
Static Approximation of Dynamically Generated Web Pages

Yasuhiko Minamide
Department of Computer Science

University of Tsukuba
Tsukuba 305-8573, Japan

minamide@cs.tsukuba.ac.jp

ABSTRACT
Server-side programming is one of the key technologies that
support today’s WWW environment. It makes it possible
to generate Web pages dynamically according to a user’s
request and to customize pages for each user. However,
the flexibility obtained by server-side programming makes
it much harder to guarantee validity and security of dynam-
ically generated pages.

To check statically the properties of Web pages generated
dynamically by a server-side program, we develop a static
program analysis that approximates the string output of a
program with a context-free grammar. The approximation
obtained by the analyzer can be used to check various prop-
erties of a server-side program and the pages it generates.

To demonstrate the effectiveness of the analysis, we have
implemented a string analyzer for the server-side scripting
language PHP. The analyzer is successfully applied to pub-
licly available PHP programs to detect cross-site scripting
vulnerabilities and to validate pages they generate dynami-
cally.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Formal methods, Valida-
tion; F.3.2 [Semantics of Programming Languages]:
Program analysis

General Terms
Languages, Verification, Security

Keywords
Server-side scripting, static analysis, context-free grammars,
cross-site scripting, HTML validation

1. INTRODUCTION
Server-side programming is one of the key technologies

that support today’s WWW environment. It makes it possi-
ble to generate Web pages dynamically according to a user’s
request and to customize pages for each user. However,
the flexibility obtained by server-side programming makes
it much harder to guarantee validity and security of dynam-
ically generated pages. For example, it is well known that
inappropriate treatment of input data causes vulnerabilities

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

called cross-site scripting, which may cause leakage of crit-
ical information such as HTTP cookies. It is critical for a
server-side program to prevent this kind of vulnerability and
to guarantee security.

We have applied static program analysis to static check-
ing of properties of Web pages generated dynamically by a
server-side program. Our analysis approximates the string
output of a program with a context-free grammar. The
approximation obtained by the analysis is conservative in
the sense that it contains any possible output string that
could be generated by the program. By applying the analy-
sis to a server-side program, its dynamically generated Web
pages can also be approximated with a context-free gram-
mar. Then, the approximation obtained by the analysis has
many applications in checking the validity and security of a
server-side program.

We have applied the analysis to detect cross-site scripting
vulnerabilities in a server-side program. The vulnerabilities
can be detected by checking the approximation against the
specifications of safe or unsafe strings. For example, Web
pages that do not include code executed at the client side
are considered to be safe strings.

The second application of our analysis is HTML valida-
tion. We present two approaches to validating pages dy-
namically generated by a server-side program. The first
approach is to generate sample Web pages from the gram-
mar and validate them with a standard HTML validation
tool. The second approach is to check the approximation
against the HTML specification. This requires to solve an
undecidable problem whether a context-free language is a
sublanguage of another context-free language. However, by
taking the characteristics of the pages generated by a server-
side script into consideration, we show that the Web pages
generated by the majority of server-side programs can be
validated.

Our analysis is based on the Java string analyzer of Chris-
tensen, Møller and Schwartzbach [7]. Their analyzer approx-
imates the value of a string expression in a Java program
with a regular language instead of a context-free language.
Both their and our analyzers first extract a grammar with
string operations from a program. After this phase, our
string analyzer directly eliminates string operations in the
grammar and transforms it into a context-free grammar. In
this phase, a string operation is modeled with an automaton
with output called a transducer. The theory of transducers
has crucial roles both in this phase and in applications of
our analysis.

To demonstrate the effectiveness of our string analysis on

432

server-side programs, we have implemented a string analyzer
for PHP. The analyzer takes two inputs: a PHP program
and an input specification that describes the set of possi-
ble input to the program. It then generates a context-free
grammar approximating the Web pages generated from the
input. The analyzer is successfully applied to publicly avail-
able PHP programs to detect cross-site scripting vulnerabil-
ities and to validate pages they generate dynamically.

Huang et al. also developed a static program analyzer for
PHP [12]. Their analyzer was based on trust analysis (infor-
mation flow analysis) and can be used to detect vulnerabili-
ties such as cross-site scripting and SQL injection. Although
both their analyzer and ours can be applied to detect vul-
nerabilities in PHP programs, they differ in principle and
we believe that neither analyzer has a theoretically better
ability to detect cross-site scripting vulnerabilities than the
other.

2. PHP STRING ANALYZER
PHP is one of the most popular server-side scripting lan-

guages used to generate Web pages dynamically [1]. We have
developed a string analyzer for PHP that approximates the
string output of a program as a context-free grammar. The
analyzer takes two inputs: a PHP program and an input
specification. The input specification is given as a regular
expression and describes the set of possible inputs to the
PHP program. In this section, we illustrate our string ana-
lyzer by examples. The internal structure of the analysis is
discussed in Section 5.

To illustrate the string analysis, let us consider the follow-
ing program.

<?php

for ($i = 0; $i < $n; $i++)

$x = "0".$x."1";

echo $x;

?>

In PHP, the infix operator dot represents string concatena-
tion. This program concatenates the same number of "0"s
to the left and "1"s to the right of $x: the number depends
on the value of $n.

