
CubeSVD: A Novel Approach to Personalized Web Search ∗

Jian-Tao Sun
Dept. of Computer Science

TsingHua University
Beijing 100084, China

sjt@mails.tsinghua.edu.cn

Hua-Jun Zeng
Microsoft Research Asia

5F, Sigma Center, 49 Zhichun
Road, Beijing 100080, China

hjzeng@microsoft.com

Huan Liu
Dept. of Computer Science

Arizona State University
Tempe, AZ85287-8809, USA

hliu@asu.edu

Yuchang Lu
Dept. of Computer Science

TsingHua University
Beijing 100084, China

lyc@tsinghua.edu.cn

Zheng Chen
Microsoft Research Asia

5F, Sigma Center, 49 Zhichun
Road, Beijing 100080, China

zhengc@microsoft.com

ABSTRACT
As the competition of Web search market increases, there
is a high demand for personalized Web search to conduct
retrieval incorporating Web users’ information needs. This
paper focuses on utilizing clickthrough data to improve Web
search. Since millions of searches are conducted everyday,
a search engine accumulates a large volume of clickthrough
data, which records who submits queries and which pages
he/she clicks on. The clickthrough data is highly sparse and
contains different types of objects (user, query and Web
page), and the relationships among these objects are also
very complicated. By performing analysis on these data, we
attempt to discover Web users’ interests and the patterns
that users locate information. In this paper, a novel ap-
proach CubeSVD is proposed to improve Web search. The
clickthrough data is represented by a 3-order tensor, on
which we perform 3-mode analysis using the higher-order
singular value decomposition technique to automatically cap-
ture the latent factors that govern the relations among these
multi-type objects: users, queries and Web pages. A tensor
reconstructed based on the CubeSVD analysis reflects both
the observed interactions among these objects and the im-
plicit associations among them. Therefore, Web search ac-
tivities can be carried out based on CubeSVD analysis. Ex-
perimental evaluations using a real-world data set collected
from an MSN search engine show that CubeSVD achieves
encouraging search results in comparison with some stan-
dard methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval-Search Process; H.3.5 [Information
Storage and Retrieval]: Online Information Services-Web
based services

∗This work was conducted and completed while the first au-
thor was doing internship at Microsoft Research Asia, Bei-
jing, China.
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

General Terms
Algorithms, Experimentation, Performance

Keywords
Clickthrough Data, CubeSVD, Higher-Order Tensor, Singu-
lar Value Decomposition, Personalized Web Search, Search-
ing and Ranking

1. INTRODUCTION
The increase of WWW resources has fueled the demand

for effective and efficient information retrieval. Millions of
searches are conducted every day on search engines such
as Yahoo!, Google and MSN, etc. Despite the popularity,
search engines have their deficiencies: given a query, they
usually return a huge list of results and the pages ranked at
top may not meet users’ needs. One reason for this problem
is the keyword-based query interface, which is difficult for
users to describe exactly what they need. Besides, typical
search engines often do not exploit user information. Even
two users submit the same query, their information need
may be different [4, 16]. For example, if a query “jaguar” is
issued to Google, 11,900,000 results are returned. Regard-
less of who submits the query, both the pages returned and
the rank orders are identical. Since “jaguar” may refer to
“jaguar car” or “jaguar cats”, two users with different in-
terests may want the search results ranked differently: a car
fan may expect car relevant pages ranked highly, however,
these pages may be unnecessary to be displayed for a zoolo-
gist. Thus the search results should be adapted according to
the person who submits the query and which query he/she
submits.

Personalized Web search is to carry out retrieval for each
user incorporating his/her own information need. As the
competition in search market increases, some search en-
gines have offered the personalized search service. For ex-
ample, Google’s Personalized Search allows users to specify
the Web page categories of interest [1]. Some Web search
systems use relevance feedback to refine user needs or ask
users to register their demographic information beforehand
in order to provide better service[2, 8]. Since these systems
require users to engage in additional activities beyond search

382

to specify/modify their preferences manually, approaches
that are able to implicitly capture users’ information needs
should be developed.

This paper focuses on utilizing clickthrough data to im-
prove Web search. Consider the typical search scenario: a
user submits a query to a search engine, the search engine re-
turns a list of ranked Web pages, then the user clicks on the
pages of interest. After a period of usage, the server side will
accumulate a collection of clickthrough data, which records
the search history of Web users. The data objects contained
in the clickthrough data are of different types: user, query
and Web page, furthermore, relationships among these ob-
jects are complicated [25]. For example, users with similar
information needs may visit pages of similar topic even they
submit different queries; users with dissimilar needs may
visit different pages even they submit the same query, as
the “jaguar” example indicates. It can be assumed that the
clickthrough data may reflect Web users’ interests and may
contain patterns that users found their information [13, 14].
By performing analysis on the clickthrough data, we attempt
to discover the latent factors that govern the associations
among these multi-type objects. Consequently, Web pages
can be recommended according to the associations captured.

Here we clarify some characteristics specific to personal-
ized Web search based on clickthrough data analysis. This
task is related to recommender systems which have been
extensively studied [3, 6, 11, 21]. While most recommenda-
tion algorithms like Collaborative Filtering (CF) are applied
to two-way data containing user preferences over items, the
clickthrough data analysis deals with three-way data. As far
as we know, previous literature on recommendation contains
few studies on data of this kind. The three-way clickthrough
data imposes at least two challenges:

1) The relations among user, query and Web page are
complicated. There exist intra-relations among objects of
the same type, as well as inter-relations among objects of dif-
ferent type [25]. For personalized Web search tasks, what we
are concerned about are the 3-order relations among them.
That is, given a user and a query issued by the user, the
purpose is to predict whether and how much the user is in-
terested in a Web page. Therefore, a unified framework is
needed to model the multi-type objects and the multi-type
relations among them.

