
Exception Handling in Workflow-Driven Web Applications
Marco Brambilla Stefano Ceri Sara Comai Christina Tziviskou

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Via Ponzio 34/5,

20133 Milano, Italy
+39 02 2399 3408 | 3532 | 3474 | 3649

{mbrambil, ceri, comai, tzivisko}@elet.polimi.it

ABSTRACT
As the Web becomes a platform for implementing B2B
applications, the need arises of Web conceptual models for
describing Web oriented workflow applications implementing
business processes. In this context, new problems about process
correctness arise, due to the loose control of Web applications
upon the behavior of their Web clients. Indeed, incoherent user’s
behavior can lead to inconsistent processes.
This paper presents a high level approach to the management of
exceptions that occur during the execution of processes on the
Web. We present a classification of exceptions that can be raised
inside workflow-driven Web applications, and recovery policies
to retrieve coherent status and data after an exception. We devise
these concepts at high level and then we exploit them using a Web
modeling language (WebML) that in turn provides development
facilities like automatic code generation, validation of hypertext
models, and so on. An industrial implementation experience is
briefly presented too.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering (CASE), evolutionary
prototyping, object-oriented design methods, user interfaces.

D.2.5 [Software Engineering]: Testing and Debugging – error
handling and recovery, tracing.

H.4.0 [Information Systems Applications]: General.

H.5.4 [Information Interfaces and Presentation]: Hypertext /
Hypermedia – architectures, navigation, theory, user issues.

General Terms: Management, Design, Reliability.

Keywords: Workflow, Exceptions, Failure, Web applications,
Navigation behavior.

1. INTRODUCTION
In recent years, the Web is more and more being used as the
implementation platform for B2B applications, aiming at
supporting business processes, content management, document
approval flows, value-added services, and so on. This leads to the
integration of several technologies, which go far beyond the
simple implementation of Web interfaces for content publishing to
the users. Therefore, design, implementation, and maintenance of

Web applications are becoming more and more complex. Several
different expertises are needed for coping with these new
requirements and technologies.

In this context, Web applications assume a mission-critical role
within the enterprise and they cannot be considered as mere
content-browsing interfaces any more. Therefore, the need arises
of solid approaches to users’ behavior modeling, to fault
management and to exception handling.

Contributions from software engineering and other fields can
partially address these issues, although we claim that the Web
context raises new and original problems, which require some
innovation to the “traditional” approaches and methodologies.
Indeed, conceptual modeling expertise from other fields has been
widely recognized as valid starting point for defining conceptual
aids for Web application development, but the first generation of
conceptual models for the Web [1][2][4][6][7][8][10][11][14]
essentially focuses on capturing the structure of data to be
published and the navigation primitives, represented by such
concepts as pages, content nodes, links, and operations.

To cover business processes support, a second generation of
conceptual models is required. Such second generation copes with
process and workflow modeling, supports Web service
interaction, manages exceptions and recovery policies, and
integrates data-centric and process-centric modeling primitives
into a mix suited to the development of advanced B2B Web
applications.

Exceptions that can happen in a Web-based application have
peculiar characteristics with respect to traditional workflow
applications. This is due to three main aspects: (i) interaction
options provided by browser-based interfaces are very powerful,
but they are more oriented to free navigation than to strict
processes adherence (e.g., users are enabled to jump back and
forth on navigated pages, thus introducing dangerous repetition of
process activities); (ii) users cannot be forced to perform any
action or task (e.g., they can stand on a page for long time, or even
close the browser and disconnect at any time); (iii) the Web
architecture itself provides by definition loosely coupled
interactions between peers, which become even more
uncontrollable in case of Web service-based conversations.

We provide a Web-oriented exception classification, and we
represent at a very high level the hypertext structure, the activities
performed within this hypertext, and the exceptional situations
that may arise; then, we provide a set of policies for capturing
exceptions, notifying the user and recovering a regular status of
the process. Our approach provides a set of facilities that help the
designer through the whole development process of the

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

170

application: we provide a notation for workflow specification and
a framework for defining and classifying exceptions. Capturing
mechanisms, user notification patterns and handling policies are
defined at a very high level, together with a very basic hypertext
model. Then, all this can be deployed in specific hypertext
modeling languages (e.g., WebML, as we will show in the last
section of the paper), or even directly into implemented code. If a
modeling language is selected, the policies can be defined and
applied seamlessly, thus allowing automatic code generation too.
Note that we disregard aspects such as transactional implications
of exceptions or low-level exception handling mechanisms; such
issues are not peculiar to Web applications, and therefore can be
addressed with traditional approaches.

