFormat

 getSupportedConflictHandlingMethods

 getSupportedLanguages

 getSupportedMetadataFormats

Learning Object Indexing
 getMetadata

 getMetadataXML

Table 1: Methods of the Simple Indexing Interface

6. THE BLACKBOARD CASE STUDY
6.1 Binding to the Blackboard LMS
To make a proof of concept of the argument that learning
management systems are interesting sources of metadata, we
designed and implemented a metadata generator for the Blackboard
Learning Management System.2

We already had some experience with the coupling of Blackboard
and Ariadne, as we made a Blackboard Building Block for the
Ariadne Knowledge Pool System [26]. This building block makes it
possible for users of the Blackboard system to attach documents to a
course, as Ariadne documents. This means that the document is not
inserted in the Blackboard specific database, but as a learning object
in the Ariadne Learning Object Repository. This approach has the
advantage that the document is not enclosed within a specific
content repository. Instead, it resides in a knowledge pool system
that can be accessed from other environments as well.

2 This was an obvious choice for us, because we use Blackboard at

K.U.Leuven University. Moreover, the BlackBoard Building
Block mechanism allowed us to develop an interface between
the ARIADNE repository and the BlackBoard LMS.

552

Figure 5: Interacting with an Automatic Indexing Service

It is necessary to ensure that the learning object is inserted in
Ariadne in a reliable way, by ensuring that the generated metadata is
of good quality. To have some kind of reassurance for this, we
implemented a test system for the documents that are already present
in the blackboard system. For all these documents, we wanted to
automatically generate metadata instances of good quality.

6.2 Blackboard Learning Object Context
In our indexing framework we inserted a component
ToledoBBContextBasedIndexer3 as a subclass of
BBContextBasedIndexer, which in turn is a subclass of the more
general LMSContextBasedIndexer. The
ToledoBBContextBasedIndexer will generate all possible metadata
that can be derived from the Blackboard LMS context of a learning
object. To retrieve this information we could make use of:

• The file system Blackboard uses internally. For example: all
documents of course “XYZ” reside in a directory “XYZ”

• The database used internally by Blackboard to manage all the
data.

• The Blackboard API. Blackboard offers a Java API on top of
the database and file system. This API allows for example to
retrieve all announcements, all staff information, all course
documents…

As a first step, we looked at all 18 mandatory fields in the Ariadne
LOM application profile. We investigated how many of these
elements could be determined from the blackboard context. We
found out that 16 out of 18 fields can be established by using only
the ToledoBBContextBasedIndexer, without using any other part of
our indexing framework. However, it is not because they can be
determined by the ToledoBBContextBasedIndexer that it should be
done there. For example, the file size can be determined in this
context; but the question is whether it should be done there.
Referring to section 3.2 about the conflicts between automatic
indexers, we can take 2 approaches:

1. We only generate the metadata that is characteristic to the
Blackboard context. So we will not put the file size in the

3 Toledo is in fact the name of the Blackboard configuration that

is used at K.U.Leuven university.

metadata instance that is returned by it. This would
provide us 9 metadata fields including the title and the
fields about the classification.

2. We generate everything we can. It is the task of the object
that combines the different metadata instances to decide
on what is the most appropriate value.

When we apply our complete indexing framework on a Blackboard
course document, we can generate metadata for the larger part of the
mandatory fields, namely for 17 out of 18 fields.
The remaining issues for the generated metadata are:
o The pedagogical duration is difficult to determine. A possible

heuristic is to consider it as a function of the number of pages.
For example, a MS PowerPoint document containing 30
slides can be considered to have a duration of 60 minutes.
This is however not a robust approach. One person can take 2
hours for 30 slides while another person can do it in 20
minutes. To solve this issue, we can derive it from a context
like the electronic learning environment. If that environment
supports the notion of a “lesson”, we can deduce the
pedagogical duration from the context. For instance, if a
lesson takes 2 hours and contains 2 documents, we could take
a pedagogical duration of 1 hour for each of them. Note that
we can also decide not to include the pedagogical duration.
This implies an update to the Ariadne LOM application
profile, which currently makes pedagogical duration
mandatory. The original idea behind this was that data about
the pedagogical duration is required in order to be able to
automate the authoring of courses. For instance, suppose an
instructor combines several learning objects when preparing a
lesson of 2 hours. Then it would make sense to put an implicit
constraint that the sum of the pedagogical durations of all
documents for that lesson should not exceed the lesson
duration of e.g. 2 hours4. Although this idea is indeed
interesting, we think that at this moment the support by tools,
to take advantage of this metadata item, is not present enough.
So at this moment, it would not be too much of a problem if
we would omit it.