2) The three-way data are highly sparse. As we know,
most CF algorithms are susceptible to data sparsity [21,
3]. For clickthrough data, the sparseness problem becomes
more serious because each user only submits a small number
of queries, and only a very small set of Web pages are visited
by each user. Latent Semantic Indexing (LSI) [7] has been
proved useful to address the data sparseness problem in two-
way data recommender systems [20, 21], however, it is still
an open problem for the three-way data case.

In order to address the problems mentioned above, we
need an approach dealing with the clickthrough data which
is three-way and highly sparse. In this paper, we develop
a unified framework to model the three types of objects:
user, query and Web page. The clickthrough data is rep-
resented by a 3-order tensor, on which 3-mode analysis is
performed using the Higher-Order Singular Value Decom-
position (HOSVD) technique [15]. Because our tensor rep-
resentation is 3-dimensional and our approach is a multilin-
ear extension of the matrix Singular Value Decomposition
(SVD), we name it CubeSVD.

The remainder of this paper is organized as follows. Sec-
tion 2 provides related work. Section 3 gives a brief intro-
duction to SVD and HOSVD techniques. Section 4 describes
our proposed CubeSVD algorithm. Section 5 presents the
experimental results and Section 6 offers some concluding
remarks and directions for future research.

2. RELATED WORK
In this section we briefly present some of the research lit-

erature related to personalized Web search, recommender
systems, SVD for recommendation, clickthrough data rel-
evant mining technique and Higher-Order Singular Value
Decomposition (HOSVD).

Some previous personalized search techniques, e.g., [2, 16,
19], are mostly based on user profiling. Generally, user pro-
files are created by asking users to fill out registration forms
or to specify the Web page categories of their interests [1].
Users have to modify their preferences by themselves if their
interests change. There are also some works on automatic
creation of user preferences. In [23], user profiles were up-
dated by accumulating their preferences reflected in the past
browsing history. In [16], the user profile was represented
by a hierarchical category tree and the corresponding key-
words associated with each category. The user profile was
automatically learned from the user’s search history.

Many current Web search engines focus on hyperlink struc-
tures of the Web. For example, Google calculated a univer-
sal PageRank vector which reflects the relative importance
of each page. Personalized PageRank, which is a modifica-
tion of global PageRank, was first proposed for personalized
Web search in [18]. In [10], “topic sensitive” PageRank was
proposed to improve personalized Web search. The authors
proposed to compute a set of PageRank vectors which cap-
ture the page importance with respect to a particular topic.
Since no user’s context information is used in this approach,
it is difficult to evaluate whether the results achieved satisfy
a user’s information need.

Besides search engines, many recommender systems have
been developed which recommend movies, music, Web pages,
etc. Most recommender systems analyze a matrix contain-
ing user preferences over items. Among the algorithms used,
Collaborative Filtering (CF) is a group of popular methods
[6, 11]. The philosophy behind CF is to recommend items
based on preferences of similar users. That is, if a group of
users share similar interests, the items preferred by one user
can be recommended to others of the group. Since neighbor-
hood formation requires sufficient amounts of training data,
CF is sensitive to data sparsity [21, 3]. In order to address
this issue, Latent Semantic Indexing (LSI) was applied to
recommender systems and promising results were achieved
[20, 21]. LSI was based on truncated singular valued decom-
position and has also been successfully used in information
retrieval (IR) community [7]. In [21], the authors use LSI
for two recommendation tasks: to predict the likeliness of
a product preferred by a customer; and to generate a list
of top-N recommendations. LSI was also studied in [22] for
collaborative filtering applications.

Web usage mining techniques have achieved great success
in various application areas [13, 14, 17]. As far as we know,
there was seldom works on incorporating three-way click-
through data for personalized Web search. An exception is
[3], which extended Hofmann’s aspect model to incorporate
three-way co-occurrence data for recommendation problem.

383

��

��

��

�� �� ��

��

��
����

��
	

�
���

Figure 1: Visualization of matrix SVD

However, it was not used for Web search application. The
technique introduced in [14] uses clickthrough data in or-
der to improve the quality of Web search. The author uses
the relative preferences between Web pages and learns the
retrieval functions. In [25], the authors also examine the
interrelated data objects of clickthrough data and put for-
ward a reinforcement clustering algorithm to cluster these
multi-type objects.

The higher-order singular value decomposition technique
was proposed in [15]. It is a generalization of singular value
decomposition and has been successfully applied for com-
puter vision problems in [24]. We propose to use the HOSVD
technique for personalized Web search in this paper.

