
Improving Web Search Efficiency via a Locality Based
Static Pruning Method

Edleno S. de Moura
Federal University of

Amazonas, Brazil

edleno@dcc.ufam.edu.br

Célia F. dos Santos
Federal University of

Amazonas, Brazil

cfs@dcc.ufam.edu.br

Daniel R. Fernandes
Federal University of

Amazonas, Brazil

drf@dcc.ufam.edu.br

Altigran S. Silva
Federal University of

Amazonas, Brazil

alti@dcc.ufam.edu.br

Pavel Calado
INESC-ID, Portugal

pavel@algos.inesc-id.pt

Mario A. Nascimento
University of Alberta, Canada

mn@cs.ualberta.ca

ABSTRACT
The unarguably fast, and continuous, growth of the volume
of indexed (and indexable) documents on the Web poses a
great challenge for search engines. This is true regarding
not only search effectiveness but also time and space effi-
ciency. In this paper we present an index pruning technique
targeted for search engines that addresses the latter issue
without disconsidering the former. To this effect, we adopt
a new pruning strategy capable of greatly reducing the size
of search engine indices. Experiments using a real search
engine show that our technique can reduce the indices’ stor-
age costs by up to 60% over traditional lossless compres-
sion methods, while keeping the loss in retrieval precision
to a minimum. When compared to the indices size with
no compression at all, the compression rate is higher than
88%, i.e., less than one eighth of the original size. More
importantly, our results indicate that, due to the reduction
in storage overhead, query processing time can be reduced
to nearly 65% of the original time, with no loss in aver-
age precision. The new method yields significative improve-
ments when compared against the best known static prun-
ing method for search engine indices. In addition, since our
technique is orthogonal to the underlying search algorithms,
it can be adopted by virtually any search engine.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess; H.3.1 [Content Analysis and Indexing]: Indexing
methods

General Terms
Performance, Experimentation

Keywords
pruning, indexing, search engines, web search, information
retrieval

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

1. INTRODUCTION
Search engines are an essential resource for making the

Web useful, and usable, for the public in general. In fact,
recent reports indicate that Web traffic due to search en-
gines has doubled from 2002 to 20031. The volume of Web
pages available keeps also growing at a fast pace, fostered
mainly by the increasing number of people interested in, and
capable of, using the Web. Thus, there is a great demand
for solutions that allow search engines to improve their per-
formance, both in terms of effectiveness as well as efficiency.
In this paper we aim at the latter without losing sight of
the former. We propose and investigate a technique that
can be used by any search engine to improve its efficiency in
terms of query processing time and resource consumption,
at nearly no cost in terms of the quality of query results.

To allow efficient query processing over the large amount
of documents stored in its document database, search en-
gines rely on a set of data structures –the indices [20]. At
least two types of indices are usually deployed: The fre-
quency index, which contains, for each term t, its frequency
on each document where t occurs, and the positional index,
which contains, for each term t, information about the oc-
currence positions of t on each document. The first allows
us to measure the relative importance of terms in both the
indexed documents as in the queries. The second allows
search systems to process positional queries, such as phrase
or proximity queries, and is usually the most expensive one
to maintain and use. As almost all of the computational
cost for processing user queries is due to the access to these
indices, there is a great need for solutions that not only
decrease storage costs, but also speed up the overall sys-
tem performance by attenuating disk access. This must be
achieved while retaining the quality of the answers provided
by the search engine to its users.

In this paper, we present a new lossy compression method
that is specifically designed for web search engines, taking
into account typical features present in such systems. When
compared to other lossy compression methods, our method
achieves better ranking quality levels with a similar com-
pression rate. In other words, it is possible to reach bet-

1http://www.clickz.com/news/article.php/2108921.

235

ter compression rates while maintaining the quality of the
search results.

To support our claims, we present experiments which show
that our method allows a 60% reduction in index sizes, where
the indices were already compressed using traditional loss-
less compression methods. This represents not only a drastic
reduction in storage costs but also a reduction of nearly 40%
in average time to process each query, with almost no loss
in the quality of ranking results.

To evaluate potential losses in raking quality, we have
also performed experiments to compare the rankings pro-
duced by a search engine under the following circumstances:
(1) using only a lossless compression method; (2) using the
best known lossy compression method in the literature; and
(3) using our method. We have found that the rankings
produced by our method are more similar to the rankings
generated without compression. At a compression rate of
76%, our method achieved results similar to the best known
lossy compression method with a compression rate of 60%.
For phrase queries, the gain was even higher, at an 85%
compression rate the results were similar to those obtained
by the best known lossy compression method at a 57% com-
pression rate.

This paper is structured as follows. Section 2 discusses
the motivation for compressing search engine indices and
presents work related to this topic. In particular, we discuss
the baseline method used in our experiments, which was
extended here to deal with practical situations not consid-
ered previously. Section 3 presents details of our proposal.
Section 4 presents our experimental setup and the results
obtained with a real web search engine. Section 5 discusses
important practical issues not explicitly mentioned in the
experiments, concerning the deployment of pruning-based
lossy compression methods on web search engines. Finally,
Section 6 concludes the paper and presents suggestions for
future work.

2. COMPRESSING SEARCH INDICES
On typical search engines, the frequency and the posi-

tional indices require about the same amount of storage
space required by the document database. For instance,
TodoBR2, one of the largest Brazilian search engines, has
a document database that requires 22 Gb to store approx-
imately 10 million documents, while its indices require a
total of roughly 31.7 Gb when stored with no compression,
of which 26.3 Gb are for the positional index and 5.4 Gb for
the frequency index. In addition, almost all of the computa-
tional cost associated with processing user queries is due to
the time needed to access these indices. Thus, a reduction
in their size not only decreases storage costs but also speeds
up the overall system performance. In essence, if the search
engine indices are smaller, there will be less data to be read
from disk and thus less time spent on query processing.