4 Of course this is not always the case, e.g. if the documents

include some study at home. But the example is just illustrative.

Client Service

1: startSession(): String

5: endSession(): String

2: setMetadataLanguage(String, String)

3: other configuration calls

Indexer

4.1 ∀ MetadatasourceId: createIndexer(MetadatasourceId)

4.2: addMetadata

553

o The authors: When a user is logged in and uploads a
document, it is known who does this. So during the document
upload, we have the information about the author5. However,
in our case, we were processing the already existing
documents at a later moment. And unfortunately, nowhere in
the Blackboard system is maintained who has uploaded the
document.
We have solved this issue by taking the instructors of the
course as authors of the document. For courses with only 1
instructor, this is probably correct in the majority of the cases.
Even when a teaching assistant uploads a file, it is maybe not
a problem to take the instructor as author.

o The accuracy for fields concerning top-level classification
(ScienceType, MainDiscipline and SubDiscipline) depends on
the way course numbers or identifiers are chosen. For Toledo
the classification is determined pretty well in a considerable
part of documents. For example, in Toledo all courses in the
field of Philosophy start with a “W”, so for all documents,
used in that course, we can take “Human and Social Sciences”
as ScienceType, “Human Sciences” as MainDiscipline and
“Philosophy” as SubDiscipline. However, this highly depends
on the particular Blackboard configuration. A possible
extension and solution for this is to take into account the
instructor information: for example instructors who work at
the department of Computer Science produce documents
about computer science.

o The lowest level classification element (MainConcept) more or
less represents keywords for the document. Here we have
several options among which the label of the file within
Blackboard or the directory name in which the file resides. E.g.
for the course “Multimedia”, one of the topics is “XML”. The
course documents about that topic could be structured in
folders like “Multimedia XML Introduction”. Then it
would be a reasonable approach to take “Multimedia”, “XML”,
and “Introduction” as main concepts, because they are all
relevant keywords. The assumption then is that instructors
make folders with relevant names. A possible extension in the
future would be to use other techniques like AI approaches for
automatic keyword extraction. [27]

o To determine the language of documents, we use a java
library. This seems to do a good job if there is enough text to
process. So, to determine the documentLanguage field, it
seems to be a viable solution. For now, we are also using it to
determine the language of e.g. the MainConcept. The only
problem is that this consists of only one or a few words, which
makes the job of determining the language a lot harder.
Because in the particular case study of Toledo, we know that
the courses are in English or Dutch, we have limited the
possible languages to “en” and “nl”. But even then, it is often
not correct.

6.3 Evaluating the results
6.3.1 What and how:
To evaluate the framework for Toledo Blackboard documents, we
took some of the documents of a Toledo course and compared
manually generated metadata with automatically generated metadata

5 Assuming the document is uploaded by the author. This is not

always the case.

for those documents. For the comparison to be valid, we only
considered manually generated metadata that already existed. That
way, we tried to avoid biases, like a metadata creator paying more
attention to his task because he knows that his metadata will be
evaluated.

To get such comparable data, we took all documents of a Toledo
course about programming (in Dutch: “Beginselen van
Programmeren”), and then searched our Ariadne KPS for
documents with the same name. This gave us several results,
because some of the documents were inserted both in Ariadne and in
Toledo. For these documents we could retrieve the (manually
created) metadata from the Ariadne KPS. We then used our AMG
framework, which gave us automatically generated metadata for it.

To compare the generated metadata we are using the tool
XMLUnit6. It allows us to compare two pieces of XML in an
automatic way, taking into account the specific properties of XML.
The result for 1 particular document is summarized into a more
human-readable table (Table 2).

