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ABSTRACT

We present a usage consultation tool, based on Internet
searching, for language learners. When a user enters a string
of words for which he wants to find usages, the system sends
this string as a query to a search engine and obtains search
results about the string. The usages are extracted by per-
forming statistical analysis on snippets and then fed back to
the user.

Unlike existing tools, this usage consultation tool is multi-
lingual, so that usages can be obtained even in a language for
which there are no well-established analytical methods. Our
evaluation has revealed that usages can be obtained more
effectively than by only using a search engine directly. Also,
we have found that the resulting usage does not depend on
the search engine for a prominent usage when the amount
of data downloaded from the search engine is increased.
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1. INTRODUCTION

With the recent developments in communication media
and a growing awareness of foreign cultures, people have
become more exposed to foreign languages than at any other
time in recent history. More people are learning foreign
languages, and language tools are increasingly important. In
this paper, we deal with the issue of how a person studying
a foreign language can learn word usage in that language.
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For language learners stuck on problems of language us-
age, dictionaries based on fine distinctions and abstracted
usages have been the main means of obtaining answers for
hundreds of years. Dictionary revisions, however, are few
and far between, and users often cannot find explanations
concerning current usages or specialized terms in dictionar-
ies. Another way to search for information on usage is to
use the KWIC (Key Word in Context) tool. Recent ad-
vances in the full-text search algorithms originally proposed
by Manber [11] now allow users to instantly consult text data
encompassing several gigabytes. The problem, however, is
that large bodies of data are not yet readily available in
languages used less commonly in international situations.

Given that the World Wide Web has become the largest
electronic text body available in any language, one mod-
ern solution is to use a search engine. For example, if a
learner wants to find out which verb is used with “jet lag”
in English, he can simply type “jet lag” into a search en-
gine and obtain usages such as “avoid jet lag” and “recover
from jet lag” among various snippets of information. Sim-
ilarly, search engines can be used to find out how to use
articles correctly: for instance, in French, non-natives will
have problems with usages such as: “revenir du/de Paris”
(here, it’s de), compared with ‘revenir du/de Japon” (here,
it’s du).

Unfortunately, the problem here for users is that the search
results are simply lists of individual usages. Of course, the
search engine ranks the usages, but they are not ranked in
terms of linguistic relevance. Also, using materials from the
Web for language learning can be risky, since there are sites
where language is not used in a standard style. One way to
verify such usages is to scan through several pages and sta-
tistically determine the most prominent usage. In the case
of the verb used with “jet lag”, a user can see that “avoid”
appears many times by scanning through multiple pages of
search results.

To automate this task of scanning and summing, we cre-
ated a tool, called Kiwi, that can read a large number of
pages on behalf of the user and statistically accumulate us-
ages from snippets of those pages.

The idea of creating such a tool to facilitate usage lookup
is not new. The earliest such existing tool is WebCorp [17].
Upon receiving a query, Webcorp sends it to a search engine



and totals the results. This tool is only available in En-
glish, however, and it is not readily applicable to languages
without word segmentation. Other interesting examples are
Google Fight [6] and Google Duel [13], in which the user
enters two different phrases and the tool suggests which is
more commonly used according to the frequency reported by
Google. Although these two sites allow multilingual consul-
tation, the range of flexibility is limited to the “duel” of two
given phrases. Additionally, the effectiveness of this idea
of summing up search engine results in the usage lookup
context has not been verified.

In contrast to these existing tools, Kiwi allows flexible
entry, making it language-independent. This feature is im-
plemented by using our language-free candidate extraction
methods based on techniques originally proposed in the term
extraction domain of natural language processing (NLP).

Interestingly, Kiwi can be applied not only for language
usage consultation but also be used as a “pseudo” question-
answering (QA) tool. Of course, the input to our tool is a
mere query, and it therefore cannot directly receive ques-
tions, as is done in QA. We can obtain answers, however, by
entering a query in the form of an answer, such as “* is the
president of France”, or “* is the capital of Tonga”. Then,
the system will look for strings that can fill the * part, as if
looking for usages. Thus, Kiwi can be situated in between
a search engine and a question-answering tool, having the
feature of summing up search engine results.

