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ABSTRACT
Semantic Portal is the next generation of web portals that
are powered by Semantic Web technologies for improved in-
formation sharing and exchange for a community of users.
Current methods of searching in Semantic Portals are lim-
ited to keyword-based search using information retrieval (IR)
techniques, ontology-based formal query and reasoning, or a
simple combination of the two. In this paper, we propose an
enhanced model that tightly integrates IR with formal query
and reasoning to fully utilize both textual and semantic in-
formation for searching in Semantic Portals. The model
extends the search capabilities of existing methods and can
answer more complex search requests. The ideas in a fuzzy
description logic (DL) IR model and a formal DL query
method are employed and combined in our model. Based
on the model, a semantic search service is implemented and
evaluated. The evaluation shows very large improvements
over existing methods.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Algorithms, Experimentation

Keywords
semantic search, semantic portal, fuzzy description logic,
fuzzy reasoning, information retrieval

1. INTRODUCTION
Semantic Portal [24] is the next generation of web por-

tals that are powered by Semantic Web technologies for im-
proved information sharing and exchange for a community
of users. It has an immediate and important bussiness ap-
plication — knowledge management in enterprise intranet
portals. In recent years, many research and development
efforts were devoted to this area. An initial survey on it can
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be found in [12]. Briefly speaking, information in a seman-
tic portal is organized by a domain ontology and stored in
a portal knowledge base (KB). The portal is then dynam-
ically generated by a runtime system from the portal KB
for ontology-based browsing, searching and editing. Seman-
tic Portal improves the way web portals are generated and
maintained. It also better facilitates the dissemination and
sharing of the information in the portal for both human and
machine consumption.

This paper focuses on how search is performed in seman-
tic portals. Current methods include: (1) IR-based keyword
search (2) ontology-based formal query and reasoning (3)
simple combination of the above two methods. Method (2)
is a unique feature of semantic portals because traditional
web portals have no semantic information to use. However,
the drawback of method (2) is that it can hardly exploit tex-
tual information in the portal. It is estimated that 80% of
enterprise information is in textual form, and we believe that
textual information still prevails in semantic portals, espe-
cially in enterprise knowledge portals. Thus a method must
be used to fully exploit these textual information. This calls
for an effective combination of methods (1) and (2). Other-
wise, the portal users will be left with two separate search
methods at two extremes. Method (2) uses only semantic in-
formation and either returns all correct answers for a formal
query or none at all. Method (1), on the contrary, searches
only textual information and typically returns a lot of an-
swers with many irrelevant ones. The challenge is then how
to effectively combine them to obtain a smooth model be-
tween the two extremes and better satisfy users’ information
needs.

In the Semantic Portal area, current solutions to the chal-
lenge, i.e. method (3), are quite basic. In OntoWeb portal1,
when an ontology-based query has no results to return, it
is then automatically converted to a pure keyword search.
In the commercial product Mondeca ITM 2, users can spec-
ify keywords that the searched item must contain and con-
cepts/relations they must belong/relate to [12]. Analysis of
other related work (e.g. work in the semantic search and
retrieval area) in Section 6 shows that they are also lim-
ited in one way or another. These existing methods can not
effectively express and answer search requests like “find doc-
uments talking about future market that are written by some
senior staff related to semantic technology”. In this search

1www.ontoweb.org
2http://www.mondeca.com/technologie.htm
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request, “documents talking about future market” may be
retrieved using IR method. The retristriction “written by
some senior staff” should be checked against the portal
knowledge base by reasoning on the document authors and
on who are qualified to be senior staffs (e.g. only managers
and employees in some key positions are qualified). Whether
the inferred senior staffs are somehow “related to semantic
technology” probably again involves a keyword search on
their properties in the portal KB using “semantic technol-
ogy” as keywords. Therefore, we need a very tight integra-
tion of IR and formal query and reasoning to answer this
search request. Clearly, the ability to answer this kind of
search requests should be a key feature of semantic portals
and is very critical in applications like business intelligence.

In this paper, we propose a model that enables such tight
integration between IR and formal query and reasoning to
fully utilize both textual and semantic information in seman-
tic portals. The capability of the model ranges from simple
IR and purely formal query and reasoning to complex inte-
gration of both. The ideas in a fuzzy DL based IR model
[15] and a formal DL query method [11] are employed and
combined in our model. We implemented a semantic search
service based on the model and carried out an evaluation.
Compared to existing search methods, this model shows very
large improvements in the evaluation.

The rest of the paper is organized as follows. The model is
first presented in detail in Section 2 and then its capabilities,
properties and limitations are discussed in Section 3. After
that, we describe the implementation of the model in Section
4 and show the evaluation in Section 5. Related work is
discussed in Section 6 and Section 7 concludes the paper.

2. THE MODEL
Our model largely draws upon and is also inspired by the

body of work on IR models based on Description Logics (DL)
[15, 16, 17, 20]. In DL-based IR models, documents and
queries are modeled as DL individuals and concepts respec-
tively. The content, structure, layout, thesaural information
of all the documents are also described in DL and form a
document knowledge base Σ. Whether a document d is rele-
vant to a query Q is modeled as whether Σ |= d : Q. The IR
problem is then reduced to the DL instance retrieval prob-
lem which can be answered by a DL reasoning engine. On
the other hand, [11] showed that many formal DL conjunc-
tive queries can be “rolled up” to a single concept expression
and reduced to the DL instance retrieval problem too. The
difference is that the IR model can not query non-document
objects using semantic information, while the formal query
method can not use IR techniques to exploit textual infor-
mation.

This leads to our intuition that if we extend the idea
Σ |= d : Q to one that retrieves both documents and non-
document objects and can also integrate them together, we
can obtain an enhanced model that utilizes both textual and
semantic information. Following this intuition and also in
order to make the paper self-contained, we first introduce
the fuzzy description logic fuzzy-ALC [26] in section 2.1.
We then present the basic model, the extended model and
the complete model in section 2.2, 2.3 and 2.4 respectively.

