
Improving Portlet Interoperability Through Deep
Annotation

Oscar Díaz
The ONEKIN group

Univ. of the Basque Country
P.O. Box 649

San Sebastian, Spain, 20080

jipdigao@si.ehu.es

Jon Iturrioz
The ONEKIN group

Univ. of the Basque Country
P.O. Box 649

San Sebastian, Spain, 20080

jipitsaj@si.ehu.es

Arantza Irastorza
The ONEKIN group

Univ. of the Basque Country
P.O. Box 649

San Sebastian, Spain, 20080

jipirgoa@si.ehu.es

ABSTRACT
Portlets (i.e. multi-step, user-facing applications to be syndicated
within a portal) are currently supported by most portal frameworks.
However, there is not yet a definitive answer to portlet interopera-
tion whereby data flows smoothly from one portlet to a neighbour-
ing one. Both data-based and API-based approaches exhibit some
drawbacks in either the limitation of the sharing scope or the stan-
dardization effort required. We argue that these limitations can be
overcome by using deep annotation techniques. By providing ad-
ditional markup about the background services, deep annotation
strives to interact with these underlying services rather than with
the HTML surface that conveys the markup. In this way, the port-
let producer can extend a portlet markup, a fragment, with data
about the processes whose rendering this fragment supports. Then,
the portlet consumer (e.g. a portal) can use deep annotation to map
an output process in fragment A to an input process in fragment B.
This mapping results in fragment B having its input form (or other
“input” widget) filled up. We consider deep annotation as particu-
larly valid for portlet interoperation due to the controlled and coop-
erative environment that characterizes the portal setting.

Keywords: portlet interoperability, portal ontology, data-flow,
deep-annotation, event.

General Terms: Design, Standardization.
Categories: D.2.11 - Software Architectures; D.2.12 - Interop-

erability; D.2.13 - Reusable Software; H.3.4 - Systems and Soft-
ware; H.3.5 - Online Information Services.

1. INTRODUCTION
The significance of portal applications stems not only from being

a handy way to access data but also from being the means of facil-
itating the integration with third party applications. This has led to
the so-called portal imperative: the emergence of portal software
as a universal integration mechanism [19].

Key to this view is the notion of portlet. Portlets are applica-
tions within a portal in much the same way as servlets are appli-
cations within a Web server. The difference stems from portlets
being multi-step, user-facing applications. They are very much like
Windows applications in a user desktop in the sense that a port-
let renders markup fragments that are surrounded by a decoration
containing controls. The portal page then, contains a number of
portlets whose fragments can be arranged into columns and rows,
and minimized, maximized, or arranged to suit the user needs.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

However, aggregating portlets into a portal is more than merely
invoking these services, or arranging their fragments together in
the same portal page (i.e. the so-called “side-by-side” aggrega-
tion). Information contained in one portlet will surely be required
in another, and forcing the individual user to manually copy and
key in data from source to target portlets leads to frustration, lost
productivity, and inevitable mistakes. And this situation certainly
hinders the fulfillment of the portal imperative.

According to the IEEE Standard Computer Dictionary, interop-
erability means “the ability of two or more systems or components
to exchange information and to use the information that has been
exchanged”. To achieve this end in a portlet context, distinct mech-
anisms have been proposed which can be classified as data-based
and API-based. The former permits distinct portlets share a com-
mon piece of information but within the scope of the same pro-
ducer. Portlets which pertain to distinct producers remain isolated.
On the other hand, the API-based approach facilitates a program-
matic interface for portlets to communicate their state to interested
parties. Unfortunately, at the time of this writing, there is not yet
an agreement on how to standardize this mechanism.

To overcome some of these drawbacks, this paper presents a deep
annotation approach to portlet interoperation. Rather than resort-
ing to back-end solutions, we support a front-end approach, i.e.,
the visual part of a portlet, the fragments, are supplemented with
information about what these fragments render. This requires the
creation, either manually or semi-automatically, of meta-data from
existing information, a process known as annotation [5]. However,
most of the approaches to annotation build on the assumption that
the information sources are static (e.g. static HTML pages). This
is not always the case for Web pages nor is it for portlets. As stated
in [6], “for dynamic web pages (e.g. ones that are generated from
a database...) it does not seem to be useful to manually annotate
every single page. Rather one wants to annotate the database in
order to reuse it for one’s own Semantic Web purpose”. This leads
to the notion of deep annotation.

Deep annotation has been proposed in [7] as an annotation pro-
cess that “utilizes information proper, information structures and
information context in order to derive mappings between informa-
tion structures”. This process is called deep annotation “as its
purpose is not to provide semantic annotation about the surface
of what is being annotated, this would be the web page (in our
case, the portlet fragment), but about the semantic structures in the
background” [1]. Deep annotation permits querying parties to in-
teract with the background structure without the help of the HTML
“surface”. The HTML “surface” is used to obtain the underlying
structure, e.g., the database schema. From then on, the underlying

372



structure, the database, can be consulted without the need of the
HTML page (e.g. through a Web service).