A successful approach to reduce the index size is the use of
data compression techniques. These techniques can be loss-
less [1, 20, 3, 7, 16], where no information is ever discarded
and the original files can be obtained from their compressed
version, or lossy, where the index size is reduced by discard-
ing information that is deemed not useful at query process-
ing time. The use of lossless compression, however, imposes
upper bounds on the compression rates, which represents a

2http://www.todobr.com.br

practical limit to the performance improvements and reduc-
tion in storage space that can achieved.

To overcome such bounds, one can use lossy compression
methods. Examples of such methods are stop-word removal,
where the index entries for terms that are very common
are removed, and Latent Semantic Indexing (LSI) [8]. Al-
though these methods have been proposed originally to re-
move noisy information from the indices, they can be seen as
lossy compression techniques, since they also reduce indices
sizes. These two methods, however, have strong drawbacks.
LSI involves high computational costs, rendering its appli-
cation not practical for search engines that deal with non-
trivial size collections. Stop-word removal typically does
help in improving search performance, but it is a quite lim-
ited compression technique since it only removes inverted
lists for a restricted set of terms and is often domain de-
pendent. An inverted list is the complete set of entries for a
term in the index. This technique usually yields just a small
reduction in index sizes.

A more effective lossy compression alternative for search
indices is the use of pruning methods [1, 17, 5]. The rationale
is to remove from the indices entries whose potential contri-
bution to the relevance score of the documents in which they
occur is so small that their removal will have little effect in
the final ranking position of these documents. The expected
impact of this removal is a noticeable reduction in storage
requirements, I/O operations and computational overhead.
Our proposal fits in this category. Next we present a brief re-
view of pruning methods for search engine indices, focusing
on a particular technique [5], which we used as a departure
point for our proposal.

2.1 Pruning Methods
Pruning methods have been used to reduce both CPU

costs and the amount of elements read from disk during
query processing. Such methods can be classified as dy-
namic [17, 1] and static [5]. Dynamic methods maintain the
index completely stored on disk and use heuristics to avoid
reading unnecessary information at query processing time.
In this case, the amount of pruning performed varies accord-
ing to the user queries, which represents an advantage, since
they can be better adapted to each specific query. In con-
trast, static methods try to predict, at index construction
time, the entries which will not be useful at query process-
ing time. These entries are then removed from the index
and, for this reason, static methods can be seen as lossy
compression methods. Static methods offer the advantage
of both reducing the disk storage costs and time to process
each query. A system that uses both static and dynamic
methods can also be implemented to take advantage of the
two types of pruning options.

We are interested in static pruning methods as a lossy
compression alternative for search engine indices. Static
pruning methods proposed and experimented in the liter-
ature so far take into account only disjunctive queries. It is
this restriction that allows those methods to predict the in-
dividual impact of each single term in the final ranking score.
This restriction, however, is not applicable to most web
search engines, where conjunctive queries and phrases are
usually allowed and are popular among users [2, 6]. These
types of queries may have a significant impact on the per-
formance of the pruning methods. For instance, to achieve
a significant reduction in the time to process a phrase query,

236

it is necessary to remove entries not only from the frequency
index, but also from the positional index. However, all meth-
ods proposed so far only consider removing entries from the
frequency index.

This lack of studies on how to use pruning strategies on
real case search engines has motivated us, to not only study
the performance of a previously proposed static pruning
method in this scenario, but also to propose new pruning
solutions specifically designed to deal with typical search
engine queries.

2.2 Carmel’s Pruning Method
A particularly successful static pruning method was pro-

posed by Carmel et al. [5]. For simplicity, hereafter we re-
fer to this method as Carmel’s method. This method has
demonstrated excellent practical results and, for this reason,
we also chose it to serve as a baseline of comparison to our
approach.

The list of all entries of a term t in frequency (and also in
the positional) index is known as the inverted list of t. The
main idea behind Carmel’s method is to use the search en-
gine’s ranking to compute the importance of each inverted
list and determine which entries of the index can be removed.
This information is obtained by taking the individual terms
from the collection vocabulary and submitting each of them
as a single-term query to the search system. The resulting
document list for each term t will then contain the docu-
ments which are related to t, sorted in decreasing order of
importance according to the search engine’s ranking criteria.
Notice that this ranking criteria already includes any type
of evidence (e.g., link information, anchor text, or others)
that the search engine considers when ranking documents.

Let Rt be the resulting list for a term t. Rt provides a
ranking for the indexed documents. The higher a document
D ranks in Rt, the higher the chance that D will appear in
the results of a query containing term t. Carmel’s method
takes just the top portion of Rt to guide the pruning process.
Each frequency index entry that represents the occurrence
of a term t in a document D is removed from the index if D
is not present in the top portion of Rt.

The number of relevant entries in the inverted list of a
term t in the frequency index is determined according to a
criteria called δ-top, which in turn is based on a parameter
δ ∈ [0, 1]. The value of δ is typically chosen via experiments.
The criteria δ-top only preserves entries that correspond to
documents in Rt whose score, given by the search engine,
is at least δ times the highest score of all documents in Rt.
This new list is called Rt(δ). For instance, if δ = 0.7, each
document with a score of at least 70% of the top score will
be in Rt(δ). Ideally, this criteria will preserve a number of
elements large enough to give a good approximation of the
ranking scores for the top answers of every query submitted
to the system.