2.1 Fuzzy-ALC

IR methods represents the degree of relevance of a docu-
ment w.r.t a query using the so-called RSV (Retrieval Status

Value) that is usually normalized in [0, 1]. On the contrary,
formal query and reasoning mechanisms are usually based on
a binary judgement (i.e., either 0 or 1). Fuzzy description
logic introduces uncertainty (i.e., non-binary set member-
ship degree between 0 and 1) into DL. It hence can serve as
a good glue to combine IR and formal methods. Here we
briefly summarize the work done by Umberto Straccia on
Fuzzy-ALC in [26]. We assume the readers are familiar with
the basics of description logics.

The syntax of concept descriptions and TBox axioms of
fuzzy-ALC is the same as the standard ALC DL. The con-
cept description syntax is defined as

C, D → >|⊥ |A |C u D |C t D | ¬C | ∀R.C | ∃R.C

TBox axioms are either of the form A v C or A = C. What
Fuzzy-ALC differs is in the ABox where fuzzy assertions can
be expressed in the form of 〈α ≤ m〉 or 〈α ≥ n〉. Here, α is
a standard ALC ABox assertion a : C or (a, b) : R and m ∈
[0, 1), n ∈ (0, 1] represents the degree of fuzziness of α. For
example, the fuzzy assertion 〈Tom : Tall ≥ 0.8〉 says that
Tom is a tall person with a degree greater than 0.8. Note
that this syntax also allows us to assert 〈α = n〉 because it
is equivalent to asserting both 〈α ≤ n〉 and 〈α ≥ n〉.

The semantics of Fuzzy-ALC is defined on fuzzy interpre-
tations. A fuzzy interpretation I is a pair (4I , ·I) where
4I is a domain and ·I is a function mapping a concept C
into a function CI : 4I → [0, 1] and a role R into a function
RI : 4I ×4I → [0, 1]. That is, I interprets concepts and
roles as fuzzy set membership degree functions. In contrast,
in standard DL, concepts and roles are interpreted as crisp
sets. A fuzzy interpretation I must satisfy the following
equations (for any d ∈ 4I):

>I(d) = 1
⊥I(d) = 0

(C u D)I(d) = min
˘

CI(d), DI(d)
¯

(C t D)I(d) = max
˘

CI(d), DI(d)
¯

(¬C)I(d) = 1 − CI(d)
(∀R.C)I(d) = infd′∈4I

˘

max
˘

1 − RI(d, d′), CI(d′)
¯¯

(∃R.C)I(d) = supd′∈4I

˘

min
˘

RI(d, d′), CI(d′)
¯¯

These equations are the standard fuzzy logic interpretation
of conjunction, disjunction, negation and qualification, re-
spectively. Note that the semantics of ∀R.C is the result of
viewing ∀R.C as the first order formula ∀d′¬R(d, d′)∨C(d′),
where the universal quantification ∀ is viewed as a conjunc-
tion over all d′ ∈ 4I . The interpretation of ∃R.C is similar.
We say that I satisfies

A v C iff ∀d ∈ 4I , AI(d) ≤ CI(d)
A = C iff ∀d ∈ 4I , AI(d) = CI(d)

〈a : C ≥ / ≤ n〉 iff CI(aI) ≥ / ≤ n
〈(a, b) : R ≥ / ≤ n〉 iff RI(aI , bI) ≥ / ≤ n

A fuzzy interpretation I is a model of a fuzzy-ALC knowl-
edge base Σ iff it satisfies every TBox axiom and ABox fuzzy
assertions of Σ. Finally, the fuzzy entailment Σ |= 〈α ≥ n〉
holds iff every model of Σ also satisfies 〈α ≥ n〉.

Given a fuzzy KB Σ and an ABox assertion α, it is of
interest to compute α’s best lower and upper fuzzy degree
bounds. Formally, we define the greatest lower bound of
α w.r.t Σ, denoted glb(Σ, α), to be sup {n |Σ |= 〈α ≥ n〉}.
Similarly, the least upper bound of α w.r.t Σ, lub(Σ, α), is
defined to be inf {n |Σ |= 〈α ≤ n〉}. Determining the lub
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Figure 1: An example graph fragment

and the glb is called the Best Truth-Value Bound (BTVB)
problem. [26] shows that the BTVB problem can be reduced
to the entailment problem, and in turn to the satisfiability
problem which can then be solved using a tableau algorithm
for fuzzy-ALC. This result will be used in this paper.

2.2 The Basic Model
In a semantic portal, information is organized by a domain

ontology and stored in a knowledge base. The ABox of the
knowledge base can be visualized as a labeled graph. The
nodes are the individuals and the edges connect individuals
with role relationships. Labels on the nodes represent the
asserted concepts the individual belongs to. Labels on the
edges are the role names. Fig. 1 shows an example graph
fragment. In this paper, instead of directly talking about
the ABox of the portal KB, we usually talk about the graph.
The term nodes and individuals are also used alternatively
in this paper. Given the portal KB, we can directly apply
the formal query method [11] for searching in the portal. A
query is modeled as a DL concept Q. Answers to the query
are individuals of the concept Q and can be retrieved using
the DL instance retrieval algorithm. For example, we can
search for all senior staff that give at least a presentation
using the query:

SeniorStaff u ∃ givePresentation.Presentation

In the Fig. 1 example, the node representing John may be
deduced as an answer because John is a manager and may be
inferred to be a senior staff according to the domain ontology
and John does give a presentation. The problem with the
formal query method is that it does not incorporate IR to
retrieve document nodes in the graph. For example, we can
not use IR in the formal query method to answer the query
QIR: find presentation slides that talk about future market.