This feature is also utilized in recent QA systems. For
example, several QA systems utilize search engine results to
obtain answers by summing the results [10][1][3]. In such
studies, the interest was in the quality of the answers, so
the performance was evaluated in terms of the whole results
of the QA procedure. In contrast, the statistical behavior of
the summing process has not been thoroughly discussed.

Thus, another contribution of this paper is to provide a
fundamental analysis of the statistical behavior of summing
up search engine results. We first discuss questions such as
the effectiveness of summing up results, the number of snip-
pets needed to obtain the results, and the effectiveness for a
user trying to acquire a target usage by looking at summed
results. Another important question is the statistical behav-
ior when different search engines are used. The hypothesis
given here is that even for search engines using different
ranking methods, when a large quantity of search results is
obtained and summed up, the engines’ results will converge
to the same results. We thus discuss the commonness of
usages acquired from different search engines.

In the next section, we describe the overall design of Kiwi.
Then, we explain our language-independent data analysis
method, especially for candidate extraction. In Section 4,
we present example usages obtained using Kiwi. Then, from
section 5 on, we evaluate the usability of Kiwi from various
points of view: through automatic experiments on collo-
cations verifying the accuracy of usage extraction, through
user evaluation of the tool’s speed and the number of actions
required, and finally, by comparing the results obtained by
different search engines.

2. OVERALL SYSTEM DESIGN

Kiwi is software situated between a user and a search en-
gine (Figure 1). Kiwi passes through the following stages in
one cycle of usage consultation:
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Figure 2: The Kiwi site

1. Receive an input query from a user.

2. Send the query and obtain a fixed number of search
engine results that match the query.

3. Extract all fixed-length strings that might include can-
didates.

4. Cut the candidates from these strings.
5. Rank the candidates.

6. Display the results.



The essential procedure of Kiwi is the totalization of the
usages triggered by a query, which corresponds to stages 3-
5. Kiwi can be implemented as simple client software com-
municating directly with a search engine server. Currently,
however, it has been developed on a server available at [16].

Figure 2 shows a Kiwi site with a query on the Chinese
expression of “how * is!” (to look for adjectives in the po-
sition of *). In the topmost part is a query box, where the
user enters a query; in the next line are two pulldown menus
for choosing a language and the number of snippets to be
downloaded. The lower half contains the lists of resulting
usages. Each line shows a possible usage acquired from the
query and can be clicked to return to the original, individual
snippet. This is pasted on the right-hand side of Figure 2.
With this clicking function, the user can view how the usage
actually appears in a longer context.

Compared with previous works, such as [17] and [6], Kiwi
has two distinctive features: the query flexibility, and its
multi-lingual capability. First, regarding flexibility, every
query is constructed by a user based on a pattern match.
Basically, there are three patterns:

Wild card “*’ can be used to replace a missing word or
string. For example, “human *”, “* sans fil”, or “fed
* with” can be entered into Kiwi.

Comparison ’/’ allows users to compare two or more phrases
and prioritize them depending on which is the most
relevant. This can be expressed as (A/B/C...).

And search ‘+’ can be used for narrowing the search do-
main. For example, “* Bush +American president” or
“chateau * +vin France” can be entered into Kiwi.

The cognitive background of this design is as follows. When
a user has a question regarding language usage, he often can-
not clearly remember the complete expression but still has a
few clues that can be utilized to access language data. Such
vague recollections typically follow two major patterns: in
one, the user lacks the information needed to complete part
of a phrase, while in the other, he is uncertain in choosing
the correct word from among several candidates.

Second, as noted above, Kiwi is language independent. In
any language, there is the problem of updating conventional
resources to include current language usage. Conventional
dictionary revisions are few and far between. Such cases
are emphasized for languages that are not widely used in-
ternationally. The available dictionaries are usually older,
the available corpora are too small for KWIC, and the cycle
of revising the data is likely to be longer. Therefore, stu-
dents learning a foreign language other than English often
find that the available language resources are limited, and
that they must rely more on search engine results. This is
the main reason why we designed Kiwi to be independent
of language; that is, Kiwi uses neither language-dependent
algorithms nor a language dictionary for analyzing search
engine results.

In the next section, we describe the essential procedure
inside Kiwi: candidate processing.
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Figure 3: Concept behind the language-independent
candidate extraction methodology

3. CANDIDATE PROCESSING
3.1 Candidate Extraction

When a wild card is used at the beginning or end of a
query, Kiwi needs to cut out the relevant chunk'. As the
method of processing the beginning and end of a query is
symmetric, candidate extraction to obtain the end part of
the query is discussed here.