3. SVD AND HOSVD
Since our CubeSVD approach is based on HOSVD tech-

nique, which is a generalization of matrix SVD, we first
briefly review matrix SVD and then introduce tensor and
the HOSVD technique. In this paper, tensors are denoted by
calligraphic upper-case letters (A,B · · ·), matrices by upper-
case letters (A, B · · ·), scalars by lower case letters (a, b · · ·),
vectors by bold lower case letters (a,b · · ·).
3.1 Matrix SVD

The SVD of a matrix is visualized in Figure 1. For a
I1 × I2 matrix F , it can be written as the product:

F = U (1) · S · U (2) (1)

where U (1) = (u
(1)
1 u

(1)
2 · · ·u(1)

I1
) and U (2) = (u

(2)
1 u

(2)
2 · · ·u(2)

I2
)

are the matrices of the left and right singular vectors. The

column vectors u
(1)
i ,1 ≤ i ≤ I1 and u

(2)
j ,1 ≤ j ≤ I2 are

orthogonal. S = diag(σ1, σ2, · · · , σmin(I1,I2)) is the diago-
nal matrix of singular values which satisfy σ1 ≥ σ2 ≥ · · · ≥
σmin(I1,I2) ≥ 0. By setting the smallest (min{I1, I2} − k)
singular values in S to zero, the matrix F is approximated
with a rank-k matrix and this approximation is best mea-
sured in reconstruction error. Theoretical details on matrix
SVD can be found in [9].

3.2 Tensor and HOSVD
A tensor is a higher order generalization of a vector (first

order tensor) and a matrix (second order tensor). Higher-
order tensors are also called multidimensional matrices or
multi-way arrays. The order of a tensor A ∈ RI1×I2×···×IN

is N . Elements of A are denoted as ai1···in···iN where 1 ≤
in ≤ In. In tensor terminology, matrix column vectors are
referred to as mode-1 vectors and row vectors as mode-2
vectors. The mode-n vectors of an N -th order tensor A
are the In-dimensional vectors obtained from A by vary-
ing the index in and keeping the other indices fixed, that
is the column vectors of n-mode matrix unfolding A(n) ∈
RIn×(I1I2···In−1In+1···IN) of tensor A. See [15] for details on
matrix unfoldings of a tensor.

A

=

V1

S

V3

V2

Figure 2: Visualization of a 3-order Singular Value
Decomposition

The n-mode product of a tensor A ∈ RI1×I2×···×IN by a
matrix M ∈ RJn×In is an I1× I2× · · ·× In−1×Jn× In+1×
· · · × IN -tensor of which the entries are given by

(A×n M)i1···in−1jnin+1···iN
=

X
in

ai1···in−1inin+1···iN mjnin

(2)
Note that the n-mode product of a tensor and a matrix is
a generalization of the product of two matrices. It can be
expressed in terms of matrix unfolding:

B(n) = MA(n) (3)

where B(n) is the n-mode unfolding of tensor B = A×n M .
In terms of n-mode products, the matrix SVD can be

rewritten as F = S ×1 V (1) ×2 V (2). By extension, HOSVD
is a generalization of matrix SVD: every I1 × I2 × · · · × IN

tensor A can be written as the n-mode product [15]:

A = S ×1 V1 ×2 V2 · · · ×N VN (4)

as illustrated in Figure 2 for N = 3. Vn contains the or-
thonormal vectors (called n-mode singular vectors) span-
ning the column space of the matrix A(n) (n-mode matrix
unfolding of tensor A). S is called core tensor. Instead of
being pseudodiagonal (nonzero elements only occur when
the indices satisfy i1 = i2 = · · · = iN), S has the prop-
erty of all-orthogonality. That is, two subtensors Sin=α and
Sin=β are orthogonal for all possible values of n , α and β
subject to α 6= β . At the same time, the Frobenius-norms
σn

i = ‖Sin=i‖ are n-mode singular values of A and are in
decreasing order: σn

1 ≥ σn
2 ≥ · · · ≥ σn

In
≥ 0.1 S is in general

a full tensor and governs the interactions among Vn.

4. CUBESVD BASED WEB SEARCH
When using a search engine to find information: a user(u)

submits a query(q), the search engine returns a list of URLs
and the corresponding descriptions of the target Web pages,
then the user clicks on the pages(p) of interest. After some
time of usage, the search engine accumulates a collection
of clickthrough data, which can be represented by a set of
triplets 〈u, q, p〉. From the clickthrough data, we can con-
struct a 3-order tensor A ∈ RU×Q×P , where U ,Q,P are sets

1The Frobenius-norm of a tensor A is defined as ‖A‖ =p
〈A,A〉. And the scalar product 〈A,B〉 of two tensors A,B

is defined as 〈A,B〉=P
i1

P
i2
· · ·PiN

ai1i2···iN · bi1i2···iN .

Sin=i is the subtensor of S obtained by fixing the nth index
of S to i. More details are referred to [15].

384

Table 1: Details of the Web Pages Used in the Toy Problem
Page URL Title
p1 http://www.bmw.com BMW International Website
p2 http://www.audiusa.com Audiusa.com Home Page
p3 http://www.jaguarusa.com/us/en/home.htm Jaguar Cars
p4 http://dspace.dial.pipex.com/agarman/bco/ver4.htm Big Cats Online Home

1. Construct tensor A from the clickthrough data. Sup-
pose the numbers of user, query and Web page are m, n,
k respectively, then A ∈ Rm×n×k. Each tensor element
measures the preference of a 〈user, query〉 pair on a Web
page.
2. Calculate the matrix unfolding Au, Aq and Ap from
tensor A. Au is calculated by varying user index of ten-
sor A while keeping query and page index fixed. Aq and
Ap are computed in a similar way. Thus Au, Aq, Ap is
a matrix of m× nk, n×mk, k ×mn respectively.
3. Compute SVD on Au, Aq and Ap, set Vu, Vq and Vp

to be the left matrix of the SVD respectively.
4. Select m0 ∈ [1, m], n0 ∈ [1, n] and k0 ∈ [1, k]. Remove
the right-most m−m0, n− n0 and k− k0 columns from
Vu, Vq and Vp , then denote the reduced left matrix by
Wu, Wq and Wp respectively. Calculate the core tensor
as follows:

S = A×1 W T
u ×2 W T

q ×3 W T
p (5)

5. Reconstruct the original tensor by:

Â = S ×1 Vu ×2 Vq ×3 Vp (6)

Figure 3: Outline of the CubeSVD algorithm.

of users, queries and pages respectively. Each element of
tensor A measures the preference of 〈u, q〉 pair on page p.
In the simplest case, the co-occurrence frequency of u, q
and p can be used. In this paper, we also tried several other
approaches to measure the preference. After tensor A is
constructed, the CubeSVD algorithm can be applied on it.