The input specification is given by specifying the initial
values of global variables in our analyzer. The initial values
of $x and $n are described in the following specification.

$x : /abc|xyz/

$n : int

The specification /abc|xyz/ is a regular expression repre-
senting the set of strings {abc, xyz}. Only the type is spec-
ified for the variable $n.

The idea of string analysis is to consider assignments as
production rules of a context-free grammar. By considering
assignments as production rules and translating the input
specification into production rules, we can obtain the fol-
lowing grammar approximating the output of the program.

X → abc
X → xyz
X → 0X1

This grammar represents the set of strings, {0nabc1n | n ≥
0} ∪ {0nxyz1n | n ≥ 0}, as we expect. Based on this idea,
we have developed a string analyzer for PHP.

This analysis works even if a program contains string op-
erations other than concatenation. Let us consider the fol-
lowing revised program:

<?php

for ($i = 0; $i < $n; $i++)

$x = "0".$x."1";

echo str_replace("00","0",$x);

?>

where str_replace("00","0",$x) replaces the string 00 in
$x with 0. The set of strings the variable $x may contain af-
ter the for loop is represented by the context-free grammar
above. Therefore, we can obtain the context-free grammar
for the output of the revised program if we know how a
grammar is transformed by str_replace("00","0",$x).

A finite automaton with output called a transducer plays
a crucial rule here. A transducer has the key property that
the image of a context-free language under a transducer is
context-free [4]. Furthermore, many string operations can
be realized by transducers.

Let us consider str_replace("00","0",$x) in the exam-
ple: this operation can be realized by the following trans-
ducer:

��
�������	1

A/0A,0/0

��
�������	
������0

0/ε

��

A/A

��
0/0 ���������	
������2

where A is any character except 0. There are three states
0, 1 and 2 in this transducer: the state 0 is the start state,
and 0 and 2 are the final states. The transitions labeled
with 0/ε and A/0A mean that the transducer produces ε
and 0A for the inputs 0 and A, respectively. For example,
this transducer outputs 0abc11 for the input 00abc11.

There is an algorithm to compute the image of a context-
free language under a transducer. Then, we can compute the
following context-free grammar with the start symbol S by
computing the image of the previous context-free grammar.

S → abc | xyz | X1
X → 0abc | 0xyz | 0S1

This is the approximation obtained by our analyzer. This
grammar represents the following set of strings.

{0nabc12n | n ≥ 0} ∪ {0nxyz12n | n ≥ 0}
∪ {0n+1abc12n+1 | n ≥ 0} ∪ {0n+1xyz12n+1 | n ≥ 0}

As we can see in this example, the output of a program can
often be precisely approximated even if it contains string
operations.

3. DETECTING CROSS-SITE SCRIPTING
VULNERABILITIES

We consider detection of cross-site scripting vulnerabili-
ties in PHP programs as the first application of our analyzer.
A cross-site scripting vulnerability results from inappropri-
ate treatment of input data and may cause leakage of critical
information such as HTTP cookies. To prevent the vulner-
ability, a string coming from a user input must be sanitized
before embedding it in a Web page. Sanitization is achieved

433

by escaping the special characters such as < and & in HTML.
Let us consider the following PHP program.

<html><body>

<?php

$x = $_POST[’name’];

//$x = htmlspecialchars($x);

for ($i = 0; $i < 2; $i++)

echo $x;

?>

</body></html>

This program receives a potentially unsafe input string from
a Web browser in the associative array $_POST. The value
corresponding to the key name is assigned to the variable $x

and output in the for loop. Thus it may generate a Web
page with unsafe strings from the input and is therefore
vulnerable. This vulnerability is called a cross-site scripting
vulnerability. If the sanitization code that is commented out
in the code is enabled, the code is safe: htmlspecialchars

converts special characters such as < and & into the corre-
sponding HTML entities: < and &. The resulting
string is safe to embed in a Web page.

We can detect cross-site scripting vulnerabilities by check-
ing the approximation obtained by the string analyzer against
the specification of the set of safe or unsafe strings. The ap-
proximation must be constructed for the input specification
corresponding to the fact that any string might be sent by
a Web browser. The following is the specification for the
variable $_POST.

$_POST : [/.*/]

This represents an array which contains any string. A spec-
ification of an array is given in the form [reg].

Let us consider detecting a cross-site scripting vulnerabil-
ity by checking whether a Web page generated with a PHP
program may contain the <script> tag. A Web page con-
taining this tag can be considered as an unsafe output for
a program that is not expected to generate such a page.
To conduct this security check, we specify the set of unsafe
strings with the following regular expression.

.*<script>.*

This regular expression denotes the set of strings that con-
tain the <script> tag. Then, we can check whether the
context-free language obtained by the analyzer is disjoint
with this set. If they are disjoint, it is guaranteed that the
output cannot contain a <script> tag. Checking the previ-
ous program against the specification above by our analyzer
produces the following counter example.

<html><body>

<script>

</body></html>

That means that the program may produce the above out-
put and thus may be unsafe. On the other hand, if the
sanitization code is enabled, the analyzer says that the ap-
proximation of the output and the specification are disjoint,
and therefore the code is safe. This check is done by an
algorithm checking whether a context-free language is dis-
joint with a regular language. The algorithm is based on
the context-free graph reachability algorithm proposed for
interprocedural dataflow analysis [21, 15].