The easiest way is to cut out a string, or a group of words,
of a fixed length. Fixed-length strings are commonly used
in the KWIC system for non-segmented languages. One
drawback of using fixed-length strings is that it hinders the
aggregation of statistics obtained from data. For example,
although “with” is often found after “be acquainted”, all
occurrences of “with” cannot be put together if the length is
fixed at 10 characters, because there are a variety of strings
that can come after “with.” Therefore, we want a candidate
that has the correct border.

Intuitively, we would expect a candidate to have the fol-
lowing properties:

A Tt occurs frequently.
B It has moderate length.
C It is succeeded by various kinds of characters.

A concerns the relevance of the candidate (as will be dis-
cussed in the next section). On the other hand, C essen-
tially expresses information about word boundaries. B can
be used for either objective. Therefore, we have tried to
implement candidate extraction by combining C and B.

C leads to the idea of looking at the branching degree at a
language chunk border, which has been discussed in the con-
text of automatic term-recognition methods [5][12]. In these
works, the branching notion was used as part of the extrac-
tion evaluation function for detecting a collocation border.
These methods, however, are word based and presume the
use of taggers for non-segmented languages.

The above observations on word sequence can be general-
ized to a character sequence as follows. If the branching de-
gree at each character inside a word is observed, it is seen to
monotonically decrease according to the offset length. This
is a natural result, because the longer the preceding charac-
ter n-gram, the longer the preceding context. On the other

"When it is used in the middle, the boundary can be
straightforwardly determined.



Table 1: Live examples of Kiwi

language Input String Result Examples (translation)
English wireless® network communications internet
English hlatrix * reloaded revolutions software
English * Syndrome dowen chronic fatigue severe acute respiratory
English Arnold * Schwarzenegger Falmer Kling
and the Chamber of and the Order of the
English Harry Potter® Secrets and the Sorcerer's Stone Phoenix
French tour” de france du monde eiffel
*sans fil reseaux des reseaux teélephone
French (wireless) {network) {netwark) {telephone)
B LAN LAN A1—R EiE
Japanese {wireless) {LAMD (LAMN card) (networking)
BT
R {Chamber of Commerce KE F1RI—F R
Japanese (Tokyao) and Industry) {University) {Disney Land)
i AR HMEBERE DR
Japanese {Jun-ichira) (Koizumi) (Prime Minister Kaizumi)
FE R BEE REH
Chinese (wireless) (network) (radio management) (LAMN)
*HERE = =RE A
Chinese {duck) {Beijing) {(the name of restaurant) | (kind of Chinese bread)
German *Bach Sebastian Johann Sehastian Carl Fhilipp Emanuel
*Z 3 37| B =2
Korean {kimchi} {Fogi kimchi) {Chinese cabbage) {Japanese radish)
Real
Spanish {Spanish soccer tearm) hadrid federacion espaficla de Sociedad

hand, the average branching degree at the point of a word
border becomes greater, as the complexity increases, once it
is out of context. This suggests that the word border can
be detected by focusing on the differentials of the branching
degree. This concept is visualized in Figure 3.

Based on this concept, we devised a simple string-based
method for cutting out candidates even from non-segmented
language data. Most importantly, this method is language
independent. With X as a string, let X; be the head i char-
acters of X, and let C; be the number of kinds of characters
at the (¢+ 1)th position of all strings with the prefix X;. We
extract X; as a candidate when

Ci > Ci_y. (1)
Note that this method integrates the notion of the length
(condition B) at the same time, because the decreased branch-
ing degree puts constraints on the length.

To facilitate this procedure, after obtaining snippets, Kiwi
transforms the data into a tree by counting the frequencies
and branching degrees. Then, using the method described
above, Kiwi cuts out candidates by traversing the tree. Re-
lated to this approach in totalizing snippets, Grouper [18]
transforms snippets into a suffix tree in order to classify doc-
uments by grouping snippets semantically. Their method
will be applicable to our simple tree approach in the future,
for the purpose of organizing the resulting usages further on
from a contextual point of view.