The paper is organized as follows: Section 2 reviews related work;
Section 3 describes the adopted approach, by presenting a running
example, a classification paradigm for workflow exceptions on the
Web, and the handling policies of exceptions; Section 4 provides
an overview of the implementation and validation experiences of
the approach, based on the Web Modeling Language; Section 5
draws some conclusions and presents future works.

2. RELATED WORK
Many works have addressed the problem of exception discovery
and compensation. They mainly studied transactional properties
for activities, which is not in our scope. However, some works
deal with weaker properties. For example, [9] is based on the
concept of spheres, to make use of only those transactional
properties that are actually needed; [13] is one of the first works
that addresses the problem in the Web context, but it provides
only a classification of exceptions.

For the definition of the scope and the expressive power of
workflow primitives, our work is inspired by pattern based
workflow analysis by Van Der Aalst [15], and by industrial and
academic standards like BPML /BPMN [3] and YAWL [16].
Other works on activity composition and coordination related to
the Web have been considered; for example, [4] and others
propose solutions on Web services interaction, for which we will
propose some exception handling techniques.

As already anticipated, our implementation experience is based on
WebML [5][17], a high-level modeling language for data-
intensive Web applications, and its extension to workflow-based
applications. In [11] an approach for the specification and the
design of workflow-driven hypertext suitable for lightweight
applications has been proposed: workflow-driven Web
applications are defined as hypertexts delivering Web interfaces
that permit the execution of activities and embody simple
constraints that drive the navigation of users (complex constraint
such as complex temporal conditions, composite workflows
consisting of independent sub-workflows, and so on are not
considered). In this paper, we focus on exceptional behaviors, i.e.,
behaviors that deviate from the process designed by the analyst.

3. THE PROPOSED APPROACH
The management and recovery of exceptions in a workflow-based
Web application require first to identify the typical failures in
such a context. In this section we therefore provide a
characterization of the exceptions that may arise in a Web

application and illustrate the extensions of a process-driven
application at a conceptual level.

3.1 The Case Study
In the sequel, we will exemplify the proposed approach on a case
study consisting of a Web application implementing a business
process. For specifying business processes, we used the
Workflow Management Coalition terminology [19] and the
BPML/BPMN [3] notation. The workflow model is hence based
on the concepts of Process (the description of the business
process), Case (a process instance), Activity (the elementary unit
of work composing a process), Activity instance (an instantiation
of an activity within a case), Actor (a user role intervening in the
process), Event (some punctual situation that happens in a case)
and Constraint (logical precedence among activities and rules
enabling activities execution). Processes can be internally
structured using a variety of constructs: sequences of activities,
gateways implementing AND, OR, XOR splits, respectively
realizing splits into independent, alternative and exclusive
threads; gateways implementing joins, a convergence point of
more activities; activity iterations; and pre- and post-conditions of
activities.

The workflow depicted in Figure 1 describes a loan brokering
Web application, providing users with the possibility to search for
available loan options, fill loan applications, and be notified of
their acceptance/rejection by the loan provider. The desired Web
application should cover the whole process, by allowing the
broker agent to evaluate the loan request, by giving a preliminary
validation, and then checking the details of loan applications
(such as the applicants’ financial status and job history), and
finally registering their final decision on approving or rejecting a
given application. If the request is approved, the customer can
accept it and proceed to the loan cashing and periodic installment
payments.

Loan Search Loan Request Loan Acceptance

C
us

to
m

er
M

an
ag

er

Preliminary Validation Final Approval

E
m

pl
oy

ee Financial Check

Job Check

+ +

Figure 1. Workflow modeling of the “Loan Request” process

The case study is a simplified process executed through the Web
by three actors: customer, brokering manager, and company
employee. However, particular situations may be raised during the
normal execution of the process and lead the system to an
uncertain state. For example:

(a) Within the Loan Request activity, the user may press the
back button of the browser, thus reaching the first page of the
activity, and may try to navigate a link repeating part of the

171

Request. In this case, a request may be erroneously registered
twice.

(b) Within one of the activities, the user may stand on a page for
a long time after which a timeout may occur; thus, the user
session ends.

(c) A discount rate variation may require changes in the loan
conditions of a request under evaluation.

These and other possible exceptions will be better detailed in the
next sections.