This paper presents how deep annotation is used for portlet in-
teroperation. The key aspects of the approach can be summarized
as follows:

1. portlets are characterized by their ontologies. Although none
of the portlet standards (i.e. WSRP [12] and JSR168 [10])
contemplate this option, the extensibility mechanisms avail-
able in both standards can be used to extend the portlet de-
scription with an additional ontology property. Besides fa-
cilitating portlet interoperability, all the benefits of using ex-
plicit ontologies (e.g., better documentation, search, knowl-
edge acquisition [9]) are brought to the portlet realm.

2. portlet fragments extend their markups with information about
the processes these fragments support. So far, the fragment
markup is geared towards rendering (e.g., XHTML). Now,
this markup also conveys information about the underlying
processes. This idea comes from deep annotation works.

3. portlet interoperability is achieved through mappings of the
ontology instances. Mapping is necessary as portlet produc-
ers can have their own ontologies, and mapping is required
to indicate how instantiations from one portlet “flows” to a
neighbouring portlet.

Compared with back-end approaches, this mechanism makes ex-
plicit what is hidden in the data-based approach, and unlike the
API-based proposal, requires no agreement with other portlet pro-
ducers.

A final remark. As noted in [7], deep annotation relies on the
cooperation of the markup producer who has to embed the “under-
lying information structure” into the HTML markup. Indeed, our
approach rests on fragments being supplemented with information
about the underlying processes. We argue that this assumption (i.e.
producers cooperation) is valid here. The argument is two-fold.
First, the additional effort required by this extra markup pays off
in terms of achieving portlet interoperability. This in turn, leads to
improve the user experience of the portals where these portlets are
syndicated. Hence, portal masters will favor those portlet producers
that facilitate this feature.

Second, the mistrust to share the ontology can be overcome by
requiring prior registration. It is a common scenario to require a
portal to register with the producer prior to use its portlets (e.g. for
charging matters). Registration ensures a controlled environment
where the producer can feel confident when disclosing its ontology.

The rest of this paper is organized as follows. First, section 2
outlines the notion of portlet. Next, the deep annotation process is
particularized for our scenario where each contention is addressed
in a separate section. Related work is presented in section 7. Fi-
nally, some conclusions are drawn.

2. A PORTLET BRIEF
Web services are an XML-centric means for integrating modular

programs over the Web using open, standardized interfaces. How-
ever, the traditional use of Web services stops at the functional-
integration layer. Web service standards facilitate the sharing of
the business logic, but suggest that Web service consumers should
write a new presentation layer on top of this business logic.

As an example, consider a Web service that offers two opera-
tions, namely, searchFlight and bookFlight. The former retrieves
flights that match some input parameters (e.g. departureAirport,

flightDates and so on). On the other hand, bookFlight takes the se-
lected flight and payment data, and books a seat on this flight. This
WSDL-based API can then be used by a consumer application as
follows. First, the application would collect the departureAirport,
flightDates and other parameters via an input form. Within the
form, an http request might support a call to searchFlight which, in
turn, returns a set of flights whose presentation is left to the calling
application. Next, the user selects one of the flights and, through
another form, the Web application collects the user’s information
and payment data. This interaction will in turn invoke the book-
Flight operation. This example illustrates the traditional approach
where Web services provide the business logic, and both presenta-
tion and control layers are left to the calling application.

However, such an approach underscores the presentation layer.
This layer not only addresses aesthetic aspects, but a whole range
of concerns like usability issues, state management, error handling,
client-side scripting, etc [16]. Indeed, most of the aspects that char-
acterize a good Web site are related to interactive issues [11]. Re-
creating this interactive logic in each consumer application has po-
tentially two main limitations, namely, it increases time-to-market,
and it jeopardizes the company’s image.

To overcome these limitations, a portlet provides a coarser-grain-
ed component that includes both the business logic and the presen-
tation logic. Portlets are currently a main building block for portal
construction, being supported by the main IDE players1. A main
step forward towards portlet interoperability between IDE vendors
has been the delivery of the Web Services for Remote Portlets
(WSRP) specification (April, 2003) [12] by OASIS, and the Java
Portlet Specification (JSR168) [10] (October, 2003) by JCP. The
goal is to define a component model that would enable portlets to
be easily plugged into standards-compliant portals.

Let’s go back to our sample application, but now delivering it as
a portlet. A bookFlight portlet encapsulates the previous screen-
shot sequence, and regulates its rendering. Each output markup is
referred to as a fragment. A portlet consumer (e.g. a portal) might
register with the producer of bookFlight to syndicate this portlet
as part of the portal’s offerings: the fragments of bookFlight are
rendered in this portal. All the portal does is basically routing the
interactions of the user with the fragment to the corresponding port-
let producer.