Note that there are cases where this method will always
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fail to extract candidates: i.e., when a candidate occurs only
once. More generally, the extraction with our method tends
to fail when a candidate seldom occurs. For example, if there
are only two occurrences of “international” and “intention”,
then “inte” is output as a word. To cope with such cases,
we can use a stop word, such as the space symbol, as a
delimiter for words in segmented languages. The treatment
of stop words was actually considered for the actual system
described in [16]2. Nevertheless, we performed all of the
experiments described in §5 without special processing of
symbols.

3.2 Candidate Ranking

After candidates are obtained, Kiwi ranks them. Here, the
most important information is the frequency (condition A).
The length is also of concern, though, because short strings
obviously occur more frequently than longer ones (condition
B). Therefore, a bias towards longer candidates should be
included in the evaluation function. The question is how
best to incorporate these two features into an evaluation
function formula.

We decided to empirically choose the evaluation function.
With X as the candidate, |X| as its length, and freq(X)
as its frequency, we used the following as our evaluation
function:

F(X) = freq(X)log(|X]+1). )

2This was the case even though our segmentation can be
effective, because it can output word chains as candidates.




Table 2: Top 10 AltaVista results for ‘wireless’

1st Wireless Phone -ATTWireless.com
2nd | Wireless GSM

3rd MSN for Wireless Electronics

4th | Wireless Phone Specials

5th Point Wireless has AT&T

6th | Cingular Wireless

7th U.S. wireless carrier

8th | the wireless plan

9th Welcome to Verizon Wireless

10th | Guide for Wireless Network

We chose this function because it outperformed all other
functions that we considered in the evaluation described
from §5 on.

4. KIWI EXAMPLES

Before moving on to our verification on Kiwi’s perfor-
mance, we consider some actual examples of how Kiwi can
be used (Table 1). These examples are related to seven lan-
guages. Some involve the translation of “wireless network”,
while others show VIP names, film titles, food names, and
SO on.

Though we found some data bias towards Internet-related
topics (e.g., wireless LAN cards being highly ranked because
of advertisements), the examples directly reflect our times:
Arnold Schwarzenegger watching Harry Potter and the Sor-
cerer’s Stone and The Matrix, eating kimchi and Peking
duck, and listening to Bach. Kiwi here is functioning as
both a simple question-answering tool and a usage consul-
tation tool.

What we want to emphasize here is that such an overall
view cannot be obtained through the direct use of a search
engine by the user. Table 2 shows the AltaVista search
results for “wireless”. (Kiwi currently uses AltaVista as
its mother search engine because of its indexing strategy).
These results are badly affected by noise. By comparison,
Kiwi gives far clearer results: network, communications,
and Internet.

5. EVALUATION FOR USAGE

We first evaluated Kiwi’s basic performance by using col-
locations. Our evaluation was done in four stages:

1. Obtain a set of collocations, with each more than three
words in length. These collocations were obtained
from language-learning books and sites.

2. For each collocation, replace the head, middle, or tail
part with a wild card. In the following, these are called
queries, and the replaced words are called answers.
Sample queries include “is sick in *” (bed is the an-
swer), “catch * with” (up), and “il vaut *” (mieuz, in
French, means “it had better”). The resulting queries
amounted to 300 in English and 100 each in Japanese
and French. The results do not include queries with
multiple answers, such as the fact that “in comparison
*7 can be filled with “to” or “with”.

3. For each query, download data matching the query
from AltaVista (only snippets). The maximum data
quantity was set at 1000 matches for each query.
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Figure 4: Accuracies for Kiwi and the baseline when
the top N candidates were verified

4. Calculate the rate of answers appearing among the top
N candidates.

For comparison, a baseline was calculated similarly by
looking at the query matches in descending order of the
search engine results. The rates were counted with respect
to an exact match for the Kiwi results, whereas the base-
line results were counted as correct when the corresponding
string included the required answer.

5.1 Accuracy

Figure 4 shows the Kiwi and baseline results for colloca-
tions. The horizontal axis indicates different values of N,
whereas the vertical axis indicates the accuracy. Each line
corresponds to a different language. The three upper lines
correspond to results obtained from Kiwi, whereas the three
lower lines show results for the baseline. Each plot corre-
sponds to the results averaged for the head, tail, and middle
(i-e., the averaged results of 900 queries for English and 300
queries for French and Japanese).