3.2 Exception Classification
In order to handle exceptions, we try to clarify the conditions
under which failures occur. Once an exception is known for the
system, handling mechanisms can take place. In the current work,
non-identified exceptions cannot be handled; therefore, they leave
the process in an uncertain state. The recognized exceptions for a
process are classified into three categories:

1. Behavioral (or user-generated) exceptions are driven by the
improper execution order of process activities. The free user
navigation through Web pages results in the client visiting
older pages, trying to explore the hypertext of activities that
have already been executed. The following situations can be
foreseen: (a) the user, with the back button of the browser,
visits a page of a completed activity and tries to repeat part of
the activity or restarts its execution, (b) the user exits the
current activity without completing it, either by following a
hypertext link or with the back button of the browser, (c) the
user, with the back button of the browser, visits an older page
of the current activity, thus repeating part of the activity.

2. Semantic (or application) exceptions are driven by the
unsuccessful logical outcome of activities execution. For
example, the user does not keep paying his periodic
installments, or a discount rate variation requires changing the
loan conditions.

3. System exceptions are caused by the malfunctioning of the
workflow-based Web application infrastructure both at server
and at client side. Events that result in such exceptions are
network failures and system breakdowns. In the current work,
we do not consider server-side failures, since proposals for
such an exception context already exist for traditional data-
storage and workflow technology. Client-side exceptions are
caused either by data storage and client breakdowns, browser
crashes, and network unavailability or by elapsed time
between user interactions within a process. A client-side
failure results either in the client not sending a request to the
server, or in the server not responding to the client. Client-
side failures are indistinguishable at application level and are
recognized as Session End exceptions.

Another important characterization of the exceptions in process-
centric Web applications is related to the detection time:
exception may occur while the users involved in the process are
navigating through the activities of the workflow, or while they
are visiting pages not belonging to the workflow, or, possibly,
when they are disconnected. Exceptions can be therefore
classified as synchronous or asynchronous as follows:

1. Synchronous exceptions occur within an activity of the
process, when a page representing the interface for that
activity is requested to the server, or more in general, when
the user clicks on a link within an activity. In this case, the
user session is on, and therefore the exception can be
immediately handled.

2. Asynchronous exceptions occur at any time during the
process execution, independently of the state of activities in
the case. In this case, the user session may be still on (and
thus the user may be warned) or may be off (and the
exception handling may be deferred).

According to these definitions, behavioral exceptions are always
synchronous, because they occur during the navigation of an
activity; semantic exceptions may be either synchronous or
asynchronous; system exceptions may occur any time during the
process execution (for example, when the user disconnects) and
are therefore asynchronous.

The following subsections illustrate different exception handling
policies that take into account the above classifications.

3.3 Hypertext Modeling
To study in a simple and effective way the exception handling, we
introduce a simplified model describing the structure of activities
inside hypertexts.

The hypertext belonging to an activity is broken down into pages.
Pages are univocally identified within an activity. As shown in
Figure 2, the Loan Search activity in the Loan Request process is
composed of one hypertext page, identified as page 1. In
analogous way, within the Loan Request activity, the Available
Loans page is identified with 1, the Loan Details page with 2, and
the Loan Ack page with 3. This hypertext allows the user to
search for a loan with specific characteristics (Search Criteria
page), to look at the results (Available Loans) and to see the
details of a specific loan (Loan Details). Then, if the loan is
interesting for the user, he can submit a request for that type of
loan, and receive a confirmation (Loan Ack page).

Between two subsequent pages, there can be a chain of operations
executed at server-side (depicted as small circles in Figure 2),
which are not relevant for our purposes. Indeed, since we do not
consider server-side failures, a chain of operations can be seen as
an atomic element that never fails. Thus, within the representation
of process hypertexts we do not consider server-side operations.

1st Page

Loan Request Activity

Available
Loans

Loan
Details

Loan
Ack

Loan Search Activity

Search
Criteria

3rd Page1st Page 2nd Page

Figure 2. Process hypertext modeling presenting server side
operations and pages numbering

Another feature of workflow-based Web applications that we take
into account is the possible invocation of Web Services within an
activity, aiming at integrating remote services or data within the
user browsable hypertext. Thus, between two subsequent pages,

172

there can be a Web Service call whose unsuccessful execution can
raise critical situations. In this case, the previous hypertext model
is extended considering the Web Service interaction as a
numbered page within the activity. In the rest of the paper, we
assume that the Loan Search activity is actually implemented with
a Web Service call to a service which is outside of the bank
offering the loans. Therefore, the Loan Search activity is
composed of two steps as shown in Figure 3.