Metadata field Value,

automatically
generated by

AMG framework

Value, manually
generated with the

Ariadne-SILO tool 7

Manual and automatic value differ, but this difference is normal,
understandable and/or not meaningful or not important
documentType expositive Expositive
packageSize 83.9 84
publicationDate 02-02-2004 28/10/2003
creationDate 29-10-2004 28/10/2003
operating_system_type Multi-OS MS-Windows
accessRight private Restricted
author/postalCode B-3001 3001
author/affiliation K.U.Leuven KULeuven
author/city Heverlee Leuven
author/tel +32 16 327538 /
author/department Afdeling

Informatica
Computerwetenschappen

author/email Henk.Olivie@cs.
kuleuven.ac.be

henk.olivie@cs.
kuleuven.ac.be

phdAnnotations/@type multiValued string
Manual and automatic generated values differ… to be investigated whether it
matters for the “quality”
mainDiscipline Civil Engineering /

Architecture
Informatics / Information
Processing

documentLanguage nl en
documentFormat Narrative Text Slides
title Werken met Java Praktisch werken met

Java
title/@lang nl en

Table 2: Comparing manually and automatically generated
metadata for a document in a Toledo Blackboard course

6 XMLUnit, http://xmlunit.sourceforge.net
7 Actually the SILO tool also does some things automatically,

like: when you are logged in with a certain user profile, it can
capture things like the first en last name, which are used as
name for e.g. the author.

554

6.3.2 Results
We split up the table into two parts. The first part contains the
metadata fields for which the difference is understandable or not
important. For example “expositive” and “Expositive” were
regarded as being different by the tool, but the only difference is the
capitalization. Another difference is the creation date and
publication date. However this also is normal because of our way of
working, i.e.: the same document was at some moment inserted in
the Ariadne KPS (therefore publication and creation date 28
October 2003) and at some time in Toledo (so publication date on 2
February 2004). The metadata creation date for the Toledo version
was the time we used our framework for the document. Regarding
the operating_system_type, the framework sets Multi-OS as a
default. In the future we will change this to be more flexible and to
allow that certain types are not Multi-OS. However, in this
particular case, this value is even more correct than the manual one,
because a pdf is not Windows-specific. Then, concerning the data
about the author, the automatic values are also more correct, as the
framework contacts the K.U.Leuven LDAP-server to retrieve the
information, whereas the manual data is of course manual, and liable
to errors.

The second part of the table contains more pertinent differences. The
most important one is maybe the mainDiscipline. As we mentioned
in section 6.2, the automatic value is not always as accurate as we
would want. Concerning the document language, the chosen course
is a bit particular as it is a course about programming. As a
consequence it consists of pieces of explanation (in Dutch) and
pieces of Java code. Therefore both are in a way correct, although
you can argue that the explanation is most important to determine
the language, and therefore the automatic value is more correct. But
we must admit that this is certainly not always the case. For some of
the documents of the same course, the automatic value was “fy” and
thus less accurate than the manual one. The title also differs, but in
this case not in a very meaningful way. Moreover, the language of
the title-field differs, and in this particular case, the automatic value
is the correct one. The documentFormat is a tricky issue. The
document is a pdf, but actually it is the conversion of a PowerPoint
to PDF.

6.3.3 Analysis/conclusions
Sometimes the manual value is better, sometimes the automatic
value is better. But from this first, of course limited evaluation
exercise, our framework seems to do pretty well, and it can certainly
compete with the manually generated values. With of course the big
difference that our framework does not require manual input, which
ensures the scalability!

7. THE OPENCOURSEWARE CASE STUDY
Another case study is a framework component for MIT OCW [31]
courses, which is a free and open educational resource for faculty,
students, and self-learners around the world. In this particular case,
everything that could be taken as input for our framework is online,
in particular as a course homepage or a course document. For
example, the source code of such a homepage contains visible
information and invisible, meta-information. Fortunately for our
framework, the information online is kept in a consistent way, so
that we could develop a OCWContextBasedIndexer that analyzes
the online pages and derives metadata from them. And of course,
because that OCWContextBasedIndexer is plugged in the rest of the

framework, we could benefit from things like the LanguageIndexer
to determine the language of documents!