When N=1 (where only the top-ranking candidate is ver-
ified), the Kiwi performance was twice as good as that of
the baseline. Also, more than 90% of the Kiwi results in-
cluded the required answers among the top ten, which was
superior to the baseline results. As this tool is intended for
human use, this result of answers being included in the top
ten is important. We can conclude that the Kiwi process of
totalization is effective.

We can also see that Kiwi’s performance depends on the
availability of data. Data is the most abundant in English,
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Figure 5: Ranking shift of answers for each down-
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then in Japanese, and lastly in French (see [14]). The num-
ber of matches for a query was around 600 to 700 in English,
400 to 500 in Japanese, and only about 200 in French. The
performance when N=1 in each language exhibits such dif-
ferences.

There were two cases where Kiwi could not provide the
required answers from among the candidates. First, if the
answer did not occur frequently enough on the web, Kiwi
could not extract it. This defect is caused not by Kiwi itself,
but rather by the query not being appropriate for the eval-
uation, or by the Web not having enough data concerning
the query. The error rate attributable to such cases equals
(100 - plot of baseline when N=1000)%; this is because, as
we collect at most 1000 matches, the plot for the baseline at
N=1000 forms the upper bound of the accuracy.

The difference between the Kiwi and baseline plots for
the same language at N=1000 indicates the error caused
by candidate extraction. This difference was only 1% in
English and Japanese but 5% in French, where less data
was available as compared with English. This demonstrates
the performance of our candidate extraction method using
the branching factor. We can say that it was successful in
most cases. On the other hand, the difference between the
plots at N=1 and at N=1000 for the same line of the Kiwi
results indicates the error due to the Kiwi’s ranking method
of formula (2). This amounts to 10 to 30%. In our future
work, we plan to revise the evaluation function used in the
ranking process so that the rate of availability of required
answers can be pushed higher.

5.2 Data Quantity

Using the same queries, we observed the ranking changes
of the answers according to the number of snippets down-
loaded from the search engine. Figure 5 shows the results.
The horizontal axis indicates the number of snippets, while
the vertical axis indicates the rankings of the answer. The
two lines correspond to the average rankings of the answers
for the head and tail parts for English.

We can see that the more snippets are downloaded, the
better (lower) the ranking becomes. Finally, it converges to
1.0, meaning that the answer acquired the highest ranking
among all other candidates. This happens at around 900
snippets. When small numbers of snippets are downloaded,
the ranking still oscillates, and the behavior of Kiwi is un-
stable.

To download and process 900 snippets, the user would
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1. How many meters is 1 yard?

2. In which season can we see Orion in Japan, in
summer or in winter?

3. What does PDA stand for?

4. Complete the following sentence: “The last
shogun of the Tokugawa era was ...th shogun
Tokugawa ...".

Figure 6: TREC-like question examples used in the
user evaluation

Table 3: User evaluation of Kiwi vs. AltaVista

Required time (mins)
Average | Deviation
Kiwi 1.01 0.77
Search engine 1.40 1.18
Number of clicks
Average | Deviation
Kiwi 3.40 2.86
Search engine 7.04 6.24
Confidence (1 low — 5 high)
Average | Deviation
Kiwi 4.64 0.67
Search engine 4.06 1.11
Accuracy (percentage)
Average | Deviation
Kiwi 94.3% 15.2%
Search engine 82.1% 35.5%

have to wait around 30 seconds on average, and majority of
the time is used for downloading. As this is definitely slower
than just using a search engine, we are currently modify-
ing the system so that the analysis results are immediately
shown for a small number of snippets, then dynamically
changed along with the increase in the downloaded quan-
tity of data.

6. USER EVALUATION

We next conducted an experimental user evaluation of
Kiwi, which had two goals. The first was to see how ef-
fective Kiwi could be in actual use. Second, we sought to
observe how reasonably Kiwi could be used as a “pseudo”
QA system. As explained in §1, our tool can be used for QA
tasks by entering answer phrases with the answers replaced
by wild cards. This feature is also difficult to evaluate au-
tomatically®. Consequently, we tested the performance of
Kiwi through this user evaluation.