Notice that the counter-example above cannot actually be
an output of the program because there is a for loop that
repeats twice in the program. This kind of impreciseness is
inevitable in program analysis.

There is another mode of checking in our analyzer to spec-
ify the set of safe strings instead of unsafe strings. The
following regular expression specifies the set of strings that
contain only the html and body tags:

(<html>|</html>|<body>|</body>|[^<])*

where [^<] represents any character except <. This can be
considered the specification of the set of safe strings for the
program above. Without the sanitization code, our analyzer
shows a counter example as before. With the sanitization
code, it says that the PHP program is safe. This check is
conducted by computing the complement of the language of
the regular expression. Because the complement of a regu-
lar language is regular, we can use the algorithm checking
disjointness between a regular language and a context-free
language as before.

Dynamically generated Web pages often contain code to
be executed at the client side identified by the script tag.
Then, it is not clear how to specify safe or unsafe strings.
Still, we can check whether the output of a PHP program
may contain an invalid tag such as <xyz>. If an output of the
program contains such a tag, the program is likely to have
cross-site scripting vulnerabilities or at least some bugs.

Furthermore, our string analyzer can be used to check
what tags may appear in output, by applying a transducer
that extracts tags from a string. Our string analyzer has
a mode to specify a regular expression to extract strings
matching it from the approximation of the output. The
following regular expression specifies the set of strings with
< and > as the first and last characters, respectively, with no
< and > between them.

<[^<>]*>

With sanitization, the analyzer shows the following results
for the program above.

</body>

</html>

<body>

<html>

On the other hand, it says that the set of tags is not finite
without sanitization.

4. HTML VALIDATION
As the second application of our analyzer, we describe

HTML validation of the Web pages dynamically generated
by a server-side program. There are several HTML valida-
tion tools that can validate a static Web page against the
HTML specification. However, to check that a server-side
program always generates valid Web pages, it must be exten-
sively tested to cover all the possible execution path of the
program. This requires knowledge of the internal structure
of the program and is very time consuming.

On the other hand, we can automatically test or check
the validity of the pages based on the context-free gram-
mar obtained by our analyzer. There are two approaches to
HTML validation in our analyzer: the automated validation
test and matching validation.

434

4.1 Automated Validation Test
The first approach is to generate sample Web pages from

the context-free grammar and check the pages with a stan-
dard HTML validator such as the W3C Markup Validation
Service [25] and WDG HTML Validator [20]. This approach
will be quite effective if we can obtain a set of sample pages
which cover all the possible execution path.

Let us consider validation of the Web pages generated by
the following PHP program.

<head><title>test</title></head>

<body>

<?php

if ($_POST["abc"] == "abc")

echo "abc";

else

echo htmlspecialchars($_POST["xyz"]);

?>

</body>

To simplify discussion, we check this program for the in-
put specification $_POST : [/[a-z<]*/], representing ar-
rays with strings consisting of lower case characters and the
character <. Then, our string analyzer extracts the following
sample pages if we ask the analyzer to extract three sample
pages.

<head><title>test</title></head>

<body>

abc

</body>

<head><title>test</title></head>

<body>

a

</body>

<head><title>test</title></head>

<body>

<

</body>

The validity of these pages can be checked with the standard
validation tools.

Furthermore, the test cases can be reduced with the fol-
lowing transducer, which removes the parts of a Web page
not related tags:

��
�������	
������0

</<

��
X/ε ��

�������	
������1

>/>

		
Y/Y

where X is any character except < and Y is any character
except >. If we apply this transducer to the previous exam-
ple, the approximation obtained by the analyzer is reduced
to a singleton set and thus can be completely checked by a
standard validation tool.

4.2 Matching Validation
Because the validity checking described above cannot cover

all cases in general, it is not complete. Therefore, it is de-
sirable to develop a validation algorithm to check whether

a PHP program always generates a valid HTML page. The
specification of HTML can be described with a context-free
grammar. Hence, we had a validation algorithm if we had an
algorithm to determine L1 ⊂ L2 for two context-free gram-
mars L1 and L2. Unfortunately, this problem is known to be
undecidable in general. However, taking the characteristics
of the pages generated by a server-side program into con-
sideration, we can still validate the majority of server-side
programs.

We investigated the depth of nesting of tags in the pages
generated by server-side programs. We believe that in ma-
jority of cases, the nesting depth of tags in the generated
pages is bounded. We think that this holds because the
majority of PHP programs are used to generate pages with
table-like structures.

If the nesting depth is bounded, the validity check can
be done in the following manner. First, the grammar Li,
specifying valid pages with the maximum tag-nesting depth
i, is constructed from the context-free grammar LHTML
of the HTML specification. With this restriction on the
depth, the language of Li is regular. Then, the context-free
language obtained by the analyzer is checked against Li: if
the language is a subset of Li, the program always generates
a valid HTML page with a depth that is equal to or less
than i. This is repeated for i = 1, 2, 3, However, it will
be computationally expensive to construct Li (i = 1, 2, . . .)
directly for LHTML and check the approximation against
them.