We now add IR capability to the formal query method
to obtain our basic model. The intuition is that we can
still view the IR query QIR as a concept. Documents that
are IR-relevant to the query can be seen as the individuals
of the concept with a fuzzy degree. The degree value is
between [0, 1] and is determined by the IR retrieval status
value (RSV). In other words, QIR is modeled as a fuzzy
concept in a fuzzy DL. For the above example, we can express
QIR as

QIR : Slide u Dq

where Dq is the fuzzy concept denoting the set of documents
that are relevant to the IR query q: about future market. For
any presentation slide s, the degree of s belonging to the
Slide concept, denoted s : Slide, is 1. The degree s : Dq is
the RSV of the text content of slide s w.r.t the IR query q —
RSV(t(s), q) where t(s) denotes the text content of s. Ac-
cording to the fuzzy interpretation of conjunction introduced

in section 2.1, the degree s : QIR = min{1, RSV(t(s), q)} =
RSV(t(s), q). On the contrary, for any document d that is
not a presentation slide, the degree d : Slide is 0 and hence
the degree d : QIR = min{0, RSV(t(d), q)} = 0. Thus, the
results of the query QIR are those document nodes d that
have a degree d : QIR > 0. In addition, the results can be
ranked according to the degree in descending order. In Fig.
1, the bottom node may be returned as one of the good an-
swers of the QIR query because it is a presentation slide and
it talks about marketing. Once IR is incorporated in this
way, fuzzy IR concepts can be placed in any position of a
formal DL query that a concept can appear. Consequently,
more interesting and complex queries than QIR can be ex-
pressed. For example, the following query

SeniorStaff u ∃ givePresentation.(∃ hasSlide.Dq)

finds all senior staff giving a presentation that has a slide
talking about future market. This query involves both rea-
soning (on senior staff) and IR (on the slide content).

The basic model can be described more formally as fol-
lows. We assume the portal KB Σ is in standard ALC DL.
Because the standard ALC is a special case of the fuzzy-ALC
with the fuzzy degree being 1, we can easily convert Σ to an
equivalent fuzzy-ALC KB ΣF by simply transforming the Σ
ABox assertions α to 〈α ≥ 1〉. In addition, in the Σ TBox, it
is reasonable to assume that there is a concept, denoted Doc,
representing all the document nodes in the KB.3 The set of
document nodes is then defined as DΣ = {d |Σ |= d : Doc}.
In the model, the user’s information need in searching the
portal is modeled as a fuzzy concept Q. Concept names in
Q either are defined in the TBox of ΣF or are new fuzzy
concept names representing the IR queries in Q (e.g. the
Dq in the above metioned examples). Let’s denote the set
of new IR fuzzy concept names in Q as C

IR
Q . The KB ΣF

is then enriched with a set of new fuzzy assertions about
the relevances of document nodes w.r.t IR queries in Q. We
define the enriched ΣF KB as Σ′

F :

Σ′
F = ΣF ∪

n

〈i : Dq = RSV(t(i), q)〉
˛

˛

˛
∀i ∈ DΣ, ∀Dq ∈ C

IR
Q

o

The function RSV calculates the IR relevance of a text con-
tent w.r.t an IR query and returns a degree in [0,1]. Note
that RSV is applied only on individuals i ∈ DΣ. That is, IR
method is only used on documents. Another point to note is
that, if Q is a pure formal query that contains no IR queries,
C

IR
Q is ∅ and Σ′

F = ΣF ∪ ∅ = ΣF . Based on Σ′
F , the answer

set of Q is then defined as the set of nodes whose greatest
lower bound degree of being individuals of Q is greater than
0: {i | glb (Σ′

F , i : Q) > 0}4. Recall that the glb values can
be calculated by fuzzy-ALC algorithms. The answer set can
then be ranked according to the glb values.

One limitation of the basic model is that we restrict the
portal KB to be a ALC DL KB. The reason is that our model
relies on the fuzzy-ALC formalism. However, this does not
impose much restriction on the applicability of our model.
First, ontologies in real applications usually do not use very
expressive DL constructs. Analysis [29] shows that ontolo-
gies in the DAML ontology library seldom use very expres-
sive DL constructs. Second, some existing semantic portal

3The concept Doc may be definded and added to the TBox
if it is not already there.
4The use of glb values instead of lub values is consistent with
[15] and is also more rational.
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systems, such as OntoWeb, are based on F-logic, which cor-
responds to ALUN , a DL relates to ALC. Third, since ALC
is a significant and expressive representative of the various
DLs, the principles discussed in this paper are possible to
be adapted to KBs based on other DLs. For a KB based
on a more expressive DL, we can even partially circumvent
the problem by extracting the ALC part of the KB and then
applying our model. Another limitation of the basic model
is that IR method is only used for searching documents. In
the next subsection, we remove the latter limitation by en-
abling the use of IR method also for searching non-document
individuals in the portal KB.

2.3 Extending The Basic Model
Most existing semantic portal systems support the use of

keyword-based search for finding non-document individuals
in the portal KB. Any individual that has a string prop-
erty that matches the search keywords will be returned as a
result. However, this is not supported in our basic model.

The problem stems from the fact that in the basic model
non-document nodes have no text representations and thus
no IR RSV values to be added to the Σ′

F KB. The problem
can be solved by endowing every non-document node with
a text representation so that they can also be indexed and
searched by IR methods and have RSV values. First, we
define the simple text representation of a node o, str(o),
as a string that people usually use to talk about the node,
e.g. the name of a people, the title of a presentation, etc.
Usually, str(o) equals to a string property of the node.

The text representation, tr(o), of a node can then be con-
structed from the simple text representaions of its surround-
ing nodes. The intuition is that the properties and relations
of a node implicitly define, and thus represent the node. For
a document node o, tr(o) also needs include its text content.
However, the specific method used for building the text rep-
resentation varies and depends on the IR method used. We
list three possible methods as examples for the model.

Simple Concatenation Method tr(o) is a piece of text
that is the result of a concatenation of all the string
properties of o and all the str(p) of its surrounding
nodes p that has an edge directly connected to o. If o is
a document node, its text content is also concatenated.