We collected 20 Japanese students from the computer sci-

3We assumed that queries will have nearly 1000 snippets
that are downloadable from a search engine. Otherwise,
we would not have known whether we were measuring the
Kiwi performance or the quality of the queries. This condi-
tion could not be completely fulfilled for many collocations,
however, and this degraded Kiwi’s performance. Here, for
QA, this difficulty of obtaining suitable queries is even more
strongly emphasized.



ence field, all of whom have been using the Internet for more
than 5 years. Each of the students was requested to answer
TREC-like questions in Japanese by using either AltaVista
or Kiwi. The 32 questions were constructed based on web
site usability test guidelines [15]. Examples of the questions
are shown in Figure 6. The questions were divided into two
groups of 16. 10 students answered the first group by using
Kiwi and the second with AltaVista, whereas the other 10
students answered the second group with Kiwi and the first
group with AltaVista. Each student was asked to answer
the 32 questions by using Kiwi and AltaVista in turn. In
using both AltaVista and Kiwi, the students were asked to
create queries on their own to answer the questions. They
were allowed to refine these queries while searching for the
answers. Also, they were allowed to use ¢/’(comparison) and
‘+’(And search) with Kiwi and the full functionality of query
construction with AltaVista.

The results are shown in Table 3. Each block indicates
the time, number of clicks, confidence score, and accuracy
for Kiwi and AltaVista, while the columns represent the
averages and deviations of the values through 10 subjects.
Kiwi outperformed AltaVista in all categories: with Kiwi,
users could get more accurate answers faster, with fewer
clicks and more confidence. Note that the method of formu-
lating a query, which was totally up to the students in this
experiment, remains an issue with Kiwi, as well as with Al-
taVista. Still, the students could get answers faster with less
action with Kiwi. Additionally, the deviations were smaller
for Kiwi, meaning that many of the users could use Kiwi
in a more stable manner. We guess that this results from
Kiwi’s totalization of search engine results, so that it helps
users think based on the arranged information.

The performance of Kiwi was reduced for questions of the
following two types. The first type was a question whose
answer was not available on the Web: in this case, the users
could not obtain the correct answer. Note that the subjects
who used AltaVista had the same problem with this sort of
question.

The second type was a question whose query form does not
match with its form in Kiwi. Currently, Kiwi only supports
one wild card per query. When the subjects faced a question
like No. 4 in Fig. 6, however, they all faced the problem of
not being able to enter several wild cards. A user-friendly
interface thus plays an important role, and we still have to
consider this viewpoint in our future work.

7. EVALUATIONWITH DIFFERENT
ENGINES

7.1 Performance Difference

So far, we have used AltaVista as the search engine for
Kiwi. In this section, we examine the differences in Kiwi’s
results when different search engines are used.

First, we compared the performance difference for collo-
cation. We chose AllTheWeb and Google as the next two
engines for evaluation. Note that they use different indexing
and ranking strategies from AltaVista, although most of the
details of these strategies are not open to the public for com-
mercial reasons. The most important difference, above all,
is that Google and AllTheWeb use word-based indexing [2]:
for example, a query of “moon*” will not generate candi-
dates such as “moonlight” or “moonshot”. This is the same
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Figure 7: Accuracy of Kiwi using AllTheWeb and
Google

for Japanese and Chinese: Google and AllTheWeb depend
on chunkers.

The results are shown in Figure 7. As in Figure 4, the
horizontal axis indicates different values of N, whereas the
vertical axis indicates the accuracy. Each line corresponds
to a language (English, Japanese, French) that was tested
with one of the search engines (AllTheWeb or Google). The
AltaVista results were already shown in Figure 4.

Generally, not much performance difference was observed
from the point of view of accuracy, although the search en-
gines adopt very different indexing and ranking strategies.
In English, where data is abundant, the performance was
especially similar, whereas in Japanese and French, some
differences were seen.

Usually, AltaVista outperformed the other two, because of
its indexing strategy. This trend was emphasized in Japanese.

7.2 Commonness among Candidates

Next, we verified the commonness of the candidates pro-
posed by Kiwi when using different search engines. The
results are shown in Figure 8. The horizontal axis indicates
different values of N that were verified, whereas the ver-
tical axis indicates the percentage of common candidates.
The common candidates were verified between two different
engines (i.e., AllTheWeb vs. Google, AltaVista vs.Google,
AltaVista vs. AllTheWeb) before being averaged into one
score. Each line corresponds to a language.