According with the WSRP protocol, the lifecycle of a portlet
session begins when the first getMarkup() request is issued. This
causes the first fragment to be rendered. Next, the user interacts
with the fragment. If this interaction does not affect other portlets
of the same producer being syndicated in the same portal (e.g. as
a result of sharing some database), getMarkup() is invoked. Other-
wise, performBlockingInteraction() is first issued, and second, get-
Markup() is sent to all the portlets of this producer2. In this way,
a single user interaction can change the output of distinct portlets.
But this interoperation takes places at the back-end. Next section
gives some additional details.

2.1 Portlet interoperation
For the purpose of this paper, we define portlet aggregation as

the combination of a set of portlets to achieve a common goal. This
aggregation can be totally unconstrained but even so, provide some

1Portlets are endorsed and supported by IBM, BEA, Oracle,
Sybase, Viador, Verify, PeopleSoft, Plumtree and Vignette. It is
important to notice that portlets are also referred by some vendors
as Web parts or gadgets.
2The portal knows whether a user interaction affects distinct
portlets through the links being clicked on. Links convey informa-
tion about potential side-effects on other portlets of the provider.

373



Figure 1: Two portlets side-by-side: bookFlight on the left, and bookHotel on the right.

value to the user since portlets are simultaneously rendered in the
same portal page. Here, the portal acts as a unified access point
to the user. However, tighter forms of aggregation leverage portal
functionality to that of a proper workplace where portlets share a
common goal. This implies some kind of interoperation between
the portlets. So far, the proposed mechanisms can be classified as
data-based and API-based.

Data-based mechanisms permits distinct portlets share a com-
mon piece of information. This approach is followed by the notion
of “portlet application” introduced by the JSR168 standard [10].
JSR168 defines a standard interface for portlets implemented for
the Java platform and specifies the contract between a portlet and
its container. In a J2EE architecture, a Web application refers to
an aggregate of Web components such as JSP or Servlets which
are packaged together into a WAR archive. Likewise, a “portlet
application” is a Web application which includes a special kind of
Web component, namely, the portlets. All the portlets contained
within the scope of a “portlet application” can share some data.
This is known as the “application” scope. Objects with an applica-
tion scope can be shared among distinct requests issued by portlets
which pertain to the same application. However, a portal normally
frames portlets from distinct “portlet applications”. Portlets which
pertain to distinct “portlet applications” remain isolated.

API-based approaches provide a programmatic interface for por-
tlets to communicate their state to interested parties. This approach
has been proposed at both the portlet producer and the portlet con-
sumer (e.g. a portal) side. At the producer side, the JSR168 en-
visages an event-based mechanism, similar to the one available for
Java Beans that permits portlets to subscribe to events generated by
other portlets.

As in the data-based case, the main drawback rests on the ex-
change being limited to a single producer. Therefore, if the ex-
change implies portlets from distinct producers then, this concern

should be moved to the consumer side, e.g. the portal. An example
of this latter approach is presented in [17]. To enable a portlet to
be a source of data, fragments include a custom JSP tags that flag
sharable data on the output markups. On the other hand, to enable
a portlet to be a target, a new API is included that specifies the
actions that can be invoked.

Unfortunately, there is not yet an agreement on how to standard-
ize this mechanism. Indeed, standardizing this API would lead to
commoditize one of the most valuable offerings of portal vendors.
Hence, vendors might be inclined to retain this competitive advan-
tage rather than commoditizing it, and enabling other companies
to exploit their application logic and infrastructure functions on
top of it. The WSRP committee is working actively on this issue.
But, even if an API-based standard for portlet interoperation is fi-
nally agreed upon, ontology-based interoperation can facilitate the
declarative specification of the mapping between the realms of two
distinct portlet providers, rather than this mapping being hidden in
the portlet code. Some experiences for Web services shed light on
this topic [14][18].

Based on these observations, i.e. the limitation of the sharing
scope and the standardization effort required, this work introduces
an approach to portlet interoperability using deep annotation.

3. DEEP ANNOTATION
An annotation “is a set of instantiations related to an ontology

and referring to an HTML document” [7]. Traditional annotation
provides meta-data about the surface of what is being annotated,
e.g., an HTML page. By contrast, deep annotation strives to capture
the semantic structures in the background. For dynamic Web pages,
now, the page also conveys the tables, attributes and the query used
to recover the content being rendered in the page. This informa-
tion structure/context (i.e. tables, attributes, query) can now be an-
notated (i.e. mapped) to the information structures/context of the

374



Figure 2: An architecture for deep annotation adapted for the portlet case.

client, and in so doing, permits the client to consult the database
without resorting to the HTML surface.

According with the proponents, deep annotation involves three
actors: the backend owner (e.g., the database administrator), the
annotator, and the querying party. If the backend resource is a
database as illustrated in [7], then these actors interact as follows:

1. The backend owner produces server-side web page markup
according to the database’s information structures. The out-
come is a set of HTML pages that convey not only the data
but also which database columns provide the data (among
other aspects).