Weighted Term Method For all text terms in the str(p)
of the surrounding nodes p of o, a weight is assigned
based on the distance between p and o. For other text
terms in the string properties of o, or in the text con-
tent of o if o is a document node, a weight is assigned
as if the distance is 1. tr(o) is then composed as a
weighted term vector.

PLBR Method PLBR [6] is an IR model based on propo-
sitional logic. Using this model, tr(o) is a DNF formula
dc1 ∨ dc2 ∨ . . . ∨ dcn where each dci is a conjunction
of all text terms in one string property of o, or in one
str(p) of a directly connected node p of o, or in the
text content of o if o is a document node.

Let’s take the node representing John in Fig. 1 as an ex-
ample. With the simple concatenation method, tr(o) is the
string: “John Semantic Web Semantic Portal Technology
Marketing Semantic Technology”. With the weighted term
method, tr(o) may be a vector like <(John, 0.5), (Semantic,

0.6), (Technology, 0.3), (Web, 0.5), (Portal, 0.15), (Market-
ing, 0.15)>. These two methods are suitable for the classical
vector space IR model. With the PLBR method, tr(o) is the
DNF formula: John ∨ (Semantic ∧ Web) ∨ (Semantic ∧ Por-
tal ∧ Technology) ∨ (Marketing ∧ Semantic ∧ Technology).
PLBR method captures the different properties/relations of
an individual in different conjunctive clauses in a DNF for-
mula. This makes it suitable for representing a node in the
graph with different connections.

Once we have a text representation for every node in the
portal KB Σ, we can extend the original RSV function to
also cover non-document nodes. We define the function
RSV′:

∀o ∈ Σ : RSV′(o, q) = RSV(tr(o), q)

The RSV′ function abstracts both the method used to con-
struct the text representation tr(o) and the IR method by
which the relevance between tr(o) and q is calculated. The
premise is that the constructed tr(o) must be suitable for
the IR method used to calculate the RSV. For example,
if tr(o) is constructed using the PLBR method, then the
PLBR retrieval model must be used to calculate RSV. An-
other observation is that, because every node now has a text
representation, we actually obtained a virtual document col-
lection V DCΣ from the portal KB Σ:

V DCΣ = { tr(o) | ∀o ∈ Σ }

Many existing IR techniques on document collections, such
as inverse document frequency and latent semantic indexing
[5], can be readily applied on the collection V DCΣ to help
better calculate the RSV values. With this newly defined
RSV′ function, we can now give the complete model.

2.4 The Complete Model
The complete model is almost the same as the basic model

except for the definition of Σ′
F . In the basic model, we have

no RSV values for non-document nodes to add to Σ′
F . With

the extension introduced in the previous subsection, both
non-document nodes and document nodes have RSV values
defined by the RSV′ function. So now

Σ′
F = ΣF ∪

n

〈i : Dq = RSV′(i, q)〉
˛

˛

˛
∀i ∈ ΣF , ∀Dq ∈ C

IR
Q

o

Compared with the basic model, the variable i is no longer
limited to the document nodes alone, and can now range
over all the individuals in the portal KB. All other things
of the complete model are exactly the same as the basic
model. The result set is still {i | glb (Σ′

F , i : Q) > 0} and the
glb values can be used for ranking the results.

3. DISCUSSION

3.1 Capabilities of The Model
After presenting the model, we now explain the wide range

of search capabilities of the model and show that it is a
smooth model between the pure IR method and the pure
formal query method, and it indeed fully utilizes both tex-
tual and semantic information in semantic portals.

First, if the query Q of the search request is a single IR
fuzzy concept, Q is then a pure IR query. For example, the
query

Q1 : Dq
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is a pure IR query q. According to the definition of Σ′
F ,

the only fuzzy assertions added is 〈i : Dq = RSV′(tr(i), q)〉.
These are also the only fuzzy assertions related to the glb
values in the result set {i | glb (Σ′

F , i : Dq) > 0}. It follows
that the glb values equal to the RSV′ values, which means
that the ranked result set is the same as the ranked IR rel-
evance set. Therefore, the model degenerates to a pure IR
method. Note that even in this simple IR case, we are ac-
tually searching for both documents and non-document in-
dividuals. For non-document individuals, we are relying on
their text representations.

Second, if the query Q of the search request contains no
IR fuzzy concept, Q then becomes a pure formal query. The
query

Q2 : SeniorStaff u ∃ givePresentation.Presentation

is such an example. It finds senior staff that gives at least
one presentation. In this case, as we have shown in section
2.2, C

IR
Q = ∅ and therefore Σ′

F = ΣF ∪∅ = ΣF . That is, the
Σ′

F KB is the same as the fuzzy-ALC KB of the original por-
tal KB Σ. It can be easily proved from [26] that under this
situation the result set {i | glb (Σ′

F , i : Q) > 0} is the same as
{i |Σ |= i : Q}. In other words, the model now degenerates
to the basic form of the formal query and reasoning method
in [11]. About the capability in this mode, [11] made a good
discussion.

Between the above two extremes of search methods, the
model can support, from simple to complex, integration of
IR and formal query and reasoning. A simple integration
example is the query

Q3 : SeniorStaff u Dq

where Dq is a fuzzy concept of IR query q: about semantic
technology. The query finds all senior staff related to se-
mantic technology. It involves both reasoning on who are
senior staff and IR on the text representations of the in-
ferred senior staff. It is a typical query supported by the
simple combination method used by most existing semantic
portal systems. In the simple combination method, a query
is a conjunction of a pure formal sub-query and a pure IR
sub-query. Q3 is exactly such a query. Our model now de-
generates to the simple combination method to support this
query. However, the simple combination method does not
support more interesting and deeper integration of IR and
formal query and reasoning. For example, the query

Q4 : Doc u ∃ writtenBy.(SeniorStaff u Dq)

searches for documents that are written by some senior staff
related to semantic technology. It uses IR to restrict the
SeniorStaff concept in a ∃R.C construct of a formal query.
An even more complex query is

Q5 : (Doc u Dp) u ∃ writtenBy.(SeniorStaff u Dq)

where Dp is a fuzzy concept of IR query p: about future
market. The query searches for documents talking about
future market that are written by some senior staff related
to semantic technology. Q4 and Q5 are two typical exam-
ples of complex but very valuable queries in real applica-
tions. Answering them requires very deep integration of im-
plicit semantics in texts/documents and explicit semantics
in knowledge markups. They exceed the search capability
of the simple combination method. However, they can be
naturally expressed and supported in our model.