The original proposal of Carmel et al. does not indicate
how the method could be applied to prune entries from po-
sitional indices. In our study, we extended the method to
perform experiments with phrase queries. For this, we prune
the positional index by removing all the occurrences that
correspond to each entry pruned from the frequency index.
For instance, if an entry for document D with frequency 4
is removed from the inverted list of term t, then the four
entries that represent the occurrences of t in D are also re-
moved from the positional index.

In Section 4, we present experimental results of Carmel’s
pruning method when applied to positional indices in phrase
queries. Our experiments indicate that this method is in fact
useful for many of the queries commonly submitted to web
search engines, but that gains are not as significant as in
the case of scenarios with a majority of conjunctive queries
or phrase queries. Based on the observation of the weak-
nesses of this method, we propose and experiment a new al-
ternative, designed specifically for pruning indices in a web
search engine environment, considering not only disjunctive
but also conjunctive and phrase queries.

3. LBPM: A NEW PRUNING METHOD
Some types of queries typically submitted to search en-

gines, such as conjunctive queries and phrases, require that
the pruning method preserves index entries for documents
that occur in the inverted lists of different terms, i.e., docu-
ments where two query terms occur together. Since Carmel’s
method takes information individually from each term to
prune the entries, the resulting pruned index may not hold
this property. As a consequence, important documents may
not be present at the final ranking.

This problem is illustrated in Figure 1, where the ranked
list for term A, RA, starts with documents 3, 15, 1, 8 and
14, and finishes with documents 2, 31, 4 and 13. The ranked
list for term B, RB , starts with documents 2, 1, 7, 9 and
43 and finishes with documents 25, 16, 3 and 21. Suppose
that the shadowed areas correspond to portions pruned in
both lists. After the pruning, a query requiring documents
that contain both terms A and B would include document
1 in the answer, but would not include documents 2 and
3. However, these last two documents would be originally
in the answer before pruning. Further, documents 2 and 3
could be important to the query, since they appear on the
top positions of the individual rankings for terms A and B,
respectively. This example shows that a pruning solution
which does not take into account co-occurrences of terms
within documents may fail to preserve important results for
conjunctive and phrase queries.

Based on this observation, we propose a variation of Car-
mel’s method that aims at predicting what set of terms may
occur together in queries and uses this information to pre-
serve common documents in the inverted lists of these terms.
Therefore, besides top entries of each postings for each term,
our method preserves also entries that are in the top list of
other related terms.

...

...

TERM − A

TERM − B

3 8 14

2 1 7 9

15 1

25

42

43 16 3

1331

21

Figure 1: Loss of information caused by prun-
ing term inverted lists without considering co-
occurrence of terms across documents.

A key step for any pruning method is to predict the index
entries that will be effectively useful at query processing
time. In cases where queries are composed of conjunctive
expressions or phrases, this means we also need to predict
which sets of words will appear together in the queries.

237

An intuitive heuristic is to consider words that appear
close in the documents as good candidates to appear to-
gether in a query. We have adopted this idea to produce a
new pruning method, which we call the Locality-based prun-
ing method (lbpm). In our method, we consider that two
words are close if they appear in the same sentence. Sen-
tences are obtained from the documents by extracting frag-
ments of text that represent natural language sentences.

As in Carmel’s proposal, our method determines which
term occurrences are individually important to each docu-
ment. The method uses this information to select from the
text database sentences that are associated with such oc-
currences, here called significant sentences. Following, the
significant sentences are sorted and selected in order to con-
trol the final index sizes. Finally, they are used as the input
information that guides the pruning process. In summary,
our method comprises three steps: (1) determining signifi-
cant sentences, (2) ranking the significant sentences and (3)
pruning the indices. These steps are detailed in the following
sections.

3.1 Determining Significant Sentences
Our goal in this step is to obtain sentences that, according

to the search engine ranking criteria, are related to the most
significant terms of each document. We use the method
proposed by Carmel et al [5] as the starting point to obtain
these sentences.

We start by determining the significant terms of each doc-
ument D by computing, for each term t in the database
vocabulary V, the ranked list Rt(δ). Notice that this corre-
sponds exactly to Carmel’s pruning method. We can now
define the significant terms of a document D as:

T (D) = {t|D ∈ Rt(δ), ∀t ∈ V}

Thus, the significant terms of a document D, denoted by
T (D) are all terms t whose set Rt(δ) contains D.

We use this information to compute the significant sen-
tences of a document D, which are all those that contain at
least one of the significant terms of D, i.e.:

S(D) = {Si|T (D) ∩ Si 6= ∅, ∀Si ∈ D}

where each Si is a set of words corresponding to a sentence
in D.

This alone could be used to filter out entries and pro-
duce the pruned index. However, in many applications it
is important to keep control of the final size of the pruned
index. In this case, since the index size is proportional to
the number of significant sentences selected, it is necessary
to select a limited number of sentences in order to keep the
final index sizes under control. In order to add this form
of control to our method, we rank the significant sentences
of a document to determine a relevance level for each one
of them. This ranking is then used to control the number
of relevant sentences and, consequently the estimated final
index sizes.

3.2 Selecting Sentences
Suppose that we want to select only a fixed number of

significant sentences of D from set S(D). This is achieved
by ranking the sentences in S(D) according to an estimation
of their importance for search engine queries.

Consider the existence of a function common(S(D), T (D))
that returns the sentence in S(D) that has the most terms

in common with T (D). The procedure presented in Figure 2
is used in our method to rank the sentences and select the
ones which will guide the pruning process.