So, this case study illustrates very well the extensibility of the
framework, namely: the more the framework gets extended, the
more also the indexing of the OCW courses will get better. For
example, once we have extended our WordIndexer with methods to
get the Microsoft Word specific metadata, or once we have added
extra methods like for keyword extraction, this will also be of
benefit to the OCW course indexing.

8. CONCLUSIONS AND FURTHER WORK
In this paper, we presented research about automatic metadata
generation for learning objects. We mentioned several issues that
have to be tackled and presented solutions for all of them. In
general, it is our opinion that metadata can be generated
automatically without a great loss of accuracy and with a lot of
benefits for the users – both content creators and content users. We
also implemented and tested a framework.

We are currently developing extensions for the framework to handle
automatic metadata generation for specific cases. Comparable to the
Toledo and OCW implementation we described above, we are now
looking at, for example, proceedings of the AACE conferences from
which we can use the papers published in the proceedings as
learning objects. From the proceedings we can extract interesting
information about those papers and generate metadata for them.
Another idea is to investigate citation sites like citeseer or DBLP8
from which a lot of information about research papers can be found.

As a second extension we are doing research on combing the
automatic indexing service with the options described in [5] about
composite learning objects. Composite learning objects contain a
lot of information about their components and components provide
information about their siblings. This is closely related to the
research going on about content packaging and ontologies in
learning objects [28].

Because we do not want to be limited to LOM, we will also look at
ways to generate metadata for other metadata schemas like Dublin
Core.

All of these efforts will be made available on the accompanying web
site we made [30]. There you will find documentation, news about
our work, and links to, for example, the SourceForge location of our
project.

9. REFERENCES
[1] Advanced Distributed Learning, available online

http://www.adlnet.org.
[2] ARIADNE, available online http://www.ariadne-eu.org.
[3] B. Doan, W. Kekhia and Y. Bourda, A semi-automatic tool

for the indexation of learning objects, in Proceedings of ED-
MEDIA World Conference on Educational Multimedia,
Hypermedia and Telecommunications, pages 190-191, 2002.

[4] K. Cardinaels, E. Duval and H. Olivié, Issues in Automatic
Learning Object Indexation, in Proceedings of ED-MEDIA

8 Digital Bibliography & Library Project, available at:

http://dblp.uni-trier.de/.

555

World Conference on Educational Multimedia, Hypermedia
and Telecommunications, pages 239-240, 2002.

[5] K. Cardinaels and E. Duval, Composite learning objects:
exposing the components, in Proceedings of the 3rd Annual
ARIADNE Conference, pages 7, 2003.

[6] K. Cardinaels, M. Meire and E. Duval, Simple Indexing
Interface, draft specification, version 0.2, Octobre 2004.

[7] W. B. Cavnar, and J. M. Trenkle, N-Gram-Based Text
Categorization, Proceedings of Third Annual Symposium on
Document Analysis and Information Retrieval, Las Vegas,
NV, UNLV Publications/Reprographics, pp. 161-175, 11-13
April 1994.

[8] Dublin Core Metadata Element Set v1.1. Available at:
http://dublincore.org/documents/1999/07/02/dces/

[9] CanCore Application Profile. Available at:
http://www.cancore.ca

[10] E. Duval, E. Forte, K. Cardinaels, B. Verhoeven, R. Van
Durm, K. Hendrikx, M. Wentland-Forte, N. Ebel, M.
Macowicz, K. Warkentyne, and F. Haenni, The ARIADNE
Knowledge Pool System, Communications of the ACM 44
(5), pp. 73-78, May, 2001.

[11] E. Duval, Learning technology standardization: making
sense of it all, International Journal on Computer Science
and Information Systems, 1(1), pages 33-43, 2004.

[12] E. Duval, and W. Hodgins, A LOM Research Agenda,
WWW2003 Conference, 20-24 May 2003, Budapest,
Hungary.