We have implemented in our analyzer a simplified ver-
sion of the validation above, which checks that start and
end tags always match. We call this validation a matching
validation. Let us consider the following context-free gram-
mar with the start symbol U specifying a set of strings that
contain matching head, title, and body tags1.

T → <head> U </head> | <title> U </title> |
<body> U </body>

U → ε | TU

Then Li with the start symbol Ui is constructed as follows:

U0 → ε
T1 → <head> U0 </head> | <title> U0 </title> |

<body> U0 </body>

U1 → ε | T1U1

T2 → <head> U1 </head> | <title> U1 </title> |
<body> U1 </body>

U2 → ε | T2U2

Based on the series of grammars like Li, we have imple-
mented a matching validation that checks that start and
end tags always match in our analyzer.

5. INSIDE THE STRING ANALYZER
We describe the algorithm to approximate the string out-

put of a program with a context-free grammar. The analysis
consists of two phases: the first phase extracts a grammar
extended with string operations and the second phase trans-
forms the grammar into a context-free grammar. Transduc-
ers have crucial roles in the second phase.

1For simplicity, we ignore the text except for the tags.

435

$O1 = ""
$i1 = 0
$S1 = ""

$O2 = $O1."abc"

��

��
$i3 = φ($i1,$i2)
$S3 = φ($S1,$S2)

if $i3 < 10

��

�� $T1 = str replace("x","xx",$S3)
$O3 = $O2.$T1

$S2 = $S3."xy"
$i2 = $i3+1

Figure 1: A PHP program in static single assignment form

5.1 Extracting a Grammar
The first phase of the analysis extracts a grammar from

a program by considering assignments as production rules,
as we described in Section 2. However, we must translate
output functions into assignments and divide live ranges of
variables to obtain precise approximations.

Let us consider the following program to illustrate how to
extract a grammar.

$i = 0; $S = "";

echo "abc";

while ($i < 10) {

$S = $S."xy";

$i = $i + 1;

}

$T = str_replace("x","xx",$S);

echo $T;

The first step is to translate the output functions in the
program into assignments to treat them uniformly with other
assignments. For the translation, we introduce a global vari-
able $O representing the current output. The previous ex-
ample is translated as follows.

$O = "";

$i = 0; $S = "";

$O = $O."abc";

while ($i < 10) {

$S = $S."xy";

$i = $i + 1;

}

$T = str_replace("x","xx",$S);

$O = $O.$T;

The value of $O is initialized to the empty string at the
beginning of execution. The function echo is translated into
a combination of an assignment and a concatenation.

Then, we translate the program into static single assign-
ment form [2, 22] to represent constraints between variables
in greater detail. The result of the translation is shown in
Figure 1. In static single assignment form, each assignment
introduces a new variable and φ-functions are introduced
where control flows merge. For example, $i3 = φ($i1,$i2)
means that $i1 is assigned to $i3 if its execution comes from
the block above and $i2 is assigned to $i3 if its execution
comes from the block below.

Finally, we extract a grammar from a program in static
single assignment form. An assignment of the form x =
φ(y, z) is translated into two productions: x → y and x → z
and the other assignments are directly translated into pro-
ductions.

O1 → ε
S1 → ε
O2 → O1abc
S3 → S1

S3 → S2

S2 → S3xy
T1 → str replace(x, xx, S3)
O3 → O2T1

Notice that productions are generated only for assignments
related to string values here. This is done by using informa-
tion obtained by the program analysis called alias analysis in
our implementation. The grammar extracted from a static
single assignment form in this way may not be context-free.
For example, the grammar above has the string operation
str replace in the right-hand side of a production. We call
this kind of grammar a context-free grammar with operation
productions. We describe in the next subsection how to ob-
tain a context-free grammar from a grammar with operation
productions.

5.2 Transforming a Grammar into a Context-
Free Grammar

A grammar with operation productions is extracted from
a program as described in the previous section. The next
phase is to transform it into a context-free grammar. We
can transform it into a context-free grammar representing
the same set of strings if the following conditions hold.

• Each string operation in the grammar transforms a
context-free grammar into another context-free gram-
mar.

• No string operation occurs in a cycle of productions.

The string operations in PHP are classified in Table 1
to discuss the first of above conditions. The functions are
classified by considering them as functions with one argu-
ment by fixing the other arguments. The second and last
rows show the number and examples of the functions in each
class, respectively.

436

Classification # Ops Operations
homomorphism 11 htmlspecialchars, strtolower, addslashes
transducer 20 str replace, trim, ucfirst, stripslashes
pushdown transducer 1 strip tags
others 6 strrev, str shuffle, str repeat, crypt, md5, sha1

Table 1: Classification of the string functions in the String Functions Section of the PHP manual

• A homomorphism is a mapping from characters to
strings. The image of a context-free language under a
homomorphism is also context-free and it is straight-
forward to compute the grammar representing the im-
age. For example, htmlspecialchars is a homomor-
phism as follows:

< �→ <

> �→ >

& �→ &

" �→ "

a �→ a

b �→ b
...

...