2. The annotator produces client-side annotations which con-
form to the client ontology and the server-side markup. In
this context, an annotation is a set of instantiations related to
a (client) ontology and referring to a (server-based) HTML
document.

3. The annotator publishes the client ontology and the mapping
rules derived from annotations. The goal of the mapping pro-
cess is to give interested parties access to the source data. All
information, including the structure of all tables involved in
a Web site query, must be published so that users can retrieve
data.

4. The querying party loads client’s ontology and mapping rules,
and uses them to query the information source via a web ser-
vice API, and without the intervention of the HTML page.

This paper argues that this approach can also be used for portlet
interoperation. As an example, consider a portal that syndicates
two portlets, one for flight booking, bookFlight, and the other for
hotel booking, bookHotel (see figure 1). We want these two portlets
to interoperate so that data can flow smoothly from the former to the
latter. That is, bookHotel can render the fragment which prompts
for the entry-date already filled up from the arrival-date obtained
after enacting bookFlight.

In this scenario, the backend owner corresponds to the source
portlet bookFlight; the querying party maps to the target portlet
bookHotel; and the annotator role is played by the portal. Figure 2
gives an overview of this approach:

• At registration time, the portal loads the ontologies for the
distinct portlets, and integrates them into the portal’s ontol-
ogy.

• At enactment time, fragments are annotated according with
the portal’s ontology. The portal keeps track of the distinct
interactions with the portlets in terms of instantiations of the
portal’s ontology.

• At query time, target portlets can use these instantiations “to
feed” their fragments.

375



Figure 3: The portlet’s ontology: task ontology (a) + domain
ontology (b).

This scenario raises the following issues:

1. Defining the ontologies for the portlets and the portal.

2. Fragment annotation, i.e. producing a set of instantiations
related to the portal’s ontology and referring to the fragment
markups of a source portlet.

3. Fragment querying, i.e. “feeding” the markup of a target
portlet from annotations kept by the portal.

Next sections address these concerns with the help of a running
example.

Figure 4: The portal’s ontology (an excerpt).

4. PORTLET ONTOLOGY AND PORTAL
ONTOLOGY

Portlet ontology. For the purpose of this work, a portlet is
characterized by the set of processes that can occur along its life-
cycle. We are only interested in what the portlet provides and
what the portlet requests. To describe both input and output opera-
tions, OWL-S Atomic Processes is used as the baseline ontology [4].
OWL-S is an initiative of the Semantic Web community to facili-
tate automatic discovery, invocation, composition, interoperation
and monitoring of Web services through their semantic descrip-
tion. OWL-S is an OWL ontology conceptually divided into three
sub-ontologies for specifying what a service does (profile), how
the service works (process) and how the service is implemented
(grounding). This work focuses on the process side.

A portlet ontology includes a task ontology, along the lines of
OWL-S, and a domain ontology to describe the parameters of the
task ontology. As an example, consider the bookFlight portlet. This
portlet comprises a set of fragments that realizes a multi-step pro-
cess that ends with the booking of a flight. First, the first frag-
ment collects the departureAirport, flightDates and so on. Avail-
able flights matching these criteria are rendered in the second frag-
ment where the user is prompted to select one of these flights. And
so on.

The portlet’s ontology, bookFlightOnto, reflects this process as
a collection of input and output OWL-S atomic process: return-
FlightsAvailable_OS, departureFlightChoice_IS and the like. Fig-
ure 3 shows an excerpt of this ontology where the suffix OS (output
service) and IS (input service) denote output and input Atomic Pro-
cesses, respectively3.

3It should be noted that for stable domains, this ontology can
be standardized in the same way that EDI technologies force the
standardization of document formats. The Open Travel Alliance,

376



Although it has not been implemented yet, this basic ontology
can now be extended to specify the order in which processes pro-
ceeds or the relationships between their parameters. For instance,
it can be stated that departureFlightsAvailable_OS should precede
departureFlightChoice_IS, and that, at enactment time, the depar-
tureFlightInput parameter of the latter should be one of the val-
ues returned as the departureFlightOutput parameter of departure-
FlightsAvailable_OS. To this end, orchestration languages can be
used [15].

Portal ontology. For the purpose of this paper, the role of the
portal is restricted to be a mere mediator among the portlets. The
portal is just a container for portlets with no content on its own.
The portal acts as a controller. Based on this perspective, all that
matters are the events that occur during portlet’s enactment.

Hence, the portal’s ontology includes two main classes: the event
class and the eventualEvent class (see figure 4). The former de-
scribes a happening of interest, and its description includes the
following properties: the process being enacted, which keeps an
OWL-S Atomic Process; the timestamp at which this process was
enacted whose range is OWLTime Instant [13]; and, the data of the
process, which holds a Thing.