1 Sentence Selection
2 begin
3 let D be a document;
4 let T (D) be the set of significant terms for D;
5 let S(D) be the set of significant sentences for D;
6 let p be the final desired percentage;
8 T ′(D)← T (D);
9 S′(D)← ∅;

10 size← 0;
11 do
12 Scommon ← common(S(D), T ′(D));
13 S′(D)← S′(D) ∪ Scommon;
14 size← size + |Scommon|;
15 T ′(D)← T ′(D)− {x|x ∈ Scommon ∧ x ∈ T ′(D)};
16 S(D)← S(D) − Scommon;
17 if T ′(D) = ∅ then T ′(D)← T (D)
18 until (size ≥ p|D|) or S(D) = ∅
19 return S′(D);
20 end

Figure 2: Procedure for selecting a subset of signif-
icant sentences.

This procedure works by selecting sentences until there
are no more significant sentences to select (i.e., S(D) is
empty) or until the size, in terms, of all the selected sen-
tences reaches a percentage p of the size of D. The algo-
rithm makes a copy of T (D) to T ′(D), and then executes
the loop in the lines from 9 to 16. Each iteration of the
loop adds to S′(D) the sentence S from S(D) that has more
terms in common with T ′(D). The size variable is then in-
cremented with the size of S, the terms in S are removed
from T ′(D) and S is removed from S(D). The removal of
terms from T ′(D) allows selecting each sentence of S′(D)
based on different sets of significant terms. If the sentences
already selected cover all significant terms, T ′(D) becomes
empty, which makes the algorithm assign T ′(D) = T (D)
(line 15) again, starting a new round of choices based on the
significant terms, as long as there is room for adding new
sentences given the threshold p.

The selection of sentences has the goal of preserving as
many significant terms as possible. The extra cost given by
the algorithm to perform this task is not high. The algo-
rithm can be implemented in O(s2), where s is the number
of sentences of each document. However, since the size of
each document is independent of the number of indexed doc-
uments, s is constant per document and the cost to run the
sentence selection algorithm for all documents is linear in
the collection size.

3.3 Pruning the Indices
After selecting sentences to represent each document, these

sentences guide the pruning process. In the positional index,
only occurrences of terms in the selected sentences are pre-
served. The remaining are removed. In the frequency index,
entries that represent the frequency of a term t in a docu-
ment D are preserved only if t occurs at least once in at
least one of the selected sentences of D.

238

4. EXPERIMENTS
In this section we provide experiments to evaluate the per-

formance of the studied pruning methods. All experiments
were carried out on a common search engine and show the
relation between the amount of reduction in the index sizes
obtained by each method, the eventual losses in the rank-
ing quality, the divergence from the original search engine
ranking, and the gain in time efficiency.

4.1 Experimental Setup
The experiments with pruning methods presented here

were carried out on two collections. The Los Angeles Times
(LAT) collection from TREC [13] and the TodoBR collec-
tion, which is a set of documents extracted from a real search
engine. The LAT collection contains about 132,000 docu-
ments (467 MB). For this collection, the queries were se-
lected from the ad-hoc tasks for TREC 8, for topics from
401 to 450. We have used the titles of the topics to compose
short queries in order to have query sizes close to the ones
typically used on the web. These titles were then applied
to the search system as both disjunctive and conjunctive
queries. Queries for LAT collection were processed using
the traditional vector space model to rank the document an-
swers [18, 1]. We have decided to use the LAT in the intent
of discovering possible differences between running pruning
methods on a web collection and on a non-web collection.

The TodoBR collection contains over 11 million web pages,
collected from the Brazilian web. It was chosen to present
the experiments in a real case search engine environment, in
order to better validate the ideas presented here. We have
used in the experiments queries extracted from a log of more
than 1 million real user queries submitted to TodoBR. This
log is one of the main reasons we have chosen TodoBR collec-
tion for our experiments, since it provides useful information
about search engine user preferences.

All the indices used, including the original, i.e., not pruned
indices, were compressed using Elias-δ lossless methods for
coding document numbers, frequencies and positions, as de-
scribed in [20]. The TodoBR index sizes after compression
with Elias-δ are 8.4 Gb for the positional index and 1.4 Gb
for the frequency index, totalizing 9.8 Gb of compressed
indices. The compression rates computed for the lossy com-
pression consider these index sizes as the baseline. For in-
stance, a compression rate of 80% in the experiments with
TodoBR means a total index size of 1.96 Gb. We have de-
cided to combine lossless and lossy compression to show a
scenario with fully compressed indices. The TodoBR indices
with no compression at all require 31.7 Gb of disk storage,
when representing the frequency entries with 8 bits, the doc-
ument numbers with 28 bits and the occurrence positions
with 28 bits. In the case of LAT collection, the indices with
no compression require 738 MB of disk storage and the index
sizes after compression with Elias-δ are 184.5 MB.

An important information about the experiments con-
cerns the ranking strategies applied. As in every large scale
search engine, the ranking algorithm applied on TodoBR
was computed using not only the document texts, but also
other auxiliary sources of evidence. For this ranking algo-
rithm we have combined three different sources of informa-
tion: document contents, anchor text concatenation and the
authority value of each document.

The document content evidence, consists of the similar-
ity between the text of the document and the user query,

computed using the vector-space model [18, 1]. The anchor
text concatenation evidence consists of the similarity be-
tween the anchor text in all linking documents and the user
query, also computed using the vector-space model. The
authority value evidence of each document is given by the
global HITS algorithm. The global HITS algorithm consists
of applying the HITS algorithm [14] to the full link graph of
our web collection, instead of just to the documents related
to the user query, as defined in [4]. The final similarity
score of each document is given by:

s(d, q) = [1−(1−sc(d, q))×(1−sa(d, q))×(1−sh(d, q))] (1)

where sc is the vector-space similarity of the query q with
the contents of document d, sa is the similarity of q with the
anchor text concatenation associated with d, and sh is the
authority value of d.