4.1 CubeSVD Algorithm
Our CubeSVD approach is to apply HOSVD on the 3-

order tensor constructed from the clickthrough data. In ac-
cordance with the HOSVD technique introduced in Section
3.2, the CubeSVD algorithm is given in Figure 3:

the input is the clickthrough data, the output is the re-
constructed tensor Â. Â measures the associations among
the users, queries and Web pages. The elements of Â can be
represented by a quadruplet 〈u, q, p, w〉, where w measures
the likeliness that user u will visit page p when u submits
query q. Therefore, Web pages can be recommended to u
according to their weights associated with 〈u, q〉 pair.

4.2 A Toy Problem Example
In this subsection, in order to illustrate how our approach

works, we apply the CubeSVD algorithm to a toy problem.
As illustrated in Figure 4, 4 users issued 4 different queries
(“bmw”, “audi”, “jaguar”, “big cat”) and clicked on 4 Web
pages. In Figure 4, the arrow line between a user and a query
represents the user issued the corresponding query. The line
between a query and a page indicates the user clicked on

�� ��� ��

��
��	

��

�����

�� �
����

��

��

��

� ���

�

�
�

�

�
�

�

�

��
�

�

	�

	�

	�

	�

Figure 4: Clickthrough data of the toy problem.

the page after he/she issued the query. The numbers on the
arrow line gives the correspondence between the three types
of objects. For example, user u1 issued query “bmw” and
then clicked on page p1. The users performed seven clicks
on the 4 pages in this toy problem. The URLs and titles of
the pages visited are given in Table 1. Query “jaguar” may
refer to “jaguar car” or “jaguar cats”. From Table 1, we can
find that p1, p2 and p3 are Web pages on “cars”, page p4 is
related to “cats”. From Figure 4, we can see that user u1

and u2 have common interests on cars, while user u3 and u4

are interested in big cat animals.
A 3-order tensor A (4×4×4) can be constructed from the

clickthrough data. For simplicity, we assume there are no
duplicate page visits. That is, if a user issues a query and
then clicks on a Web page, the user only clicks on the page
once. We use the co-occurence frequency of user, query and
page as the elements of tensor A, which are given in Table
2. After performing the CubeSVD analysis, we can get the
reconstructed tensor Â. Table 3 gives the output of the
CubeSVD algorithm, as illustrated in Figure 5. In Table 3,
the rows in italic font represents that this link relation does
not exist in the original clickthrough data.

As given in Table 3 and Figure 5, the output of the Cube-
SVD algorithm for this toy problem is interesting: new as-
sociations among these objects come out. From the original
clickthrough data (Figure 4), we can find that neither user
u1 nor u4 issued query q3. There is also no direct indication
on which pages to recommend if either of the two users sub-
mits query q3, because query q3 is ambiguous. According
to the algorithm outputs given in Table 3, the element of Â
associated with 〈u1, q3, p3〉 is 0.354 and elements associated
with other pages are zero. Thus if u1 issues query q3, then
u1 is likely to visit page p3 (arrow line 9). Similarly, if user
u4 submits query q3, then u4 is likely to visit p4 (arrow line

385

Table 2: Tensor Constructed from the Clickthrough
Data of the Toy Problem

Arrow Line User Query Page Weight
1 u1 q1 p1 1
2 u2 q1 p1 1
3 u2 q2 p2 1
4 u2 q3 p3 1
5 u3 q3 p4 1
6 u3 q4 p4 1
7 u4 q4 p4 1

Table 3: Output of CubeSVD Algorithm on the Toy
Problem

Arrow Line User Query Page Weight
1 u1 q1 p1 0.5
2 u2 q1 p1 1.207
3 u2 q2 p2 0.853
4 u2 q3 p3 0.853
5 u3 q3 p4 0.723
6 u3 q4 p4 1.171
7 u4 q4 p4 0.723
8 u1 q2 p2 0.354
9 u1 q3 p3 0.354
10 u4 q3 p4 0.447

10). The results are reasonable since u1 is concerned about
cars rather than big cat animals, while u4 is opposite. Even
the two users have not issued query q3, our algorithm can
still recommend Web pages by analyzing the clickthrough
data. That is, the CubeSVD approach is able to capture
the latent associations among the multi-type data objects:
user, query and Web page. The associations can then be
used to improve the Web search accordingly.

4.3 Dimension Selection
The latent associations among the three types of objects

captured by CubeSVD are stored in the reconstructed tensor
Â. From step 5 of the CubeSVD algorithm in Figure 3, we

�� ��� ��

��
��	

��

�����

�� �
����

��

��

��

� ���

�

�
�

�

�

�

�

�

��
�

�

	

�

�

	

��

��

��

��

�

�

Figure 5: Illustration of the CubeSVD algorithm
output for the toy problem given in Figure 4.

know tensor Â is constructed by the product of the core ten-
sor S and the left matrix Vu, Vq and Vp and the dimensions
of S are selected in step 4. Since the core tensor S governs
the interactions among user, query and Web page objects,
the determination of core tensor dimensionality may play an
important role in the result of the algorithm. This is further
verified by our experiments in Section 5.