As for an eventual event, it represents a happening that might oc-
cur in the future. A portal offers a set of portlets where each portlet
might display distinct course of action for the end user to follow.
Eventual events capture the permitted range of actions an end user
can click-on at a given moment. In our example, the booking of a
flight may eventually lead to the booking of a hotel. The booking
of a hotel is then an eventual event. Once the hotel is booked, it
becomes an event. Section 6 describes the rationales behind the
notion of eventual event.

It is worth mentioning that the data property keeps a Thing (see
figure 4). In our context, this “thing” stands for any of the do-
main classes of the portlet ontologies. For instance, a thing can be
a flight, a city, a hotel, etc. As these domain classes come from
distinct ontologies, the portal master must solve first potential mis-
matches and ontology mappings between the different portlet on-
tologies. Mapping may become necessary as distinct communities
can have their own terms and regulations (e.g. the bookFlight port-
let follows the Open Travel Alliance standards whereas bookHo-
tel conforms to the normative of a different committee). Ontology
mapping is a tough issue whose implications are outside the scope
of this paper. But ontology mapping is a must to achieve portlet
interoperability, no matter which approach is used.

5. FRAGMENT ANNOTATION
Broadly speaking, a portlet fragment is a chunk of XHTML code

(or any other rendering language). So far, the portlet producer de-
livers this fragment with the only purpose of being readily rendered
by the portal.

By contrast, deep annotation is a more demanding scenario where
the very same portlet can play two roles. As a backend owner, frag-
ments can additionally convey which output processes are used to
obtain the content of the fragment. On the other hand, as a querying
actor, fragments should indicate which kind of “queries” a frag-
ment can pose. These queries correspond to widgets such as entry
forms which, so far, can only be “answered” by the end-user. The
ontological counterpart of these widgets are the input processes.

www.opentravel.org, is a case in point. This consortium defines
XML Schemas and corresponding usage scenarios for messages
that support business activities in the travel industry. This standard
can be “OWL-ized”, and used for deep annotating travel web sites.

Figure 5: The markup of the sample fragment of bookFlight
(an excerpt).

Consider our sample fragment of the bookFlight portlet (see fig-
ure 1). A snippet of its markup is given in figure 5 where three
distinct parts can be distinguished, namely:

• structure/context information markup (see figure 5 (a)). Speci-
fically, for each “output” markup chunk (i.e. the one that
renders a meaningful set of data), an additional markup is
inlaid where the outcome is conceived as the result of a pa-
rameterless function. Our sample fragment conveys two out-
put Atomic Processes (i.e. departureFlightsAvailable_OS,
and returnFlightsAvailable_OS). Each Atomic Process com-
prises its actual parameters. Process parameters correspond
to instantiations of the domain ontology of the portlet, i.e.
flightBookOnto. The flightBook namespace is introduced with
this purpose.

• query-oriented markup (see figure 5 (b)), which embeds the
type of queries this portlet can make. Specifically, for each
“input” widget (e.g. an entry form), an additional markup is
introduced where the widgets are conceived as the realization
of an input-only atomic process of the portlet’s ontology. Our
sample fragment includes two input Atomic Processes (i.e.
departureFlightChoice_IS and returnFlightChoice_IS).

• rendering-oriented markup (see figure 5 (c)), whose purpose
is to be interpreted by the browser.

This additional markup permits deep annotating, i.e. the process
of mapping from the information structures found in the portlet’s
markup to the information structures of the portal. Here, the portal
acts as the annotator which automatically produces a set of instanti-
ations related to the portal’s ontology, and referring to the portlet’s

377



Figure 6: Event instantiation generated as a result of the ren-
dering of the sample fragment.

fragment. More specifically, the rendering of a fragment of a source
portlet (i.e. a portlet that contains an output process) can cause the
instantiation of the event class of the portal’s ontology. These in-
stances are kept as part of the portal state. And they will be used at
query time for portlet feeding.

6. FRAGMENT QUERYING
In a traditional setting, deep annotation permits querying parties

to interact with the background structure without the help of the
HTML “surface”. By contrast, we do not want to get rid of the
HTML surface. One of the added-values of a portlet when com-
pared with traditional Web Services is that it comprises the GUI,
and we want to keep this interface.

The aim of our work is to use deep annotation for “feeding” frag-
ments automatically. By “feeding” we mean the process of inlay-
ing data into a current fragment. This data is obtained from other
fragments through the event instantiations kept by the portal.

In this way, we do not do without the HTML surface. We want
to interplay with the HTML surface, but with an enhanced HTML
surface where entry forms are already filled up. In so doing, the
end user interacts with a portlet but the effects span along multiple
neighbouring portlets. Therefore, it should be stressed that “feed-
ing” is not a substitution for end-user interaction. That is, it is al-
ways up to the end user to decide whether the hotel is booked with
the parameters obtained from bookFlight or not.