• A transducer is a finite automaton with output, as de-
scribed in Section 2. The image of a context-free gram-
mar under a transducer is also context-free. We have
developed an algorithm to compute the image based on
the context-free graph reachability algorithm [21, 15].
The algorithm is expensive in the sense that the image
has O(n3m) productions for a context-free grammar
with m productions and a transducer with n states.

A transducer can be nondeterministic. The follow-
ing is a nondeterministic transducer realizing the func-
tion rtrim, which strips whitespace from the end of a
string:

��
�������	
������1S/ε

�� �������	
������0

N/N

��
S/ε��

S/S

���������	2 S/S

N/N

		

where S and N are space and nonspace characters,
respectively.

• A pushdown transducer is a pushdown automaton with
output. The image of a context-free grammar under a
pushdown transducer may not be context-free. We
found only one function in this class: the function
strip_tags strips HTML tags from a string. It leaves
the character > which does not have the matching < as
follows:

strip_tags("<<abc>>>>") = ">>"

A stack is necessary in modeling this function as an
automaton to count the number of unmatched < sym-
bols.

• There are operations not in the classes listed above:
the class of context-free languages is closed for strrev,
but not closed for the others 2.

The table shows that the class of context-free languages
is closed for a large proportion of the functions in PHP and
thus they can be eliminated from a grammar. The other
kinds of functions are eliminated from a grammar by ap-
proximating it.

• Any pushdown transducer is conservatively approxi-
mated by a transducer that forgets the stack of the
pushdown transducer.

• The output of some string operations is reasonably
approximated by a regular expression. For example,
the output of the function md5 is approximated with
the regular expression, [0-9a-f]{32}, representing 32-
character hexadecimal numbers.

The second condition “No string operation occurs in a cy-
cle of productions,” is also crucial in obtaining a context-free
grammar precisely approximating a grammar with operation
productions. If we have a string operation in a cycle of pro-
ductions, the language it generates may not be context-free.
Let us consider the following grammar with the start symbol
S.

S → 01
S → str replace(0, x0y, T)
T → str replace(1, 1z, S)

The language it generates is {xn0yn1zn | n ≥ 0}, which is
not context-free. Therefore, we must approximate the lan-
guage to obtain a context-free grammar for it. We adopted
the same approximation as the Java string analyzer [7]: com-
puting the set of characters Σ the language may contain
and approximating the language with Σ∗. For the example
above, we obtain the context-free language corresponding to
{x, y, z, 0, 1}∗. This results in a very rough approximation,
but this situation rarely occurs in a grammar extracted from
a real PHP program.

5.3 Regular Expression Functions
Scripting languages such as Perl and PHP offer advan-

tages in string manipulation by providing powerful string
manipulation functions based on regular expressions. They
are so powerful that the class of context-free languages is not
closed for them. However, they can often be approximated
with a combination of transducers with sufficient accuracy.

Let us consider how to model the following string opera-
tion.

2The functions md5 and sha1 can theoretically be repre-
sented with transducers. However, they require a huge num-
ber of states.

437

preg_replace("/a([0-9]*)b/",

"x\\1y",

$x)

This function replaces substrings matching a([0-9]*)b in $x

with x\\1y where \\1 is replaced with the string matching
the first grouped subexpression ([0-9]*). The following
example clarifies the operation.

preg_replace("/a([0-9]*)b/",

"x\\1y",

"a01ba234b") = "x01yx234y"

A regular expression replacement function like this is ap-
proximated with a combination of transducers. To illus-
trate how a grammar is transformed by the transducers for
the function above, let us consider the following grammar L
with the start symbol Y .

X → ε | X0
Y → aXb | b11a

The grammar is transformed by transducers as follows:

1. Construct the grammar approximating the set of strings
matching the pattern [0-9]* and occurring between a

and b. It is done by the following transducer:

��
�������	0

a/ε ��X/ε ��
�������	1

D/D

��
b/ε ���������	
������2 X/ε

where X is any character and D is any digit. The
transducer is applied to L and then we obtain the fol-
lowing grammar with the start symbol X1.

X0 → X00 | 0
X1 → ε | X0

This grammar corresponds to the regular expression
0∗.

2. Construct the grammar approximating the set of strings
that the pattern is replaced with. It is obtained from
the grammar above and the replacement string x\\1y.

X0 → X00 | 0
X1 → ε | X0

Z → xX1y

3. Construct the grammar representing the set of strings
that are obtained by replacing the substrings matching
with a([0-9]*)b in L with Z. Then we obtain the
following grammar.

Y → Z | b11a

This transformation is done with two transducers used
by Mohri and Sproat [17] to compile context-sensitive
rewrite rules on strings.

Finally, we obtain the following grammar with the start sym-
bol Y by combining the grammars in steps 2 and 3.

X0 → X00 | 0
X1 → ε | X0

Y → xX1y | b11a

This precisely represents the result of preg replace. How-
ever, the context-free grammar obtained in this method is
not precise in general, but an approximation.

Our analyzer dynamically constructs the transducers de-
scribed above for a grammar with regular expression func-
tions and translates it into a context-free grammar. To con-
struct the transducers described above, the pattern strings
such as /a([0-9]*)b/ must be determined at first. How-
ever, the pattern strings might be dynamically constructed
at runtime and not known statically. Thus, we apply our
string analysis to the pattern string and approximate it with
a finite set of strings 3. Then, the method above is applied
for each pattern string.