Recall in the two-dimensional case [7], LSI computes a low
rank approximation of the original term-by-document ma-
trix to capture the semantic concepts of a document set. The
resulted matrix is calculated by truncated SVD as Figure 1
indicates. Previous experiments indicate that the number of
singular values kept in the diagonal matrix S is crucial for
LSI’s performance [12]. And how to determine the dimen-
sion is still an ongoing research problem.

For the CubeSVD approach, determination of the core
tensor’s dimensions seems more difficult than LSI. Because
for LSI, the term-by-document matrix is two dimensional,
thus only one parameter (the number of nonzero singular
values) needs to be decided. For CubeSVD, there are three
dimensional parameters to be determined. According to the
CubeSVD algorithm in Figure 3, the core tensor S is cal-

culated from the product of tensor A by W
′
u, W

′
q and W

′
p.

Therefore how many columns of Vu, Vq, and Vp are kept de-
termines the dimensions of the core tensor (m0 × n0 × k0).
Since the left matrix Vu, Vq and Vp are calculated by solving
SVD problems on the matrix unfolding Au, Aq and Ap re-
spectively, in this paper we use an eigenvalue based method
to determine the core tensor dimensions empirically.

According to the tensor decomposition property [15]:

‖A − Â‖ ≤
mX

iu=m0+1

(σu
iu

)2 +

nX
iq=n0+1

(σq
iq

)2 +

kX

ip=k0+1

(σp
ip

)2

(7)
By discarding the smallest n-mode singular values σu

m0+1,
· · · , σu

m, σq
n0+1, · · · ,σq

n,σp
k0+1,· · · ,σp

k to zero, we obtain an

approximation Â of the original tensor A. As discussed in
[15], if σu

m0 ,σ
q
n0 and σp

k0
are much bigger than σu

m0+1, σq
n0+1,

σk
k0+1 respectively, the energy lost is not significant and is

bounded as in Equation 7. Based on this property, we use
the eigenvalues in the three matrix unfolding SVD problems,
i. e., the smallest eigenvalues are discarded, thus reducing
the dimensionality of the core tensor to λ · (m× n× k). In
this paper, λ is tuned empirically.

4.4 Weighting Policy
In our CubeSVD algorithm, the tensor value measures

the preference of a 〈user, query〉 pair on a Web page. If the
page click frequency is used as tensor value, the algorithm
is inclined to biasing towards tensor elements with high fre-
quency. We also try three other weighting approaches:

1) The first is a Boolean model. That is, for each
〈user, query〉 pair, if a page is clicked on, then the tensor
value associated with the three objects is 1, otherwise 0.

2) The second is by re-weighting of click frequency. We
use a method used in IR community. For each clickthrough
data triple 〈u, q, p〉, the weight of the corresponding tensor
value is a re-weighting of the page click frequency f :

f ′ = log2 (1 + f) (8)

The log function is used for scaling the page click frequency
in order to reduce the impact of highly frequent visits.

386

3) The third approach is similar with the second one. Here
we take into account the Inverse Document Frequency (IDF)
of a Web page (that is, frequency of a page visited by dif-
ferent users). The intuition is that, if a Web page is visited
by most users, then it is not representative for measuring
users’ interests:

f ′ = log2 (1 + f/f0) (9)

In Equation 9, f0 denotes IDF of a Web page.
The above three weighting schemes (denoted by Weight-

Boolean, Weight Log Freq, Weight Log Freq IDF respective-
ly), as well as the scheme without weighting (denoted by
Weight Freq), are all tested in our experiments in Section 5.

4.5 Smoothing Scheme
In the 2-dimensional case, LSI uses the co-occurrence of

words and documents to capture the latent semantics of a
document set: if two words co-occur frequently, they may be
semantically related. In the 3-dimensional case, our Cube-
SVD algorithm is applied on the clickthrough data, which
contains the co-occurrence of the three types of objects:
user, query and Web page. If the link relations among
them are scarce, the latent associations may be difficult to
capture. Generally, when a user issues a query, she may
only visit a very small set of pages of interest, which may
lead to a highly sparse tensor. In this work, we employ two
smoothing methods to address the sparseness problem and
the corresponding results are compared with the one with-
out smoothing.

4.5.1 Constant Based Smoothing
For pages that a user query pair 〈u, q〉 does not visit,

the corresponding tensor value is zero. An intuitive and
straightforward smoothing method is to replace the zero ten-
sor elements with a small constant c(0 ≤ c ≤ 1) . That is,
even a page p is not visited by 〈u, q〉 according to the click-
through data, it is assumed that page p is in general visited
by u with a small probability if u issues query q.

4.5.2 Page Similarity Based Smoothing
The second smoothing method is based on content simi-

larities between Web pages. For each user query pair 〈u, q〉,
a set of pages S1 are visited. For each page p ∈ S2 (S2

denotes pages not visited by 〈u, q〉), an overall similarity be-
tween p and pages S1 can be calculated and used to replace
the corresponding tensor elements:

sim(p, S1) =
1

|S1|
P

a∈S1
s(p, a)

, p ∈ S2 (10)

In Equation 10, s(p, a) measures the similarity between page
p and a. Here, each page is represented by a vector of word
weight and the similarity between two pages is measured by
cosine of the angle between the corresponding vectors:

s(p, a) =

P
j

ą
wpj · waj

ć

||wp|| · ||wa|| (11)

where wpj denotes weight of term j in page p.
The two smoothing techniques, as well as no smooth-

ing, are denoted by Smooth Constant, Smooth Content and
Smooth None respectively.