[13] E. Duval and W. Hodgins, Making Metadata go away -
Hiding everything but the benefits, presented at DC2004
conference, Shanghai, China, 2004.

[14] J. Greenberg, A. Crystal, W. D. Robertson and E. Leadem,
Iterative Design of Metadata Creation Tools for Resource
Authors, in Sutton, S. Greenberg, J., and Tennis, J. (Eds.),
2003 Dublin Core Conference: Supporting Communities of
Discourse and Practice – Metadata Research and Applications.
DC-2003: Proceedings of the International DCMI Conference
and Workshop. September 28 - October 2, 2003, Seattle,
Washington. Syracuse, NY: Information Institute of
Syracuse, pp. 49-58.

[15] J. Greenberg, Metadata Extraction and Harvesting: A
Comparison of Two Automatic Metadata Generation
Applications, Journal of Internet Cataloging, 6(4): 59-82,
final draft available from
http://www.ils.unc.edu/mrc/mgr_index.htm.

[16] R. Heery and M. Patel, Application profiles: mixing and
matching metadata schemas, Ariadne, issue 25, 2000.
Available at: http://www.ariadne.ac.uk/issue25/app-
profiles/intro.html

[17] IEEE, Standard for learning object metadata, available on
http://ltsc.ieee.org/wg12.

[18] Merlot Peer Review,
http://www.merlot.org/home/PeerReview.po

[19] J. Najjar, E. Duval, S. Ternier, and F. Neven, Towards
interoperable learning object repositories: the Ariadne
experience, Proceedings of the IADIS International
Conference WWW/Internet 2003 (Isaias, P. and Karmakar,
N., eds.), vol 1, pp. 219-226, 2003,

[20] J. Najjar, S. Ternier, and E. Duval, User behavior in learning
object repositories: an empirical analysis, Proceedings of the
ED-MEDIA 2004 World Conference on Educational
Multimedia, Hypermedia and Telecommunications (Cantoni,
L. and McLoughlin, C., eds.), pp. 4373-4379, 2004.

[21] D. Rehak, Good & plenty, googlezon, your grandmother and
nike: Challenges for ubiquitous learning & learning
technology, in PGL Workshop on E-Learning Objects and
Systems, Orlando, Florida, June 3-4, 2004.

[22] D. Rehak and R. Mason, Keeping the Learning in Learning
Objects. Available at:
http://www.lsal.cmu.edu/lsal/expertise/papers/

[23] SingCore Application profile. Available at:
http://www.ecc.org.sg/eLearn/MetaData/SingCORE/index.js
p

[24] B. Simon, D. Massart and E. Duval (eds.), Simple Query
Interface Specification, CEN/ISSS Workshop on Learning
Technologies, 2004.

[25] K. Verbert and E. Duval, Towards a global architecture for
learning objects: a comparative analysis of learning object
content models, in Proceedings of the ED-MEDIA 2004
World Conference on Educational Multimedia, Hypermedia
and Telecommunications, pages 202-208, AACE, 2004.

[26] P. Vandepitte, L. Van Rentergem, E. Duval, S. Ternier, en F.
Neven, Bridging an LCMS and an LMS: a Blackboard
building block for the Ariadne knowledge pool system,
Proceedings of ED-MEDIA 2003 World Conference on
Educational Multimedia, Hypermedia, and
Telecommunications (Lassner, D. and McNaught, C., eds.),
pp. 423-424, 2003.

[27] iVia Open Source Virtual Library System:
http://infomine.ucr.edu/iVia/

[28] ALOCoM ontology and component architecture, K. Verbert.
Information available at
http://ariadne.cs.kuleuven.ac.be/alocom/publications.php

[29] M. Hatala and S. Forth, System for Computer-aided
Metadata Creation, Proceedings of 12th International
Conference of The World Wide Web Consortium
(WWW2003), Budapest, May 20-24, 2003. Available at:
http://www.sfu.ca/~mhatala/pubs/hatala-forth-www2003.pdf

[30] Homepage of our work on automatic metadata generation:
http://ariadne.cs.kuleuven.ac.be/amg/

[31] MIT OpenCourseWare, http://ocw.mit.edu/index.html

556