6. IMPLEMENTATION AND
EXPERIMENTS

We have implemented a PHP string analyzer, which uses
a context-free grammar to approximates Web pages gener-
ated by a PHP program. It can be used for the various
kinds of checks we have described in this paper. The ana-
lyzer is implemented with the Objective Caml programming
language [14] and contains about 10,000 lines of code. It
consists of a library to manipulate formal languages includ-
ing automata, transducers and context-free grammars, and
the analyzer itself. The analyzer supports basic features of
PHP, though not objects and references.

The analyzer first translates a PHP program into a func-
tional intermediate language, which is basically equivalent
to the static single assignment form. A grammar with string
operations is extracted from it. In this phase, we use alias
analysis to treat arrays. Finally, the context-free grammar
approximating it is obtained by the methods described in
Section 5.

The specification of inputs is given in the following format.

// specification for variables

$x : [int] // array of integers

$y : /abc|xyz/ // string : regular expression

// abc|xyz

$_POST : [/.*/] // array containing any string

// specification of the return value of functions

isset : bool

mysql_num_fields : int

mysql_field_name : /.*/

The specification consists of two parts: specification of vari-
ables and functions. For a variable, we can specify its type
or a regular expression representing its value. For a func-
tion, we can only specify the return value of the function.
No relationship between arguments and the return value can
be specified in our current implementation.

We applied our string analyzer to several publicly avail-
able PHP programs. Table 6 summarizes our experiments:
it shows the number of nonterminals and productions of
the context-free grammar obtained by the analyzer, and the
time spent to analyze each program. Experiments were done
on a Linux PC with an AMD Athlon FX-53 processor (2.4
GHz) and 4 GByte memory.

3Currently, our analyzer fails if a pattern string argument
cannot be approximated with a finite set of strings. It will
be possible to adopt a rough approximation for that case.

438

Program # lines # nonterminals # productions Time (sec)
webchess 2224 300 450 0.36
schoolmate 8085 7985 9505 39.92
faqforge 843 180 443 0.16
phpwims 726 82 226 0.13
timeclock 462 656 1233 0.15
tagit 890 858365 6961180 4933.17

Table 2: Measurements: approximating outputs with a context-free grammar

In the programs, we found only one case where string
operations occurred in a cycle of productions. The following
is the simplified version of code found in the program tagit.

$a["abc"] = "ABC";

$a["xyz"] = "XYZ";

foreach($a as $key=>$value)

$x = eregi_replace($key, $value, $x);

The variable $x appears on both left and right sides of
the assignment with eregi_replace. The string operation
eregi_replace thus appears in a cycle of productions ex-
tracted from the program. Hence, we can obtain only a very
rough approximation for tagit with this code. The result in
the table was obtained by commenting out this code.

The grammars obtained for the programs except tagit are
not large and the analysis does not take much time. On the
other hand, the analysis of tagit generates a huge context-
free grammar. This comes from the following code:

$post = str_replace(’[b]’, ’’, $post);

$post = str_replace(’[/b]’, ’’, $post);

$post = str_replace(’[i]’, ’<i>’, $post);

$post = str_replace(’[/i]’, ’</i>’, $post);

...

where string replacement functions are repeatedly applied
to the same variable 17 times. Each replacement grows a
grammar by some factor and thus the factor by which the
grammar is enlarged in total is exponential in the number
of replacement functions applied. This exponential behavior
appears in this program.

We also checked cross-site scripting vulnerabilities of the
programs by the method described in Section 3. The pro-
grams other than tagit do not sanitize input at all and we
could not find interesting bugs causing cross-site scripting
vulnerabilities in those programs. In tagit, however, we
found the following sanitization code.

$tagitname = strip_tags($tagitname);

$tagitname = stripslashes($tagitname);

The content of the variable $tagitname is sanitized. How-
ever, this variable is not used in the other files at all and
instead the variable $tagitnames is used there. This causes
a cross-site scripting vulnerability.

We have also checked the validity of the pages generated
by the programs and found that all of the programs may
generate invalid HTML pages.

• For most of the bugs, the required end tag matching
a start tag is omitted or the nesting of tags is invalid.
Although most of them may easily be found with a

standard validation tool, some of them may be over-
looked.

For example, we found the following bug in webchess.
If the echo function is executed, the code generates an
invalid page. The code should generate matching <p>

and </p>.

if ($errMsg != "")

echo("<p><h2>".

$errMsg."</h2><p>\n");

This echo function is executed only when some error
occurs and thus the bug might be overlooked with tests
by a standard validation tool.

• We also found some false positive alarms in HTML
validation. The following is a simplified example of
code that causes a false alarm.

if ($x != 0) echo ’ nonzero’;

if ($x == 0) echo ’ zero’;

echo ’’;

Our analyzer currently ignores the conditions in if-
statements. It is therefore impossible to find that ex-
actly one of the bodies of the if-statements is executed
and thus it generates a string with the matching b tag.
This kind of false positive alarm was found only in the
program schoolmate.