Notice that the search engine ranking function is not our
main focus here. We have decided to adopt a known solution
proposed for search engines in order to have more realistic
results in the experiments. As search engines usually take
other information to compute the ranking, it would not be
fair to perform experiments with only one source of evidence.
Another important detail about the ranking used is that
the main cost in both disk storage and computational effort
comes from the indices we are pruning. Anchor text in the
TodoBR collection has its own index that represents only
10% of the size of the main positional and frequency indices.
The HITS values are pre-computed and fit in memory. More
detailed information about this ranking combination can be
obtained in [4].

Also, note that we are not interested in evaluating the
quality of the ranking algorithm itself, but only the impact
of the pruning method in the final ranking. We have also
experimented with the system without this extra informa-
tion, and the conclusions were the same as those obtained
for the experiments shown here.

Finally, the experimental environment for evaluating the
time efficiency of the systems comprises two machines run-
ning the Linux operating system version 2.4.21. The search
engine server runs on a Pentium 1.7 GHz machine with 2
Gb of main memory, and three 36 Gb SCSI disks. The
search engine client runs on a Pentium 4, 1 GHz machine
with 512 Mb of main memory. The two machines are con-
nected directly (using a crossover cable) by an 100-megabit
fast Ethernet connection.

4.2 Query Types
Search engines usually provide rich query options to their

users. For instance, Google3 allows users to include query
options like inserting phrases in the query or making a query
term mandatory. In general, at least three types of queries
are important for search engine environments: conjunctive,
disjunctive, and phrase.

In search engines like Google, Altavista4 and also in Todo-
BR, queries are taken as conjunctive by default and, as such,
conjunctive queries are very common. In fact, in TodoBR,
roughly 79% of the queries with more than one term are
conjunctive. Phrase and disjunctive queries are much less
common. For instance, in TodoBR they form 20% and 1%
of the submitted queries, respectively. Nonetheless, we also

3http://www.google.com
4http://www.av.com

239

will investigate these types of query due to its possible im-
portance to other search systems.

To understand the impact of the proposed pruning method
over each query type, we have experimented with all the
three query types described above. Each of the query sets
used in the experiments have 1000 queries selected from
the TodoBR log. All the queries were selected randomly.
Queries with only one term were removed from these exper-
iments, because both methods yield very similar results at
the compression rates experimented. For sake of complete-
ness, we have also experimented the systems with a query
set of 1000 queries randomly selected from the TodoBR log,
without any restriction of type or number of terms. The
query set in this case was composed of 89.3% conjunctive
queries, 10.2% phrases and 0.5% disjunctive queries, while
single-term queries correspond to 35.9%.

In the case of the LAT TREC collection, we have ex-
pressed the query topics as conjunctive and disjunctive queries,
taking their title as the query. It was not possible to use the
queries as phrases in these experiments since most of them
resulted in empty or insignificant result sets.

4.3 Performance Evaluation
In order to study the quality of pruning methods we use

here two distinct measures: the distance between the origi-
nal ranking and the ranking obtained by the pruned indices
and precision and recall curves. The ranking distance is
computed here using a variation of Kendall’s tau method,
proposed in [9] to compare the top k answers of two different
rankings.

Kendall’s tau method yields a score that lies between 0,
when the two rankings are identical and k(3k − 1)/2, when
the top k answers provided are completely disjoint. To nor-
malize the results we have used the formula x′ = 1− 2x

k(3k−1)
,

where x is the non-normalized Kendall’s tau result, as also
done in [5]. Therefore, the final comparison of rankings pre-
sented here will vary from 1, representing equal rankings,
to 0, representing completely different rankings. The higher
the value of x′, the more similar the rankings compared.

For the experiments, we have compared the top 20 answers
in all graphics presented. We have chosen this number since
search engine users usually view only the top 20 results.
In fact, most of them require only the first 10 results. In
TodoBR for 70% of the queries only the first 10 results are
viewed [19] and for roughly 90% of the queries the top 20
results are viewed.

Since we deal with phrase and conjunctive queries, it is
common to have queries that provide small result lists. In
some cases the number of results is smaller than 20. For this
reason, we need to adapt Kendall’s tau measure, since it was
originally proposed to compare lists with an equal number
of answers. This is not a problem in studies comparing the
effect of pruning over disjunctive queries, since it is possible
to assure the two lists will have at least k answers in each, for
a previously determined k [5]. However, since we are deal-
ing also with conjunctive and phrase queries, the number of
answers when using pruned indices can be smaller than the
ones in the original answer. To deal with this case, when
getting a smaller number of answers in the pruned indices,
we add fake answers to this list. These fake entries consist
of invalid and distinct document numbers.

This modification takes into consideration the fact that
the smaller list has lost information that was present in

the original answer. For instance, with this modification,
it is possible to compare an empty answer, obtained with
the pruned indices, with an original answer list with 20 ele-
ments. We simply add 20 fake answers to the empty list and
get two completely different rankings, yielding Kendall’s tau
measure equal to 0.

The second measure used to evaluate the pruning meth-
ods is the precision/recall curves obtained by each query.
Precision is the percentage of documents retrieved that are
relevant to a given query. Recall is the percentage of relevant
documents that were retrieved. To plot the precision/recall
curves we computed a precision value for each of the eleven
standard recall points: 0, 10, 20, . . . , and 100%. We have
determined the set of relevant documents for each query us-
ing the pooling method employed for the Web-based collec-
tion of TREC [11, 12]. For constructing the pools we have
evaluated the first top 20 answers of each ranking for each
query.

4.4 Results
This section presents the experimental results obtained

with lbpm and Carmel’s method. The section is divided in
three parts: first we study the similarity between rankings
before and after pruning, next we study the impact of prun-
ing on precision and recall and, finally, we measure time
efficiency.