To attain this goal, the portal should know the input processes
being realized in the fragment’s markup. Knowing the input pro-
cesses, the portal annotates them as eventual events which, finally,
are used to feed this fragment.

Implementation-wise, querying poses the following questions:

• how are instances of the eventual event class instantiated?

• when are instances of the eventual event class instantiated?

• how is a fragment fed with eventual event instances?

Next paragraphs address these questions.

Figure 7: Eventual event instantiation generated after the event
of figure 6.

6.1 How are eventual events obtained?
A portal is seen as a collage of portlet fragments. Each fragment

can prompt the user for distinct courses of actions: the bookFlight
fragment is waiting for the user to select a flight, the bookHotel
fragment is prompting the user for the date of entrance, and so on.
Eventual events capture the range of actions a user can click on at
a given moment.

Since eventual events have not yet occurred, their parameters are
obtained from past events. In our example, (some) data about the
booking of a hotel can be obtained from the previous booking of a
flight. This is, first, an event instance is obtained from the process
departureFlightSelected_OS of the bookFlight portlet (i.e. an out-
put process of the next fragment of the portlet) and, next, an even-
tual event can be instantiated from the searchHotel_IS process of
bookHotel and its parameters are obtained from those of departure-
FlightSelected_OS. Figure 7 shows the eventualEvent instantiation
generated after the event of figure 6. We said there exists a pipe
from bookFlight to bookHotel (but not vice versa).

A pipe describes a data flow from the source portlet to the target
portlet. More specifically, let Ps and Pt be two portlets which play
the role of the source and the target, respectively. A pipe Ps—Pt is a
mapping that specifies how parameters of an input Atomic Process
at Pt can be obtained from the actual values of an event caused
by an output Atomic Process at Ps. In general, the source of the
piping can be more than one event instance which can even come
from different portlets. As a portlet’s input processes are known in
advance, the set of pipes are pre-established as part of the portal
environment.

This piping is described à la PROLOG using Jena [8]. Jena is
a Java framework for building Semantic Web applications. The
framework includes both an RDF and OWL APIs as well as persis-
tent storage for ontologies and statements. The specification of the
bookFlight—bookHotel pipe using a Jena rule can be found in the
appendix. The outcome of the piping process is a set of eventual
events ready to feed the target portlets.

6.2 When are eventual events obtained?
Portals exhibit eclectic navigation styles from hypertext-based to

totally constrained ones. The former “lets users explore a body of
information freely, by following the available links without obeying
to predefined sequences of actions. The power of hypertext is in
their feature-rich interfaces for navigating in a non-linear way a
collection of related data.” [3]. This is in contrast with workflows,
i.e. software systems for directing the work of users, by super-
imposing control over their activities and supplying only the data
needed to accomplish the currently ongoing tasks. In workflow

378



systems, the sequence of possible actions is predetermined and the
user is accompanied through the activities according to the work-
flow specification. Depending on the task at hand, portals can be
anyway in between these two extremes of the navigation spectrum.

Querying, i.e. the process of making the data flow along one
of the pre-established pipes, serves navigation. The time at which
querying is enacted can be tuned to the navigation style that better
fits the task at hand. Two options are possible, namely:

• forward style. By triggering piping rules in a forward mode,
the target portlet is fed by the source portlet as soon as the
source portlet is enacted. As soon as an event is risen, this
happening is piped to all neighbouring portlets. In so do-
ing, you are conducting the user towards the next task to be
fulfilled, i.e. the portlets at the end of the pipe,

• backward style. Triggering piping rules in a backward mode
implies the data-flow occurring on demand. Here, the hap-
pening of an event is not immediately propagated to the piped
portlets. There is no update on the fragments of the target
portlets. The end user is not distracted, and he or she can
feed the target portlet on demand. Implementation-wise, this
is achieved by extending the portlet decorator with an extra
icon.

Jena2 includes a general purpose rule-based reasoner which is used
to implement the OWL reasoner. This reasoner supports rule-based
inference over RDF graphs, and provides forward chaining, back-
ward chaining and a hybrid execution model4. The designer should
be aware that the triggering mode can influence not only the mo-
ment at which the derived data is obtained but the data being de-
rived as well. This stems from event occurrences being inserted
in the Jena database continuously as the user interacts with the
portlets.

6.3 How is a fragment fed with an eventual
event?

Feeding is an operation on a fragment which contains an entry
widget, e.g., an entry form. This operation fills up the widget from
the parameters of an eventual event instance. To this end, a conven-
tion is needed to identify which widget obtains the value of which
process property. This is achieved by identifying the widget from
the process property of the ontology.

Figure 8 shows a snippet of a fragment of the bookHotel portlet
(its rendering can be seen in figure 1). The form inputs are identi-
fied from the process properties (e.g. cityNameInput). Feeding is
then implemented as an XSLT stylesheet for the selected eventual
event. A template locates the corresponding <input> element in the
XHTML markup, and introduces a value attribute whose content is
obtained from the corresponding parameter of the chosen eventual
event. In the current implementation, this process is fulfilled by the
portlet producer.