Finally, we applied the matching validation described in
Section 4.2 to the programs. The results are shown in the
following table. The programs were revised so that start

Program Depth Bugs Opt tags Time (sec)
webchess 9 1 6 123.33
faqforge 10 30 0 45.64
phpwims 9 7 0 63.93
timeclock 14 11 0 145.61
schoolmate 17 14 3 7580.69

Table 3: Matching validation

and end tags always matched: the column “Bugs” in the
table shows the number of bugs found in this revision and
the column “Opt tags” shows the number of optional tags
inserted so that start and end tags match. The table also
shows that the maximum depth of pages the programs may
generate and the time spent on checking.

Some PHP programs are not designed to generate a valid
HTML page when the program stops its execution with the
explicit exit commands: exit or die. Our analyzer has an

439

option not to analyze output if a program stops its execution
with an explicit exit command. The programs timeclock and
schoolmate were checked in this mode.

The time spent on checking is large compared to the time
spent obtaining a grammar approximating the output of a
program. This is because a large automaton is constructed
for each depth and the computationally expensive algorithm
of checking disjointness between a regular language and a
context-free language is applied. The complexity of the al-
gorithm is O(m3n3), where m is the number of terminals
and nonterminals in the grammar, and n is the number of
states of the automaton [15]. The program tagit was ex-
cluded from this experiment because it is a bulletin board
program where a user can write a text with some tags on
the board, and then a page that it generates may have an
arbitrary depth and be an invalid HTML text.

7. RELATED WORK

7.1 String Analysis
Christensen, Møller and Schwartzbach developed a string

analyzer for Java, which approximates the value of a string
expression with a regular language [7]. The approximation
can be checked against the specification of expected string
values embedded in the Java program. The key phase in
their analysis is a transformation developed by Mohri and
Nederhof [16] approximating a context-free language with a
regular language. Our string analyzer differs from theirs in
the following ways. Firstly, our analysis is based on context-
free languages instead of regular languages and thus our ap-
proximations can be more precise. The analysis is also sim-
plified by removing the transformation of Mohri and Neder-
hof. Secondly, our analyzer approximates the whole output
of a program representing a Web page and thus can be used
to check properties of a dynamically generated Web page as
a whole.

Syntax checking based on string analysis was extended to
type checking by Gould et al. in the context of SQL query
strings [10]. They developed a system that guarantees that
SQL query strings generated by a Java program at runtime
are well typed. Their system is based on the Java string
analyzer of Christensen, Møller and Schwartzbach. The
context-free reachability algorithm is used for type check-
ing. Their method can be incorporated into our analyzer.

It is possible to formulate string analysis as a type system.
A type system based on regular expressions was studied by
Tabuchi et al. for a minimal functional language with string
concatenation and pattern matching over strings [23]. By
adopting regular expressions as types, they could include
rich operations over types in their type structure, and that
made it possible to capture precisely the behavior of pattern
matching over strings in their type system. However, a full
type inference algorithm was not given in the paper. We
have not considered pattern matching in our analyzer since
PHP does not have it. It will be interesting to extend our
analysis for pattern matching. The extension is not straight-
forward because our analysis is based on context-free gram-
mars.

Recently, Thiemann presented a type system for string
analysis based on context-free grammars and presented a
type inference algorithm based on Earley’s parsing algo-
rithm [24]. The type inference is incomplete as our match-

ing validation. In his type system, a program that may
generate a document with an arbitrary depth can be type-
checked against a context-free grammar. However, the gram-
mar must be carefully crafted and a program must be writ-
ten so that it is checked against it. The type system was
designed for an applied lambda calculus with string con-
catenation, and it was not discussed how to deal with string
operations other than concatenation.

7.2 Domain Specific Languages for HTML and
XML

Extensive studies have been done in the area of designing
domain specific languages for HTML and XML [13, 5, 6, 11,
3]. One of the key issues there is to guarantee validity of
dynamically generated documents.

Ladd and Ramming proposed the MAWL language [13]
where an HTML document is constructed from templates.
A template is an HTML document with named gaps where
a string is inserted. This approach was extended to higher-
order templates and adopted in the <bigwig> and JWIG
projects [5, 6]. To guarantee the validity of the operation
filling a gap with a string, JWIG applies a simple form of
string analysis.

Hosoya and Pierce designed a statically typed XML pro-
cessing language called XDuce based on the theory of finite
tree automata [11]. Finite tree automata have good math-
ematical properties including that it is decidable whether
the language accepted by one tree automata is included in
that accepted by another. The type system of XDuce has
similarities with string analysis in the sense that it is based
on the theory of formal languages. However, XDuce does
not directly work on strings, but on trees representing XML
documents.

7.3 Trust Checking
Vulnerabilities in a server-side program such as cross-site

scripting and SQL injection are caused by applying critical
operations to untrusted (or tainted) data submitted by a
user. It is possible to avoid such potential unsafe operations
by classifying data into trusted and untrusted data. Perl’s
taint mode keeps track of this classification at runtime and
ensures that no untrusted data is used in potentially unsafe
operations [26]. Program analysis to statically classify data
was presented by Ørbæk [18] and Ørbæk and Palsberg [19].
This analysis was extended and adopted by the static analy-
sis for PHP by Huang et al. [12]. These analyses are closely
related to information flow analysis [8, 9] and can be con-
sidered as its duals.