The commonness rate was the highest in English. Curi-
ously, French then came before Japanese. In English, 80 to
90% of the candidates were the same among any two search
engines when the best ranking candidate was verified. This
was reduced to 50 to 70% when the top five were examined,
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Figure 8: Commonness of candidates among Al-
taVista, AllTheWeb and Google

because the sets of top n candidates for different engines
included different candidates when n was increased?

The commonness was the lowest in Japanese when the
results were compared between AltaVista and the other two
engines. This was due to the different string-based indexing
strategy adopted by AltaVista for Japanese.

Still, the concordance of candidates shown here is sig-
nificant, even though search engines with totally different
methodologies were utilized. This commonness was due to
the totalization process in Kiwi. This leads to a hypothe-
sis: that if sufficient data is available, the distribution of the
aggregated search engine results is independent of the cur-
rent ranking methodologies. This holds if all search engines
handle all documents on the Web and Web data is abun-
dant. Of course, this is not the case, in fact, and all search
engines can handle only a portion of the documents on the
Web; therefore, this hypothesis does not hold so trivially.
Even so, we may observe that the data will trend towards
convergence.

Such a hypothesis gives a solid background for what is
being researched in NL and IR based on search engines, in
the sense that the results obtained using a search engine will
be similar even when other search engines are used. Through
our work, we think that we have observed a small piece of
evidence supporting this hypothesis.

8. RELATED WORKSAND DISCUSSION

Studies on usage consultation using the WWW are rather
limited as far as we know. Apart from WebCorp [17], Google
Fight [6], and Google Duel [13], Keller et al. [8] argue that
high-quality n-grams can be derived from the ostensibly
noisy WWW. In the latter case, the target was obtaining
adjective-noun, noun-noun, and verb-object bigrams in or-
der to solve the problem of data sparseness in using corpora.
The basic philosophy of using the WWW for obtaining us-
ages is a common thread in our work.

In contrast, if we change the viewpoint from usage to QA,
there are many works, especially those that put emphasis

4If engine A ranks results in the order of r1,r2,rs, whereas
engine B ranks them as ra,r3,r1, then the overlap increases
from 0% to 50% and finally to 100%. Such cases are infre-
quent, however, and B tends to have candidates ranked as
T1,74,T5.

on the use of the WWW. Among the most recent ones, [10]
compared the performance of their MULDER QA system
to that of AskJeeves on questions drawn from the TREC-
8 question answering track. They found that MULDER’s
recall is more than a factor of three higher than that of
AskJeeves. This study supports the possibility of applying
our usage tool for QA tasks.

In exploiting Kiwi’s feature of totalization of search re-
sults, we might go further and utilize contexts for structur-
ing the resulting usages. Giving a richer context to organize
usages might help as much as eliminating noise. This can
be done in one of two ways. The first is to adopt classifica-
tion of documents, in the manner shown by [7] or [9], or by
structuring snippets using the technology proposed in [18].
The second way is to organize resulting usages directly by
utilizing the user context. The techniques described in [4],
where search is performed using the context provided by a
user document, may be applicable.

9. CONCLUSION

Kiwi is a web-based usage consultation tool employing
search engines. When a user enters a string of words to check
their usage, the system sends a query to a search engine
to obtain a data related to the string. The result is then
statistically analyzed, and the results are displayed.

Our system differs from existing systems in two ways.
First, users can enter more flexible queries than with other
existing software for related purposes. Second, Kiwi is lan-
guage independent, so queries can be made in any language
if the search engine supports that language. This is achieved
by string-based processing of the candidate extraction and
ranking. We have formalized the extraction through char-
acter branching, and Kiwi ranks candidates based on fre-
quency and length.

According to our evaluation, the missing parts of collo-
cations were provided by the highest-ranked candidate at a
rate of 70% to 80% in English, Japanese, and French. When
the top ten candidates were considered, nearly 95% of the
answers were found. Also, a user evaluation was conducted
by requesting subjects to solve TREC-like questions. Kiwi
outperformed AltaVista in terms of user performance.

Although search engines are designed for general use, rather
than language-specific use, we have found that they can be
useful for usage consultation when the results are aggre-
gated. Moreover, Kiwi results with different search engines
demonstrated similar distributions of usages in our investi-
gation based on collocations. Users should bear in mind,
however, that the results are biased by the amount of avail-
able data related to certain topics.

Currently, Kiwi is available to the public at [16].
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