4.4.1 Ranking Similarity
The following graphics show the reduction in similarity

as the compression rate increases. Five compression rates
were tested. Although we have tried to produce compression
rates similar for each method, compression rates can not be
completely controlled neither by lbpm nor Carmel’s method.
However, the five rates used are close enough to allow a fair
comparison.

Figure 3 presents results for the TodoBR collection, on a
set of disjunctive queries. In this case, Carmel’s method pro-
duced the results more similar to the original system at all
levels of compression. A little loss in the similarity was ex-
pected for lbpm, since it replaces entries from the top of the
lists of each individual term to include entries that help in
conjunctive and phrase queries. However, results obtained
are very close to the ones obtained with Carmel’s method.
Further, at all rates of compression, the similarity of lbpm
was superior to 0.93, which indicates that the ranking pro-
duced is very similar to the original. It is also important
to remember that disjunctive queries are the less common
query type in TodoBR and are probably not very popular
in other typical web search engines either.

Figure 4 shows the results for conjunctive queries, which
represent the most popular query type in TodoBR. In this
case, lbpm yielded better results with all the compression
levels tested. The results show that, using lbpm, it is possible
to obtain a compression rate of roughly 76%, obtaining the
same similarity that would be obtained by Carmel’s method
with a compression rate of roughly 60%. At a 50% compres-
sion rate both methods yield ranking results very similar to
the original, showing that even this high compression level
would be safe in terms of preserving the original ranking
quality for conjunctive queries.

The differences between similarities obtained for disjunc-
tive and conjunctive (Figures 3 and 4) queries show the im-

240

portance of studying pruning methods dealing with different
query types.

0

0.2

0.4

0.6

0.8

1

50 55 60 65 70 75 80 85 90 95 100

S
im

ila
rit

y

Pruning (%)

carmel
lbpm

Figure 3: Kendall’s tau ranking similarity obtained
for Carmel’s method and lbpm in the TodoBR collec-
tion, using only disjunctive queries.

0

0.2

0.4

0.6

0.8

1

50 55 60 65 70 75 80 85 90 95 100

S
im

ila
rit

y

Pruning (%)

carmel
lbpm

Figure 4: Kendall’s tau ranking similarity obtained
for Carmel’s method and lbpm for the TodoBR collec-
tion, running only conjunctive queries and compar-
ing the top 20 results.

The highest difference between the two methods was ob-
tained for phrase queries. This result was expected, since
lbpm performs a locality based pruning, meaning that it
tends to preserve term occurrences if the terms appear close
in the text. Figure 5 shows the results for phrase queries.
lbpm yielded consistently better results in this case. For
Carmel’s method, results with a compression rate higher
than 50% present very low similarities. lbpm, on the other
hand, obtained a similarity of nearly 0.5 at an 85% com-
pression rate. The highest compression rate that allowed
such similarity for Carmel’s method was 57%. At a 50%
compression rate, lbpm yielded a similarity superior to 0.8
in phrases, while Carmel’s method yielded less than 0.6%.

Figure 6 shows results obtained when processing all query
types. Again lbpm yielded better results at all compression
levels experimented. Notice that this graph shows results
close to the ones obtained with conjunctive queries, since
conjunctive queries are the most popular query type. The
values for of lbpm and Carmel’s method are closer in this
graph since the two methods yielded similar results when

processing single-term queries, which represent 35.9% of this
query set.

0

0.2

0.4

0.6

0.8

1

50 55 60 65 70 75 80 85 90 95 100

S
im

ila
rit

y

Pruning (%)

carmel
lbpm

Figure 5: Kendall’s tau ranking similarity obtained
for Carmel’s method and lbpm in the TodoBR collec-
tion, using only phrase queries and comparing the
top 20 results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 55 60 65 70 75 80 85 90 95 100

S
im

ila
rit

y

Pruning (%)

carmel
lbpm

Figure 6: Kendall’s tau ranking similarity obtained
for Carmel’s method and lbpm in TodoBR collection,
using a set of 1000 random queries. The top 20
results were compared.

Figure 7 presents results for the LAT TREC collection,
using 50 short queries extracted from topic titles and sub-
mitted as disjunctive and conjunctive queries. Results for
LAT TREC are slightly different from the ones obtained
for TodoBR. In this case, Carmel’s method obtained better
results for disjunctive queries with a significant difference.
For conjunctive queries the two methods yielded almost the
same results.

A closer observation of each query result shows that par-
ticular collection characteristics may have worsen results for
lbpm. Carmel’s method tends to preserve entries for terms
that have shorter inverted lists. Many terms given in LAT
TREC queries hold this property, contrary to terms in the
TodoBR query log. This is probably due to the nature of
the two collections. In LAT TREC, a rare term is usually
correct and important to discriminate a document from oth-
ers. For instance, the term ’osteoporosis’ is present in the
LAT TREC queries and appears only 44 times. Rare terms
like this are common on the LAT TREC queries and are
important for the collection.

241

0

0.2

0.4

0.6

0.8

1

50 55 60 65 70 75 80 85 90 95 100

S
im

ila
rit

y

Pruning (%)

carmel-conjunctive
lbpm-conjunctive

carmel-disjunctive
lbpm-disjunctive

Figure 7: Kendall’s tau ranking similarity obtained
for Carmel’s method and lbpm in LAT TREC collec-
tion, using disjunctive and conjunctive queries. The
top 20 results were compared.

On the Web this is mostly not true, and most of the rare
terms are usually nonsense, due to errors. Further, the col-
lective nature of the Web makes terms that appear in queries
have a higher chance of appearing in documents. This hap-
pens because a term that is important to a user is probably
also important to other users. In other words, terms com-
mon in search engine queries tend also to be common on the
web documents.