Through the Q1 to Q5 query examples, it is clear that the
model can integrate both IR and formal query and reason-
ing to utilize both textual and semantic information in the
portal for answering search requests. The model is indeed a
smooth model between the two extremes of search methods.
In addition, being able to answer complex queries like Q4
and Q5, which can hardly be answered by existing methods,
shows that the model indeed extends the search capabilities
of existing methods.

3.2 Properties of The Model
Besides the wide range of search capabilities, this model

also enables the mutual assistance of IR and formal query
and reasoning in real applications to deliver better search
results.

On the one hand, IR can help formal query and reasoning
in this model. Although the latter one is good at utilizing
explicit semantics, it can hardly use implicit semantics bur-
ried in large amount of texts. IR method, such as LSI [5],
can discover and use implicit semantics such as synonymous
words and similar documents to deliver better search results.
IR method can also help the formal method when there is
a lack of semantic information in the portal. For example,
the following query intends to find papers on IR topics

Paper u ∃ hasTopic.IRTopics

However, if papers are very lazily or inadequately marked
up in the portal on its topics, the query won’t return many
good results. In this case, we can use IR to relax the query
to

Paper u (Dq t ∃ hasTopic.IRTopics)

where Dq is a query like “about information retrieval, doc-
ument, precision, recall”. For this relaxed query, if a paper
is explicitly marked up as an IR paper, it will surely be re-
turned and ranked high in the result. More interestingly,
papers not explictly marked up so but actually about IR
topics may also appear in the result list along with those
explicitly marked ones.

On the other hand, formal query and reasoning also can
help IR in the model. It can improve IR precision because
logic conditions can greatly reduce the scope of retrieval. It
can also improve recall because reasoning can discover in-
formation that is not explicitly stated. For example, people
usually won’t say he/she is a senior staff on his/her home-
page and may not be found by IR queries using “senior staff”
as keywords. Formal reasoning, however, can discover this
unstated information and consequently improve the recall.

3.3 Limitations of The Model
Despite the various merits disccused above about the model,

we are clearly aware that the model has some limitations.
First, the fuzzy-ALC formalism used in the model has its
own limitations when applied to information retrieval and
search. We’ve discussed the ALC limitation in section 2.2.
Actually, in general, DL-based IR models have various pros
and cons as discussed in the literature [15, 16, 17, 20]. Re-
garding to fuzzy logic, it also has well-known problems when
applied to IR. For example, for a query A u B, if we have
an individual a belonging to A but not B, and another in-
dividual c not belonging to either A or B, the fuzzy logic
approach would treat a and c indifferently as not being rel-
evant to the query at all. However, a more natural view is
that a is more relevant to the query than c.
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The second problem lies in the end user’s difficulty in
converting the information need in a search to a well for-
mulated query of this model. In many situations, users are
more adapted to use just keywords. Although this is more
about a human computer interface issue and not directly
related to the model itself, it inevitably affects the applica-
bility of the model. Recent work on ontology-based visual
query formulation such as [3, 2] bring initial solutions to the
problem.

Third, our model relies on a fuzzy-ALC reasoning engine
to calculate the glb values for all individuals in the portal
KB. To be used in large applications with large amounts of
individuals, the reasoning engine must be able to scale up.
Currently, the only fuzzy-ALC engine we know of is alc-F
[28]. It is a very naive implementation and runs very slowly
in our model implementation and evaluation. Nevertheless,
there is still plenty of room for performance improvements.
Internally, the engine can adapt and reuse many proven op-
timization techniques for DL reasoning. One way to achieve
this is to transform fuzzy DL reasoning to crisp DL reason-
ing [27]. Externally, indexing and caching techniques can be
used to greatly reduce the number of reasoning tasks. We
discuss the semantic index used in our current implementa-
tion in section 4.1.

4. IMPLEMENTATION
We’ve developed a semantic search service implementing

our model in the SPortS [13] semantic portal system. Given
an OWL-DL portal KB and a site specification, SPortS can
dynamically generate a web portal for ontology-based infor-
mation browsing and editing. Different from many other
semantic portal systems, SPortS has the ability to integrate
semantic web services into it to provide more up-to-date in-
formation and richer functionalities. Utilizing this feature,
we implemented the semantic search function as a semantic
web service to be integrated into the portal. Presently, we do
not have a GUI to support end user query formulation and
input. The service can only be accessed programmatically.

The semantic search service accepts a query concept Q as
input and returns a list of URIs of individuals in the portal
KB as the answer. Because Q is an ALC concept, it can
be easily encoded using the OWL RDF/XML syntax. The
following is a snippet of the encoded query Doc u Dq :

<owl:Class rdf:ID="D_q">
<IRQuery xml:lang="en">future market</IRQuery>

</owl:Class>
<owl:Class rdf:ID="Q">

<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="&portal;Doc"/>
<owl:Class rdf:about="#D_q"/>

</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

The IRQuery property in the code is an annotation prop-
erty of the fuzzy IR concept Dq. After the query is processed
by the semantic search service, it returns a list of URIs of
individuals like the following:

<Q rdf:about="&portal;id1390">

<degree>0.98</degree>
</Q>

<Q rdf:about="&portal;id0124">
<degree>0.58</degree>

</Q>

IR Engine Virtual Doc
Collection

Engine
Fuzzy ALC

Portal KB

Relevance
Assertions

Answers
Q

Q’

Semantic Index

Semantic

Service

Search

Query Q

Answers

Portal KB
Fuzzy ALC

*1*

*3*

*2*

Figure 2: Semantic search service architecture

The value of the degree property is the glb value in our
model. Currently, the implementation returns all results at
once. Future implementation may use a more robust query
answering dialogue and the OWL-QL5 syntax.