To this end, the getMarkup() operation has been extended with
an eventual-event parameter. On reception, the provider proceeds
to feed the current fragment with this parameter, and returns the
result to the portal. It is worth noticing that the WSRP two-phase
protocol enforces that an interaction in any portlet should cause
getMarkup() to be invoked on all the portlets being syndicated. For
target portlets, getMarkup() will now convey an additional param-
eter: the eventual event. For these portlets, getMarkup() will re-
turn the very same markup (provided no data sharing causes a state
change) but with the values of the form already filled up. Now, it is
up to the user to accept these values or provide her own.
4For clarity sake, the example uses a forward rule, although we are
currently investigating a backward approach.

Figure 8: The markup of the sample fragment of bookHotel (an
excerpt).

7. RELATED WORK
Portlet interoperation has been addressed in [17] where the au-

thors propose the use of a custom JSP tag library in order to en-
able portlets to be a source of data. Moreover, the target portlet
is defined in a WSDL file with a custom extension to describe the
actions which can consume data transferred from other portlets. At
execution time, a click-able icon is inserted into the portlet frag-
ment. By clicking on this icon, the user enacts the flow of data
from the source portlet to the target portlet. Hence, this approach
follows a “backward style” of navigation, and piping information
is described in the WSDL file. By contrast, our approach uses the
fragment markup to convey this information, and uses ontologies to
facilitate portlet interoperation. Additionally, the use of inference
rules enables sophisticated ways of piping that are “declaratively”
described using Jena rules.

This work also relates to Web service composition and orches-
tration. In the SELF-SERV architecture [2], the composition of
Web Services is encoded using statecharts. With the statechart, the
service deployer generates the post-processing and precondition ta-
bles, and this information is distributed among the participating ser-
vices. During the definition of the composite service, the producer
decides if the value of the input of a component is obtained from
the output of another component or requested from the user.

By contrast, our approach is centralized (i.e. all flow informa-
tion, the piping rules, are kept in a single place, the portal), and
it is always up to the user to accept the values suggested by the
piping flow. This is akin to the portal manners where content is
centralized, and freely browsed by the user.

Paolucci et al. [14] and Sirin et al. [18] use a semantic approach
for Web service location and composition. DAML-based ontolo-
gies are used to describe the inputs and outputs of the services. The
semantic match between a service’s outputs and another service’s
input are determined by the minimal distance between concepts in
a taxonomy tree. This is similar to our piping in which “matching”
between portlets is achieving through the help of the ontology.

Agarwal et al. [1] describe the use of deep annotation for Web
Service integration. WSDL files are extended with an ontology
which is used to describe input and output parameters. The service
consumer acts as a querying party by mapping the Web Service on-
tology with its own. A framework, OntoMat-Service, generates the
mapping rules between the consumer ontology and the ontologies

379



referred to in the WSDL documents. At enactment time, the data
for the Web Services are retrieved automatically from the client’s
ontology. From this perspective, our work explores the use of a
rule-based approach where the flow is based not just on the match-
ing between parameters but in richer flow policies.

8. CONCLUSION
Enhancing the user experience is one of the hallmarks of portals.

This implies for the user to perceive the distinct offerings of a portal
as an integrated workplace where data flow smoothly among the
distinct portlets being framed by the portal. The controlled and
cooperative environment that characterizes the portal facilitates the
use of deep annotation to portlet interoperation.

This paper describes such an approach by using a piping mecha-
nism. A pipe basically describes how events of a source portlet can
be mapped into eventual events of a target portlet. Distinct navi-
gation styles can be supported by triggering piping rules in either
a backward or forward way. Another aspect is event consumption.
In a backward mode, distinct events (e.g. flight books) can happen
before an eventual event (e.g. hotel book) is issued. This raises
the question of which flight reservation to consider to feed the ho-
tel booking. Distinct policies can be possible (e.g. FIFO, LIFO)
which will presumably depend on the application semantics.

An unsolved issue is whether this approach can be used to spec-
ify complex transactions among several portlets. In the current
scenario, booking a hotel is completely detached from booking a
flight, i.e. failing to book a hotel does not invalidate the flight book-
ing. However, if both tasks were defined as a transaction then, the
impossibility of booking a hotel would have resulted in canceling
the flight. The notion of transaction implies recoverability. Being
portlets independent components, rollback of a transaction that ex-
pands among distinct portlets rests on the existence of contingency
actions provided by the portlet to undone state changes. Otherwise,
there is not much to be done by the portal, since its role is restricted
to be a container that keeps track of the events risen during portlet
interaction. And it is not always possible to recover a past state
from events, unless contingency actions are provided.