4.6 Normalization

For the 2-dimensional case, when LSI is used for informa-
tion retrieval, normalization scheme has a high impact on
the retrieval precision [12]. Since the tensor A is of 3 di-
mensions, it can be normalized from any dimension and the
experiment result may be different. In this work, we com-
pared all the three normalization methods. For example, if
the tensor is normalized from the user dimension, then for
each user u, all the tensor values corresponding with u are
devided by a constant and the tensor values sum to 1 after
division, that is:

X

1≤iq≤n

X

1≤ip≤k

aiuiqip = 1 (12)

Normalization from query or Web page dimension is similar.
The three normalization methods are denoted by Normal-
ize User, Normalize Query, Normalize Page respectively.
More is discussed in Section 5.4.2.

There is an ordering issue when the techniques discussed
in Sections 4.3-4.6 are combined with the CubeSVD algo-
rithm. As discussed in Section 4.1, dimension selection is
used in step 4 of the CubeSVD algorithm. Since the weight-
ing, smoothing and normalization techniuqes are used to
construct a tensor from the clickthrouth data, they are ap-
plied in the first step of CubeSVD. Similar with LSI ap-
plied in IR applications, the order of the three kinds of
techniques used is: weighting, smoothing and normaliza-
tion. The weighting technique is first used to assign a value
to the tensor elements associated with the 〈u, q, p〉 triples
which occurred in the clickthrough data. Next, the smooth-
ing techniques are used to replace some empty elements of
the tensor. After smoothing is used, normalization is ap-
plied in order to regard objects of the same type with equal
importance in the tensor construction. For example, if the
tensor is normalized from the user dimension, then each user
is equally important for tensor construction, even though
the number of queries each user issued or the number of
pages each user visited may be different. After the weight-
ing, smoothing and normalization techniques are applied,
the tensor construction (step 1 in Figure 3) is complete.

5. EXPERIMENTS
In this section, we introduce the experimental data set,

our evaluation metrics, and the experiment results.

5.1 Data Set
A set of MSN clickthrough was collected as our experi-

mental data set. This data set contains about 44.7 million
records of 29 days from Dec 6 of 2003 to Jan 3 of 2004.
As we collected the clickthrough data, we crawled all Web
pages of the ODP (http://dmoz.org/) directory (about 1.3
million). The clickthrough data was split into two parts: a
training and a test set. The former comprises of the first
two weeks of data collection. The rest of the data is used
for testing. For the training data, unique items with same
user, query and Web page are grouped into one entry and
the frequency is summed up. And we remove the Web pages
which occurred in the clickthrough data but not crawled by
our crawler. After this processing step, the training data
contains 19,644,518 entries having 3,676,296 users, 248,149
pages and 996,090 queries. That is, among the 1.3 million
ODP Web pages, 248,149 of them are clicked by Web users in
the first 2 weeks. Each user is identified by their IP address.

387

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
40

45

50

55

60

65

70

PQ

U
til

ity

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
45

50

55

60

65

70

PU

U
til

ity

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
40

45

50

55

60

65

70

QU

U
til

ity

45

50

55

60

65

Figure 6: Performance of CubeSVD as the dimensions of the core tensor vary. For the leftmost figure,
the user dimension is fixed at 115 and the other two dimensions change. For the middle figure, the query
dimension is fixed at 144. For the rightmost figure, the page dimension is fixed at 112.

This is not appropriate sometimes when multi-users share
one IP address or user accesses Web by dynamic IPs. In
other words, the Web search may be conducted by a group
of users. From the training dataset, we randomly select 500
users’ clickthrough data and apply our CubeSVD algorithm
on it. The noise is reduced by removing the Web pages which
were visited by no more than 3 times and users who visited
no more than 3 pages. Then we use these users’ clickthrough
data from the test set to evaluate the search performance.
In this work, we do not handle the new queries and new
Web pages contained in the test set. The SVDPACKC/las1
software package is used for SVD computation[5].

5.2 Baseline Algorithms
For comparison purpose, we also investigate whether the

3-order associations can be captured by the 2-dimensional
SVD approaches. We apply LSI on the 〈user, query〉-by-
page matrix and use the reduced rank approximation of the
original matrix for Web page prediction [22]. Besides, we
also use the Collaborative Filtering algorithm in the experi-
ments. For CF, we apply the memory-based algorithm with
the vector similarity measure to form neighbors (Refer to
Equation (1) and (3) in [6]).

5.3 Evaluation Measurements
We evaluate the Web search accuracy of different algo-

rithms using rank scoring metric [6]. The expected utility
of a ranked list of items is defined as

Rs =
X

j

δ(s, j)

2(j−1)/(α−1)
(13)

where j is the rank of a Web page in the list recommended,
δ(s, j) is 1 if a 〈user, query〉 pair s accessed page j in the
test set and 0 otherwise, and α is set to 5 as the author did.
The final score reflects the utilities of all 〈user, query〉 pairs
in the test set:

R = 100

P
s RsP

s RMax
s

(14)

where RMax
s is the maximum possible utility obtained when

all pages that each 〈user, query〉 pair has accessed appear
at the top of the ranked list.