Fig. 2 shows the internal architecture of the semantic
search service. It shares the portal KB with the SPortS
system. Just as the model is an integration of IR and formal
query and reasoning, the implementation is an integration
of an IR engine and a fuzzy-ALC reasoning engine. We
use Lucene6 as our IR engine and alc-F [28] as our fuzzy-
ALC reasoning engine. The workflow of the semantic search
service consists of two stages, the preprocessing stage and
the answering stage.

In the preprocessing stage, three programs (shown as *1*,
*2*, *3* respectively in Fig. 2) are run to build the virtual
document collection, the fuzzy-ALC portal KB and the se-
mantic index respectively. The first program uses the Jena
API7 to read the portal KB to construct the corresponding
virtual document collection. For every node, the program
finds all the nodes directly connected to it and then uses the
simple concatenation method introduced in section 2.3 to
build the text representation for it. We manually configure
beforehand which property of each portal concept is used
as the simple text representation for its individuals. For
example, the system is configured to use the title prop-
erty of the Document concept as simple text representations
for all document nodes. The method of getting document
node’s full text content is also configured manually before-
hand. In our case, every document node has a URL property
from which the program can obtain the full text of the doc-
ument. Non-textual files, such as .pdf, .doc and .ppt type
files are further processed to extract their textual contents.
After the text representations of every node are built, they
are stored in the virtual document collection and the Lucene
API is invoked to build a full text index for the collection.

From the original portal KB, a second program generates
a fuzzy-ALC KB, which corresponds to the ΣF in the formal
description of the model. This is not a trivial task in the
general case since the portal KB may be in a very expres-
sive DL. In the current implementation, we are using the
system for our lab’s intranet portal which has a simple on-
tology and the second program simply ignores any concept
constructor beyond ALC in the ontology. For the KB ABox,
original assertions α are translated to 〈α ≥ 1〉. In our sce-
nario, this simple approach preserves most semantics of our
lab’s intranet portal ontology. It only loses some cardinality
restrictions on roles.

5http://ksl.stanford.edu/projects/owl-ql/
6http://jakarta.apache.org/lucene/
7http://jena.sourceforge.net/
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Finally, a third program builds an initial semantic index
from the fuzzy-ALC KB. The semantic index is used later
in the answering stage to boost the system’s performance.
We discuss it separately in section 4.1. All this preprocessing
work can be done before the system starts accepting queries.
Similar to the index information in the traditional IR, the
preprocessing information needs to be updated periodically
when the portal KB changes.

In the answering stage, the service starts accepting queries.
For an accepted query Q, it first parses the query to obtain
all the fuzzy IR concepts contained in it. IR queries (shown
as Q′ in Fig. 2) associated with these fuzzy IR concepts, if
any, are issued to the Lucene engine to find relevant nodes
from the virtual document collection. The result is a set of
fuzzy assertions of the form 〈i : Q′ = x〉 stating the degree
of relevance from the IR perspective. They are stored as
Relevance Assertions shown in Fig. 2. The union of the
relevance assertions and the fuzzy-ALC KB corresponds to
the Σ′

F KB in the formal description of the model. Σ′
F is

then loaded into the fuzzy-ALC reasoning engine. Next, the
semantic search service tries to calculate a glb(Σ′

F , i : Q)
value for every individual i in the KB and add to the result
list those ones with glb values greater than 0. The result
list is then sorted in descending order according to the glb
values and returned.

A naive implementation of the semantic search service
would rely on the fuzzy-ALC reasoning engine to calculate
all the glb values. However, this is not necessary. Our im-
plementation first consults the semantic index to obtain the
glb values. It only delegates the task to the reasoning engine
when necessary. This simple technique greatly reduces the
number of reasoning tasks and can improve performance for
most commonly asked conjunctive queries to the portal. We
now give the details about the semantic index.

4.1 Semantic Index
Semantic index technique is used in optimizing DL in-

stance retrieval problem [9]. Here, in our model, the intu-
ition of the semantic index comes from the observation that
the glb value of a conjunctive query can be derived from the
glb values of its conjuncts. More precisely, given a fuzzy-
ALC KB Σ, it can be proved that

glb(Σ, i : A u B) = min { glb(Σ, i : A), glb(Σ, i : B) } .

It follows that if we already know the glb values of A and B,
we need not ask the reasoning engine for the new glb value of
AuB. In addition, if A or B is an IR concept, the glb value
is exactly the relevance value asserted in the IR Relevance
Assertions.

Following this idea, we first build an initial semantic index
in the preprocessing stage using the fuzzy-ALC reasoning
engine. The index contains the glb values of all individuals
w.r.t all named concepts in the fuzzy-ALC KB ΣF . These
glb values will remain the same in the Σ′

F KB8. In the im-
plementation, the index is a hash table that maps a pair
of individual and concept to a glb value. In the answering
stage, if a conjunctive query is accepted, it is first decom-
posed to get its conjuncts. If a conjunct is an IR concept,
the glb values are retrieved from the IR Relevance Asser-
tions. If the glb values of the conjunct are already available

8Because fuzzy IR assertions are only related to new fuzzy
IR concepts not appearing in ΣF , they won’t affect those
glb values.

Figure 3: Lab intranet portal ontology

in the semantic index, they are directly retrieved. Only
those not available in the index are sent to the fuzzy-ALC
reasoning engine for computation. The newly computed glb
values can be cached in the semantic index for future re-
trieval. The caching strategy used in our implementation is
to retain those mostly queried concepts in the index.