A key concept in trust checking is conversion from un-
trusted to trusted data. Intuitively, sanitization functions
correspond to this conversion in server-side programming.
However, sanitization is done in a great variety of ways in
practice and it is difficult to determine what are sanitiza-
tion beforehand. On the other hand, security checks based
on string analysis are more declarative: the key concept in
this case is what are safe (or unsafe) strings.

8. CONCLUSION AND FUTURE WORK
We have designed and implemented a program analyzer

that approximates the output of a program with a context-
free grammar. The analyzer was successfully applied to pub-
licly available PHP programs to detect cross-site scripting
vulnerabilities and to validate pages dynamically generated

440

by them. We are planning to extend our analyzer to support
the full features of PHP and to evaluate the analyzer further
for a wider range of PHP programs.

The theory of context-free languages and transducers has
a significant role in our analysis. The grammar obtained
by the analysis is checked against a specification by check-
ing the disjointness of regular and context-free languages.
Transducers are used to model and approximate string op-
erations in PHP, and to transform the grammars obtained
by the analysis for applications.

The precision of the approximation will be improved with
techniques available in compilers and other program anal-
ysis. We are planning to combine symbolic evaluation and
more precise alias analysis to improve approximations.

9. ACKNOWLEDGMENTS
We would like to thank Nobuo Otoi for developing the

formal language library used in our analyzer. This work
has been supported by CREST of JST and the Kayamori
Foundation of Informational Science Advancement.

10. REFERENCES
[1] M. Achour, F. Betz, et al. PHP Manual, 2005.

http://www.php.net/docs.php.

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of variables in programs. In
Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 1–11, 1988.

[3] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an
XML-centric general-purpose language. In Proceedings
of the Eighth ACM SIGPLAN International
Conference on Functional Programming, pages 51–63,
2003.

[4] J. Berstel. Transductions and Context-Free Languages.
Teubner Studienbucher, 1979.

[5] C. Brabrand, A. Møller, and M. I. Schwartzbach. The
<bigwig> project. ACM Transactions on Internet
Technology, 2(2):79–114, 2002.

[6] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Extending Java for high-level web service
construction. ACM Transactions on Programming
Languages and Systems, 25(6):814–875, 2003.

[7] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise analysis of string expressions. In Proceedings
of the Static Analysis Symposium (SAS), volume 2694
of LNCS, pages 1–18, 2003.

[8] D. E. Denning. A lattice model of secure information
flow. Communications of ACM, 19(5):236–243, 1976.

[9] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow.
Communications of ACM, 20(7):504–513, 1977.

[10] C. Gould, Z. Su, and P. Devanbu. Static checking of
dynamically generated queries in database
applications. In Proceedings of the 26th International
Conference on Software Engineering, pages 645–654,
2004.

[11] H. Hosoya and B. Pierce. XDuce: A statically typed
XML processing language. ACM Transactions on
Internet Technology, 3(2):117–148, 2003.

[12] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In Proceedings
of the 13th International World Wide Web
Conference, pages 40–52, 2004.

[13] D. A. Ladd and J. C. Ramming. Programming the
Web: An application-oriented language for
hypermedia service programming. In Proceedings of
the 4th International World Wide Web Conference,
1995.

[14] X. Leroy. The Objective Caml system release 3.08:
Documentation and user’s manual, 2004.
http://caml.inria.fr/index-eng.html.

[15] D. Melski and T. Reps. Interconvertibility of a class of
set constraints and context-free language reachability.
Theoretical Computer Science, 248(1–2):29–98, 2000.

[16] M. Mohri and M.-J. Nederhof. Regular approximation
of context-free grammars through transformation. In
Robustness in Language and Speech Technology, pages
153–163, 2001.

[17] M. Mohri and R. Sproat. An efficient compiler for
weighted rewrite rules. In 34th Meeting of the
Association for Computational Linguistics (ACL ’96),
Proceedings of the Conference, 1996.

[18] P. Ørbæk. Can you trust your data? In Proceedings of
the 6th International Conference on Theory and
Practice of Software Development: TAPSOFT, volume
915 of LNCS, pages 575–590, 1995.

[19] P. Ørbæk and J. Palsberg. Trust in the λ-calculus.
Journal of Functional Programming, 7(6):557–591,
1997.

[20] L. Quinn. WDG HTML validator.
http://www.htmlhelp.com/tools/validator/.

[21] T. Reps. Program analysis via graph reachability.
Information and Software Technology,
40(11–12):701–726, 2000.

[22] B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Global value numbers and redundant computations.
In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 12–27, 1988.

[23] N. Tabuchi, E. Sumii, and A. Yonezawa. Regular
expression types for strings in a text processing
language. In Proceedings of International Workshop
on Types in Programming, ENTCS 75, 2002.

[24] P. Thiemann. Grammar-based analysis of string
expressions. In Proceedings of the ACM
SIGPLAN-SIGACT Workshop on Types in Language
Design and Implementation, pages 59–70, 2004.

[25] The W3C markup validation service.
http://validator.w3.org/.

[26] L. Wall, T. Christiansen, and J. Orwant. Programming
Perl (3rd Edition). O’Reilly, 2000.

441