5.4 Experimental Results
We implemented all the 4 weighting methods, 3 smooth-

ing schemes and 3 normalization methods discussed in Sec-
tion 4, which lead to 36 different settings. In this work, we
evaluated CubeSVD with all the settings. We also compare
CubeSVD with CF and LSI in our experiments.

5.4.1 Influence of the Core Tensor Dimensions
We first conduct experiments to study the influence of

core tensor dimensions on the performance of our Cube-
SVD algorithm. When we apply CubeSVD to tensors con-
structed with different weighting, smoothing and normaliza-
tion methods, all the results show the search accuracy has
high dependency on dimensions of the core tensor. For ex-
ample, when we use Boolean weighting, normalization from
query dimension without smoothing, we get a 500 × 168 ×
182(u× q× p) tensor. Dimensions associated with the three
matrix unfoldings are 235, 157 and 182 respectively after
SVD is performed. The CubeSVD algorithm achieves opti-
mal accuracy (utility is 69.62) when the core tensor dimen-
sion is 115, 144 and 112 respectively. If one dimension of the
core tensor is fixed, we can find the search accuracy varies
as the other two dimensions change, as illustrated in Fig-
ure 6: the vertical axis denotes the utility measure and the
other two axes denote the corresponding dimensions. For
each figure, one dimension is fixed and the other two dimen-
sions are varied. Each dimension increases in step (0.1 ×
the corresponding highest dimension) and is measured with
fraction.

We also employed our eigenvalue based method to deter-
mine dimensions of the core tensor. The parameter λ is
varied from 0.1 to 1 in step 0.1. For this experiment, when
λ = 0.9, we get a 211× 141×163 dimension core tensor and
the utility achieved is 68.6, which is approximate with the
optimal result (utility 69.62).

5.4.2 Influence of Weighting, Smoothing and Nor-
malization Methods

According to our experiment results, we find normaliza-
tion from query dimension is slightly better than normal-
ization from user or page dimension. Even when different
weighting or smoothing techniques are used, this conclu-
sion is consistent. We give a group of experiment results in
Figure 7, these results correspond with normalization from
query dimension. Different weighting and smoothing meth-

388

��

��

��

��

��

��

��

�� ��	
���� �� ��	
����	�	 �� ��	
���	�	

� ���
	������� � ���
	�����
� ���
	��������� � ���
	�������������

�

Figure 7: Search Results of CubeSVD algorithm
normalized from query dimension, associated with
different weighting policies and smoothing schemes.

ods are used in this experiment. We can find that the weight-
ing policy may influence the search results, especially when
the log frequency weighting method is used. The Boolean
model performs worst compared with the other three weight-
ing methods. Out of our expectation, the Weight Log Freq-
IDF weighting method is not so good as Weight Log Freq
method, sometimes even worse than without weighting sche-
me (Weight Freq). From Figure 7, we can also find that
smoothing can improve the search accuracy. Even the con-
stant based smoothing method (c = 0.05 in this experiment)
outperforms the one without smoothing. The page similar-
ity based smoothing approach is better than constant based
smoothing.

5.4.3 Comparison with Other Approaches
We also conduct experiments to compare CubeSVD with

LSI and CF. In all the settings, CubeSVD outperforms both
LSI and CF. Figure 8 describes the results of the three al-
gorithms with page similarity based smoothing and normal-
ization from query dimension. Results associated with the 4
weighting methods are plotted. For LSI, the reduced dimen-
sion varies from 1 to the highest possible dimension (the ma-
trix rank) and the best result is reported. For CF, we vary
the number of neighbors and report the best result. Accord-
ing to the results, we can find CubeSVD outperforms either
of the two baseline algorithms significantly.

5.4.4 Discussions
From the experiments, we observe that CubeSVD achieves

better search accuracy than CF and LSI. The reason is
CubeSVD can exploit the clickthrough data to capture the
latent associations among the multi-type objects. And this
kind of high order associations can not be well captured by
CF or LSI applied on the 2-dimensional matrix data.

We can also find that the core tensor dimensionality is
crucial to the performance of CubeSVD. Different weight-
ing, smoothing and normalization methods also have im-
pacts on the search accuracy. According to the experimental
results, the Weight Log Freq approach is the best weighting
method. When Inverse Document Frequency is used, the
search result does not improve. In our opinion, the reason
is: there do not exist so many pages which are frequently vis-
ited by users with different interests. Therefore, when IDF
is used for weighting, the search accuracy even decreases.

��

��

��

��

��

��

��

	�

����� ��� ������� �����������

�� ��� ������

�

Figure 8: Search Results of CF, LSI and CubeSVD.

Smoothing techniques can improve the search result. Since
the page content information is used, the page similarity
based smoothing is better than constant based smoothing.
The effect of similarity based smoothing for sparse data is
also observed in [3].

By analyzing the CubeSVD algorithm illustrated in Fig-
ure 3, we can find that most time is consumed by steps 3-5.
In step 3, SVD is performed on the three unfolded matrices.
If the tensor scale is large, this step is quite time-consuming.
Especially if smoothing is used, the original sparse tensor
becomes relatively dense and the scale of the SVD prob-
lem increases. If no smoothing is used, there are many zero
columns in the unfolded matrices which decrease the scale
of the SVD problem. Even though the large scale CubeSVD
algorithm is quite time-consuming, the computation can be
performed offline beforehand. After the CubeSVD analysis,
the results can be used to help search Web pages in real
time. Because the preferences of each 〈user, query〉 pair on
Web pages have been computed in advance. Thus the search
results can be adapted to users according to the associations
among Web pages, users and queries submitted.