So far, portlet interaction is limited to data flow. More complex
interactions can be envisaged which involve a portlet influencing
the control of another portlet. This is left to further research.

9. ACKNOWLEDGEMENTS
This work is partially funded by the Spanish Science and Tech-

nology Ministry (MCYT) under contract TIC2002-01442 with the
co-support of the European Social Fund, and the Industry Depart-
ment of the Basque Government under contract UE02-A16. Our
gratitude to Sergio Fernández, Iñaki Paz, Fernando Bellas and Dave
Hollingworth for their support throughout.

10. REFERENCES
[1] S. Agarwal, S. Handschuh, and S. Staab. Surfing the Service

Web. In International Semantic Web Conference, volume
2870 of Lecture Notes in Computer Science, pages 211–226.
Springer, October 2003.

[2] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H. H. Ngu.
Declarative Composition and Peer-to-Peer Provisioning of
Dynamic Web Services. In 18th International Conference on
Data Engineering (ICDE’02). IEEE, 2002.

[3] M. Brambilla, S. Ceri, S. Comai, and P. Fraternali.
Specification and Design of Workflow-driven Hypertexts.
Journal of Web Engineering, 1(1), 2002.

[4] W3C Consortium. OWL-S: Semantic Markup for Web
Services, 2004. at http://www.w3.org/Submission/OWL-S/.

[5] S. Handschuh and S. Staab (eds.). Annotation for the
Semantic Web. IOS Press, 2003.

[6] S. Handschuh, S. Staab, and R. Volz. On Deep Annotation.
In WWW2003. ACM, May 2003.

[7] S. Handschuh, R. Volz, and S. Staab. Annotation for the
Deep Web. IEEE Intelligent Systems, 18(5):42–48,
September/October 2003.

[8] Hewlett-Packard. Jena: a Java framework for writing
Semantic Web applications, 2003. at
http://www.hpl.hp.com/semweb/jena.htm.

[9] R. Jasper and M. Uschold. A Framework for Understanding
and Classifying Ontology Applications. In IJCAI99
Workshop on Ontologies and Problem Solving Methods
KRR5, August 1999.

[10] Java Community Process. JSR 168 portlet specification,
October 2003. at http://www.jcp.org/en/jsr/detail?id=168.

[11] G.P. Marquis. Application of traditional system design
techniques to web site design. Information and Software
Technology, 44(9):507–512, 2002.

[12] OASIS. Web Service for Remote Portlets Specification
Version 1.0, 2003. http://www.oasis-
open.org/commitees/tc_home.php?wg_abbrev=wsrp.

[13] F. Pan and J. R. Hobbs. Time in OWL-S. In 1st International
Semantic Web Services Symposium, March 2004.

[14] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic Matching of Web Services Capabilities. In 1st
International Semantic Web Conference, pages 333–347.
Springer-Verlag, June 2002.

[15] C. Peltz. Web Service Orchestration and Choreography. A
look at WSCI and BPEL4WS. WebServices Journal, 03(7),
July 2003.

[16] E. Reshef. Building Interactive Web Services with WSIA &
WSRP. Web Services Journal, pages 2–6, December 2002.

[17] A. Roy-Chowdhury, S. Ramaswamy, and X. Xu. Using
Click-to-Action to Provide User-Controlled Integration of
Portlets, December 2002. at
http://www7b.software.ibm.com/wsdd/library/teacharticles/
0212_roy/roy.html.

[18] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic
Composition of Web Services using Semantic Descriptions.
In 1st Workshop on Web Services: Modeling, Architecture
and Infrastructure. In conjunction with ICEIS 2003, pages
17–24. ICEIS Press, April 2003.

[19] The Delphi Group. Portal Lifecycle Management:
Addressing the Hidden Cost of Portal Ownership, 2001. at
http://www.mongoosetech.com/downloads/
portal_ownership.pdf.

APPENDIX
Figure 9 shows the bookFlight—bookHotel pipe. A Rule object is
defined which includes a name, a list of premises, a list of conclu-
sions, and an optional direction. The premise includes triples, that
check the existence of RDF statements in the Jena repository, built-
in user-defined functions (e.g. subtract), and a set of predefined
functions (e.g. makeTemp).

In the sample, a searchHotel_IS eventual event is obtained from
a pair of departureFlightSelected_OS and returnFlightSelected_OS
events. Specifically, the rule checks the existence of a pair of de-
parture and return events associated to the same passenger, uses a

380



Figure 9: A pipe from bookFlight to bookHotel.

user-defined function, subtract, to calculate the duration of the stay
at the hotel.

The final part of the premise uses the predefined function, make-
Temp, to indicate the creation of two new instances, newEE and
newData, whose properties are assigned in the conclusion of the
rule. The former is an eventualEvent of type searchHotel_IS whose
data property corresponds to an instantiation of hotelBook. The
properties of this instance are in turn obtained from the variables
which have been instantiated in the premise of the rule.

381