5. EVALUATION
As pointed out in [19], currently there is no commonly

agreed evaluation methodology and benchmark for seman-
tic search. In our work, we applied the semantic search
service in our lab’s intranet portal for searching and eval-
uation. The knowledge base and documents of our lab’s
intranet portal constitutes the evaluation dataset. The pre-
cision/recall measurement from the IR field is used as the
basic evaluation criteria.

Our lab’s intranet portal is powered by MS SharePoint
portal server. By analyzing various information contained
in the portal, we first manually built an ontology for the por-
tal using Protégé9. Fig. 3 shows some concepts and roles
of the ontology in Protégé. Individual information is then
semi-automatically extracted from the portal’s web pages
to fill the ABox of the portal knowledge base. The final re-
sult is a portal knowledge base with about 35 concepts, 112
roles, 1400 individuals and 5000 ABox assertions. Among
all the individuals, there are 687 documents with full text
such as papers, presentation slides and meeting minutes etc.
Based on the knowledge base, SPortS system can dynami-
cally generate a semantic portal for ontology-based informa-
tion browsing and editing. We intend to evaluate how our
model performs in such a semantic portal.

As we have discussed in section 3.1, our model will de-
generate to use pure IR method, pure formal query and rea-
soning method, and simple combination method to answer
pure IR queries, pure formal queries, and simple conjunc-
tive queries respectively. Therefore, our model will have the
same performance as these methods for those kind of queries.
What interests us, and also what we intend to evaluate, is
how the model performs on queries that require deeper in-
tegration of IR and formal query and reasoning. For this
purpose, we collected two information needs in our lab’s in-
tranet portal for evaluation. Imagine that a new graduate
student joined our lab and would like to find all papers au-
thored by some lab member related to ontology engineering.
This is the information need 1 – IN1:

9http://protege.stanford.edu
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IN1 IN2
1 Paper u “ontology engi-

neering”
Paper u “web search on-
tology engineering”

2 Paper u “ontology” Paper u “search ontol-
ogy”

3 Paper u “ontology engi-
neering ORIENT”

Paper u “web search on-
tology ORIENT”

Table 1: Queries for simple combination method

IN1: find all papers authored by some lab member related
to ontology engineering.

Later on, the student notices the “web search” research topic
in our lab and is interested to know from papers what lab
members related to ontology engineering might think about
the topic. The student then refines the information need 1
to information need 2 – IN2:

IN2: find all papers talking about web search that are au-
thored by some lab member related to ontology engi-
neering.

Both of the two information needs require nontrivial combi-
nation of IR and formal query and reasoning. In the portal
KB, Conference Paper and Journal Paper are subclasses of
the Paper concept. Documents that are individuals of the
two classes must be inferred to be papers. The authors of
a paper can be obtained by querying the KB. Whether pa-
per contents are related to web search and whether authors
are related to ontology engineering should be handled by IR
methods.

In order to evaluate our model’s performance on satisfying
the above two information needs, we adopted the classical
evaluation criteria — precision and recall from the IR field.
Precision/recall is an established standard evaluation crite-
ria in the IR field that reports the system performance from
the end user’s point of view.

Because the pure IR method and the pure formal query
and reasoning method can hardly support the above two
information needs involving both IR and formal query and
reasoning, we decide to compare our model’s performance
only with the simple combination method. In the simple
combination method, queries are restricted to be a simple
conjunction of a pure formal sub-query and a pure IR sub-
query. In this evaluation, we use our model to simulate the
simple combination method by restricting the queries to be
only of that form. Since it takes users’ effort to formulate a
complex query in our model, as a compensation we allowed
the users to try and see the search results for several times
to formulate the best query they deem appropriate for the
simple combination method.

Table 1 shows the best queries used by three randomly-
chosen subjects in the evaluation for the simple combination
method. For the formal sub-query, they all use the Paper

concept. For the IR sub-query, there are differences on which
keywords to use among them. The third subject uses the
keyword “ORIENT” because “ORIENT” is the name of a
project developed by the ontology engineering group of our
lab and the subject thinks the keyword brings more relevant
results. All the subjects agree that these queries still can not
fully express the information needs. However, in our model,
the two information needs can be naturally expressed as the
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Figure 4: Precision/Recall for information need 1
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Figure 5: Precision/Recall for information need 2

following two queries:

QA1 : Paper u ∃ paper-author.(Lab Member u Dq)
QA2 : (Paper u Dp) u ∃ paper-author.(Lab Member u Dq)

where Dp is a fuzzy concept for IR query p: about web search
and Dq is a fuzzy concept for IR query q: related to ontology
engineering. Naturally, we used the keywords “web search”
and “ontology engineering” for Dp and Dq respectively. The
two queries are sent to the semantic search service we devel-
oped to get the corresponding query results.

During the evaluation, a group of students of our lab are
randomly chosen as the evaluation subjects. Every subject
is first required to give his/her relevance judgements on the
results of QA1 and QA2 w.r.t the two information needs
IN1 and IN2. The subject is then allowed to use the sim-
ple combination method to do search for several times to
find the best queries he/she deems appropriate. Because we
use our model to simulate the simple combination method,
the queries for simple combination method are actually also
sent to the semantic search service we developed to get the
results. The subject is then required to give the relevance
judgements on the results returned for the best query he/she
chooses for the simple combination method. The relevance
judgements of the results of a query in the evaluation is later
turned to a standard precision/recall curve. All such curves
of all the subjects are then averaged to obtain the final pre-
cision/recall curves. Fig. 4 and Fig. 5 shows the final
result. Table 2 compares the 11pt average precision.