6. CONCLUSION AND FUTURE WORK
Personalized Web search service will play an important

role on the Web. This paper focuses on utilizing click-
through data to improve Web search. A novel CubeSVD
approach is proposed to deal with the clickthrough data
which is three-way and highly sparse. We used a real-world
data set to evaluate the CubeSVD algorithm combined with
a variety of techniques, examining the impact of different
weighing, smoothing and normalization methods. The ex-
perimental results indicate that CubeSVD approach can sig-
nificantly improve Web search performance.

There are also many areas for future research:
1) In our current work, we are concerned about the users

whose clickthrough data was recorded. And only queries
issued and pages clicked on by these users are considered.
Therefore, it would be interesting to adapt our framework to
newly emerged objects (new users, queries and Web pages).
One possible approach is by combining the CubeSVD tech-
nique with traditional content-based search model.

389

2) The offline computation of CubeSVD is quite time-
consuming, especially when the clickthrough data contains a
large number of objects. With CubeSVD as a base approach,
we will seek ways to improve its efficiency.

3) We also plan to conduct more research on how to auto-
matically determine the optimal dimensionality of the core
tensor.

4) The CubeSVD framework proposed in this paper is
not limited to Web search but is general enough and can
be applied to other applications where three-way relations
exist.

7. ACKNOWLEDGMENTS
We thank Xue-Mei Jiang and Ya-Bin Kang for their help

in preparing the data used in this work. We also express
thanks to Xuan-Hui Wang for his comments on this paper
and helpful discussions.

8. REFERENCES
[1] Google personalized search.

http://labs.google.com/personalized.

[2] My yahoo! http://my.yahoo.com/?myhome.

[3] P. Alexandrin, U. Lyle, P. David, and L. Steve.
Probabilistic models for unified collaborative and
content-based recommendation in sparse-data
environments. In Proceedings of the 17th Annual
Conference on Uncertainty in Artificial Intelligence
(UAI-01), pages 437–444, San Francisco, CA, 2001.
Morgan Kaufmann Publishers.

[4] R. B. Almeida and V. A. F. Almeida. A
community-aware search engine. In Proceedings of the
13th International Conference on World Wide Web,
pages 413–421. ACM Press, 2004.

[5] M. Berry, T. Do, and S. Varadhan. Svdpackc (version
1.0) user’s guide. Technical Report CS-93-194,
University of Tennessee, 1993.

[6] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proceedings of the Fourteenth Annual
Conference on Uncertainty in Artificial Intelligence,
pages 43–52. Morgan Kaufman, 1998.

[7] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391–407, 1990.

[8] L. Fitzpatrick and M. Dent. Automatic feedback using
past queries: social searching? In Proceedings of the
20th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 306–313. ACM Press, 1997.

[9] G. Golub and C. V. Loan. Matrix Computations, 2nd
edition. The Johns Hopkins University Press,
Baltimore, Maryland, 1989.

[10] T. H. Haveliwala. Topic-sensitive pagerank. In
Proceedings of the 11th International Conference on
World Wide Web, pages 517–526. ACM Press, 2002.

[11] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In Proceedings of the 22nd
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 230–237. ACM Press, 1999.

[12] P. Husbands, H. Simon, and C. H. Q. Ding. On the
use of the singular value decomposition for text
retrieval. Computational Information Retrieval, pages
145–156, 2001.

[13] X. Jin, Y. Zhou, and B. Mobasher. Web usage mining
based on probabilistic latent semantic analysis. In
Proceedings of the 2004 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 197–205. ACM Press, 2004.

[14] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 133–142. ACM
Press, 2002.

[15] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A
multilinear singular value decomposition. SIAM
Journal on Matrix Analysis and Applications,
21(4):1253–1278, 2000.

[16] F. Liu, C. Yu, and W. Meng. Personalized web search
by mapping user queries to categories. In Proceedings
of the 11th International Conference on Information
and Knowledge Management, pages 558–565. ACM
Press, 2002.

[17] B. Mobasher, H. Dai, M. Nakagawa, and T. Luo.
Discovery and evaluation of aggregate usage profiles
for web personalization. Data Mining and Knowledge
Discovery, 6(1):61–82, 2002.

[18] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[19] J. Pitkow, H. Schutze, T. Cass, R. Cooley,
D. Turnbull, A. Edmonds, E. Adar, and T. Breuel.
Personalized search. Communications of the ACM,
45(9):50–55, 2002.

[20] M. H. Pryor. The effects of singular value
decomposition on collaborative filtering. Technical
Report PCS-TR98-338, Dartmouth College, Computer
Science, Hanover, NH, June 1998.

[21] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Application of dimensionality reduction in
recommender systems-a case study, 2000.

[22] N. Srebro and T. Jaakkola. Weighted low-rank
approximations. In Proceedings of the 12th
International Conference on Machine Learning, pages
720–727. AAAI Press, 2003.

[23] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive
web search based on user profile constructed without
any effort from users. In Proceedings of the 13th
International Conference on World Wide Web, pages
675–684. ACM Press, 2004.

[24] M. A. O. Vasilescu and D. Terzopoulos. Multilinear
image analysis for facial recognition. In ICPR, pages
511–514, 2002.

[25] J. Wang, H. Zeng, Z. Chen, H. Lu, L. Tao, and W.-Y.
Ma. Recom: reinforcement clustering of multi-type
interrelated data objects. In Proceedings of the 26th
Annual International ACM SIGIR Conference on
Research and Development in Informaion Retrieval,
pages 274–281. ACM Press, 2003.

390