As a consequence, for the LAT TREC collection, Carmel’s
method preserves a significative portion of entries for terms
that have appeared in the queries. On the other hand, lbpm
tends to substitute entries of rare terms by entries of terms
that appear together in selected sentences. In web collec-
tions this is not a great disadvantage, but in LAT TREC it
is. We do not discard the hypothesis that other factors are
interfering in the results and further study is left as future
work. At any rate, these results emphasize the necessity
of pruning methods specifically designed for web search en-
gines, and also indicate that lbpm can be a good alternative
in such cases.

4.4.2 Precision and Recall
In order to evaluate the impact of changes in the ranking

when using the studied methods, we have performed exper-
iments with the TodoBR collection submitting 40 queries
extracted from the TodoBR logs. We randomly selected 32
conjunctive and 8 phrase non-single term queries from this
log, and results were evaluated by a group of 15 people. The
average number of answers in each query pool was 33 and
the average number of relevant answers was 17.3.

Figure 8 shows the evolution of average precision as the
compression rate increases, when using pruned indices gen-
erated by lbpm and Carmel’s method. Average precision is
computed by taking the average results of the eleven preci-
sion points for each ranking. At all compression levels lbpm
values are closer to the ones obtained by the original indices
(i.e., at 0% pruning). At 50% and 60% compression rate
lbpm gives practically no loss in precision, while after that
the losses become increasingly more apparent.

Figures 9 to 11 present the precision recall curves obtained
with the original indices(non-pruned), and indices pruned
with lbpm and Carmel’s method at compression rates vary-
ing from 60% to 75%. At 60% compression rate, Figure 9,

lbpm achieved results similar to those using non-pruned in-
dices.

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

A
ve

ra
ge

 P
re

ci
si

on

Pruning (%)

carmel
lbpm

Figure 8: Average precision obtained when process-
ing queries with indices pruned by lbmp and Carmel’s
method at different compression rates.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

P
re

ci
si

on

Recall

non-pruned
lbpm

carmel

Figure 9: Precision recall curves for the TodoBR col-
lection, using the original indices (non-pruned), and
indices pruned by lbpm and Carmel’s method with
nearly 60% of compression rate.

Figure 10 shows that at 70% both Carmel’s method and
lbpm present losses in precision. However, lbpm achieved re-
sults considerably close to non-pruned for recall levels up to
50%. The top recall levels are the most important for search
engines. Thus, in spite of the loss in average precision by 6
points, results indicate the losses at 70% compression rate
for lbpm are acceptable. Finally, Figure 11 shows that both
methods are no longer as effective in maintaining precision
levels when the compression rates is higher than 75%.

These results allow us to conclude that, although the
pruning process causes changes in the query rankings, as
shown by Kendall’s tau similarity, changes in precision are
small. In practice, this implies that we can significantly
reduce search engine index storage costs without compro-
mising the users’ satisfaction with the results.

4.4.3 Time Performance
Finally, we present experiments to evaluate time perfor-

mance gains obtained with the reduction in the index sizes.
Figure 12 presents the results obtained when processing
queries at different compression rate levels using lbpm in

242

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

P
re

ci
si

on

Recall

non-pruned
lbpm

carmel

Figure 10: Precision recall curves for the TodoBR
collection, using the original indices (non-pruned),
and indices pruned by lbpm and Carmel’s method with
nearly 70% of compression rate.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

P
re

ci
si

on

Recall

non-pruned
lbpm

carmel

Figure 11: Precision recall curves for TodoBR col-
lection, using the original indices (non-pruned), and
indices pruned by lbpm and Carmel’s method with
nearly 75% of compression rate.

TodoBR. Time is given as a percentage of the time for pro-
cessing the queries using the original non-pruned indices.
Notice that the pruning method has reduced only the size
of positional and frequency indices constructed for the text
in the documents’ body. Other index components of the
search engine, such as the indices for the anchor text con-
catenation, were not pruned.

Obviously, as the pruned indices are reduced, the time
for processing the queries is also reduced. This reduction
follows an almost linear behavior up to a 70% compression
rate. This is the expected gain curve if the index is con-
siderably larger than the main memory available. At some
point between 70% and 76%, the indices have become so
small that the cache system causes a drop in the query pro-
cessing time. For instance, at a 76% compression rate, the
time for processing queries became roughly 20% of the time
for processing the queries with the original index.

5. OTHER PRACTICAL ISSUES
One practical problem introduced with static pruning meth-

ods is the extra time the pruning process adds to index con-
struction. For instance, the extra time to prune the indices

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 55 60 65 70 75 80 85 90 95 100

T
im

e
(%

 o
f t

he
 O

rig
in

al
)

Pruning (%)

Figure 12: Time for processing a total of 100,000
queries extracted from the TodoBR query log, us-
ing different levels of compression. Time is given
as a percentage of the time obtained for processing
queries with the non-pruned indices.

with Carmel’s method in these experiments was roughly half
the time to construct the original indices. The lbpm algo-
rithm used roughly the same time spent to construct the
original indices. This relation is constant, since the time
complexity of all these processes is linear in the collection
size.

The extra time to prune indices could be prohibitive in
some practical cases, since search engines continually update
their collections and indices [15]. However, each update in
a search engine collection changes only a small portion of
the collection, since most web pages either are not visited
by the search engine or their content did not change in the
updating period. For instance, in a period of a week, it is
expected that a only a small percentage of the collected web
pages present any change in their text [10]. In this scenario,
a simple solution to perform the update in the indices would
be not pruning entries for the changed documents, adding
all new indices entries that represent their new content with-
out applying any pruning. This strategy might reduce the
compression gain obtained by the pruning, since the com-
pression rate would decrease slowly at each update.