The evaluation result shows that our model outperforms
the simple combination method in both cases. The sim-
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Simple Combination Method Our Model
IN1 73.4% 95.2%
IN2 40.8% 96.9%

Table 2: 11pt average precision

ple combination method performs quite well for information
need 1. However, for information need 2, which requires
deeper integration of IR and formal query and reasoning,
the simple combination method’s performance drops very
sharply while our model’s performance consistently keeps
high. Because of the lack of standard benchmark and large
scale dataset, we are aware that the current evaluation is
very limited. More thorough and larger scale evaluation is
needed to further validate our claim. In the current evalua-
tion, although we used the semantic index technique in the
semantic search service, the query response time is still un-
acceptably long. This is due to the performance bottleneck
of the fuzzy-ALC reasoning engine. As we have discussed in
section 3.3, this model calls for a scalable fuzzy DL reasoning
engine to solve the problem.

6. RELATED WORK
The ideas in the fuzzy DL based IR model [15] and the

formal DL query method for the Semantic Web [11] are em-
ployed in our model. However, different from [15], we model
an IR query as an atomic fuzzy IR concept while [15] uses
SPS (Special Predicate Symbol) to abstract different func-
tions of IR. For example, for the IR query “about future
market”, [15] represents it as ∃ ST.{future,market} where ST

is the Similar Text SPS. We feel that the set after the ST

predicate may not be appropriate for IR models that do not
represent a query as a set of words. We thus use an atomic
fuzzy IR concept to hide the details of the IR query. In
addition, [15] is a pure IR model that searches only mul-
timedia documents while our model extends to search also
non-document individuals. [11] introduces conjunctive DL
query method for querying the semantic web. However, it
is a pure logical approach and uses only semantic informa-
tion. Our model extends it to use and search also textual
information.

Our work closely relates to the problem of question an-
swering on the (Semantic) Web. [23] extends fuzzy DL for a
web question answering system. Queries in it are simple con-
cepts with property restrictions. The method uses heuristics
to find texts within a web document that matches a query. It
thus relies more on natural language processing techniques
for query answering. Our model uses explicit semantics in
a portal KB for query answering and the query can be any
DL concept expression. As discussed in [14], there are actu-
ally a continuous spectrum of various methods for question
answering on the Semantic Web. Our model can be seen as
one that integrates IR and formal query and reasoning to
utilize both textual and semantic information.

In the semantic search and retrieval area, [10, 21, 22, 18,
25, 1, 19] used semantic information to improve search on
the (Semantic) Web. SHOE [10] collects semantic annota-
tions on Web pages and stores them in a KB. Users are
provided with a GUI to formulate an ontology-based query
on the KB to find Web pages. When the query returns very
few or no results, it provides a tool to automatically convert

the formal query into a suitable IR query string for a Web
search engine to find relevant pages. IR thus is used only as
a complementary method for search. There is no tight inte-
gration of the two methods. Similar to SHOE, OWLIR [21]
automatically generates and collects semantic annotations
in web pages. It also performs reasoning to deduce more se-
mantic information for a web page. The search request can
contain both a formal query for semantic information and a
keyword search for textual information. Web pages that sat-
isfy both of them are returned as results. From the paper, it
is hard to tell whether it provides other types of integration
beyond the conjunction of IR query and formal query. The
SCORE [22] system has a scalable semantic search engine
that utilizes facts and metadata obtained from the Web via
various text mining techniques. It lacks the formal reasoning
capability as provided in our model, but it supports limited
inferencing based on the traversal of relations in ontologies.

In TAP semantic search [18], search requests are primar-
ily answered by a traditional web search engine. When the
search request also matches some individual in the backend
KB, structured semantic information about the individual
from the KB is also presented to the end user. The two
kinds of results are then displayed in one result page. This
method uses only keywords as search request and does not
provide formal query capability. It therefore also lacks a
tight integration of the two methods. [1] presents the notion
of semantic associations and describes methods for querying
them on the semantic web. The notion of semantic associa-
tions captures the various ways in which two individuals in
a knowledge base can be semantically related. However, it
does not specify how to measure the relatedness of an indi-
vidual w.r.t to a keyword search. Later on, [19] solves the
problem by using the IR spreading activation method on a
semantic network to find semantically relevant results for a
given keyword search. The method is good at the discovery
of indirect semantic relationships, but it lacks the formal
query and reasoning capability. The spreading activation
process is also hard to control for precision-oriented search.
[25] discussed a ranking method for the Semantic Web that
calculates the result relevance on the proof tree of a formal
query. It is designed to be used with formal query method
and does not incorporate IR relevance measurements.

Our work also relates to the integration of IR with the
querying of (semi-)structured data. [7] proposed a proba-
bilistic method for integrating fact and text retrieval. Facts
and text terms are treated in the same way as attributes
of an object. A query containing constrains on both facts
and text contents can then be evaluated by calculating and
combining the probabilities of the match of a (fact or text)
attribute value with the query constraint on it. In a seman-
tic portal, an object not only has attributes but also has
relations to other objects and has types in a defined ontol-
ogy. This information is hard to be utilized by this method.
[8] combines probability theory with Datalog to model in-
formation retrieval. On the contrary, our model combines
fuzzy theory with description logic and thus is based on a
different formalism. Recently, there is also a large body of
work on retrieving XML documents [30]. However, the use
of IR in XML retrieval focuses more on combining IR with
queries on XML tree structure. Because the lack of clear se-
mantics of XML data, very few work exploits the semantic
integration with IR. XSearch [4] relies on heuristics to find
semantically relevant XML documents.
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7. CONCLUSION AND FUTURE WORK
In this paper, we have presented an enhanced model that

tightly integrates IR and formal query and reasoning for
searching in semantic portals. The model extends the search
capabilities of existing methods and can answer more com-
plex search requests. Based on the model, a semantic search
service is implemented and evaluated. The evaluation shows
large improvements over exisiting methods.

As a future work, we plan to carry out a more large scale
and thorough evaluation involving more queries. We are also
going to explore other formalisms and methods for integrat-
ing IR and formal query and reasoning.
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