Meanwhile, the search engine could update the pruning
information, recomputing the pruned lists for the new col-
lection at a larger time period, achieving again full compres-
sion. We believe the reduction in the computational costs to
process queries can compensate the extra effort to keep this
pruning update strategy in most practical cases. However,
this topic needs a more detailed study and will certainly
depend on the search engine architecture.

6. CONCLUSIONS AND FUTURE WORK
We presented a new lossy compression method for reduc-

ing search engine indices sizes with little impact on the qual-
ity of the answers to user queries. Our method uses a locality
based heuristic for guiding the pruning process, which is ca-
pable of achieving high similarities with the original search
engine rankings, even at high compression rates. Differently
from previous work, which have considered only disjunctive
queries, we have carried out experiments considering query
types typically submitted to search engines: conjunctive and
phrase queries.

243

With the proposed method, we were able to achieve a
compression rate of 60%, while preserving a high similarity
with the ranking computed using the original indices for
all the three type of queries experimented. These results
indicate pruning can be useful in practice for reducing the
query processing and disk storage costs on search engines.

For future work, we intend to further study our method’s
efficiency in terms of time to generate the pruned indices.
The time to generate the pruned indices in our current im-
plementation is roughly the same time needed to create
them. Although this is a reasonable amount of time, our
index pruning implementation was not optimized and sig-
nificant reduction can be achieved.

We have already obtained results capable of justifying the
use of our approach on real web search engines. In spite of
that, an interesting direction to be followed would be the
study of incremental pruning techniques to reduce the cost
of updating the search engine database and indices. Finally,
we intend to study other techniques to predict occurrences
of words together in a query. One of such approaches we are
considering is the use of information derived from the search
engine query log to improve the sentence selection process.

7. ACKNOWLEDGMENTS
This work is partially supported by CYTED VII.19 RIBIDI

Project, GERINDO Project–grant MCT/CNPq/CT-INFO
552.087/02-5, CNPq individual grant 303576/2004-9 (Edleno
S. de Moura), CAPES individual grant (Célia F. dos San-
tos), NSERC Canada (Mario Nascimento), SiteFix CNPq
project and FAPEAM/PAPPE. We also thank Akwan In-
formation Technologies for making TodoBR logs available
for experiments.

8. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley, 1999.

[2] D. Bahle, H. E. Williams, and J. Zobel. Efficient
phrase querying with and auxiliary index. In
Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 215–221, 2002.

[3] T. C. Bell, J. G. Cleary, and I. H. Witten. Text
compression. Prentice Hall, 1990.

[4] P. P. Calado, E. S. de Moura, B. Ribeiro-Neto,
I. Silva, and N. Ziviani. Local versus global link
information in the web. ACM Transactions on
Information Systems (TOIS), 2003.

[5] D. Carmel, D. Cohen, R. Fagin, E. Farchi,
M. Herscovici, Y. S. Maarek, and A. Soffer. Static
index pruning for information retrieval systems. In
Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 43–50, New Orleans,
Louisiana, USA, September 2001.

[6] W. B. Croft, H. R. Turtle, and D. D. Lewis. The use
of phrases and structured queries in information
retrieval. In Proceedings of the 14th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
32–45, 1991.

[7] E. S. de Moura, G. Navarro, N. Ziviani, and
R. Baeza-Yates. Fast and flexible word searching on

compressed text. ACM Transactions on Information
Systems(ACM TOIS), 18(2):113–139, April 2000.

[8] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. Journal of American Society
for Information Science, 41(6), 1990.

[9] R. Fagin, R. Kumar, and D. Sivakumar. Comparing
top k lists. In Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
28–36, 2003.

[10] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A
large-scale study of the evolution of web page. In
Proceedings of the 12th International World Wide
Web Conference, pages 669–678, May 2003.

[11] D. Hawking, N. Craswell, and P. B. Thistlewaite.
Overview of TREC-7 very large collection track. In
The Seventh Text REtrieval Conference (TREC-7),
pages 91–104, Gaithersburg, Maryland, USA,
November 1998.

[12] D. Hawking, N. Craswell, P. B. Thistlewaite, and
D. Harman. Results and challenges in web search
evaluation. Computer Networks, 31(11–16):1321–1330,
May 1999. Also in Proceedings of the 8th
International World Wide Web Conference.

[13] D. Hawking, E. Voorhees, P. Bailey, and N. Craswell.
Overview of trec-8 web track. In Proc. of TREC-8,
pages 131–150, Gaithersburg MD, November 1999.

[14] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. In Proceedings of the 9th
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 668–677, San Francisco, California,
USA, January 1998.

[15] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and
R. Agarwal. Dynamic maintenance of web indexes
using landmarks. In Proceedings of the 12th
International World Wide Web Conference, pages
102–111, May 2003.

[16] G. Navarro, E. S. de Moura, M. Neubert, N. Ziviani,
and R. Baeza-Yates. Fast and flexible word searching
on compressed text. Information Retrieval Journal,
3(1):49–77, 2000.

[17] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered
document retrieval with frequency-sorted indexes.
Journal of the American Society of Information
Science, 47(10):749–764, Oct. 1996.

[18] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1st edition, 1983.

[19] P. C. Saraiva, E. S. Moura, N. Ziviani,
B. Ribeiro-Neto, W. Meira, and R. L. C. Fonseca.
Rank-preserving two-level caching for scalable search
engines. In Proceedings of the 24th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
51–58, New Orleans, September 2001.

[20] I. Witten, A. Moffat, and T. Bell. Managing
Gigabytes. Morgan Kaufmann Publishers, New York,
second edition, 1999.

244