1st Page

Loan Request Activity

Available
Loans

Loan
Details

Loan
Ack

Loan Search Activity

Search
Criteria

3rd Page1st Page 2nd Page

WS

2nd Page

Figure 3. Process hypertext modeling integrated with Web
Services interaction

3.4 Workflow Metadata Modeling
Managing exceptions in workflow-driven Web applications
requires the storage and retrieval of state information about
workflows and exceptions. Therefore, we introduce the data
model that includes application data together with workflow and
exception metadata. Figure 4 represents the data model of the
running example. Application data, following the Entity –
Relationship model, is composed of entities describing domain
objects and relationships among them imposing data connections.
In our example, application data consists of LoanProposals whose
conditions are imposed from a Country; each loan proposal can be
fulfilled based on various InstallmentPlans; the customer may
choose one of these plans and submit a LoanRequest, and then, if
the request is approved, he can proceed to the periodic payment of
the instalment plans, which are recorded by the InstPayment
entity.

Process

Name

Case

Status
StartTimeStamp
EndTimeStamp

Activity Type

Name

Activity Instance

Status
StartTimeStamp
EndTimeStamp

Group

Name
...

User

Username
Password
...

Exception Type

Name

Exception Instance

Status
StartTimeStamp
EndTimeStamp

0:N

1:N

0:N

1:1

Default

0:N 1:1

ExecutedBy

0:N 1:N
Assigned To

1:1 1:N

Part Of

1:1 1:N

Part Of

0:N

1:1

Type

0:N

1:1

Type 0:N 1:1Affects

0:N 1:1

Affects

Loan Request

OID
Email
Established Rate
...

Loan Proposal

ID
Max_amount
Min_amount
Conditions
...

0:1 0:N

Current Page

Page
Url
Starting_Page

1:1

0:1

Current
Created

0:N

1:1

InstPayment

InstID
Amount
Date

RelatedTo

0:N

0:N

1:1 1:N

Installment Plan

Rate
Expiration_Date
...

1:1 1:N

Created

0:N

1:1

ManagedBy

0:N
1:1

Country

ISO_code
Discount_Rate
LastVariation ...

1:N 1:1

APPLICATION MODEL

WORKFLOW AND EXCEPTION META-MODEL

Figure 4. Data model incorporating workflow and exception
information

In the E-R model of Figure 4, the upper part contains the entities
representing the basic concepts of a workflow, both at type level
(Process, ActivityType, and Group) and at instance level (Case,

ActivityInstance, and User). This metadata is inspired by the
WFMC specification [19], with entities describing the elements of
a process and relationships representing the semantic connections
between these elements. Entity Process is associated with entity
ActivityType, to represent the classes of activities that can be
executed in a process. Both entities describe general data about
processes and activities, which need not be replicated for each
process/activity instantiation. Entity Case denotes an instance of a
process, which has a name, used as a label for communicating
with the user, a start time, an end time and a status (initiated,
active when at least an activity is started, or completed). Entity
ActivityInstance denotes the occurrence of an activity, described
by a start time, an end time and a status which (inactive, active or
completed). Entities User and Group represent the workflow
actors, as individual users organized within groups. Activities
instances are “assigned to” one or more users who can perform the
activity, but are actually “executed by” a single user. The
“RelatedTo” connection is required to connect the workflow
activities to the data items they use. In this way, it is always
possible to deduce from any application object the activity
instance(s) where the object is currently in use (through the
RelatedTo connection), and, consequently, the case(s) and the
user(s) associated with the activity instance (through the PartOf,
ExecutedBy and AssignedTo connections). This model is
sufficient to master the regular flow of processes, i.e., a flow
without exceptions [5].

Exception execution context is captured in Figure 4 by the
exception metadata. Entity Exception denotes the classes of
known exceptions that may occur during the process execution
and are described by a name. The actual occurrence of an
exception is presented in the entity Exception Instance and is
described by start time, end time and status which can be: active
(i.e., the exception has occurred and has not been addressed yet),
resolving (i.e., the exception is currently being solved by a
predefined policy or a compensation chain) and resolved (i.e., the
exception has been solved by some exception handling
mechanism).

The above exception modeling is not enough to describe critical
situations within a process execution. A mapping is also necessary
in order to relate the generated exceptions to workflow concepts.
For example, a variation in a country’s discount rate is an
exception that needs to be modeled for every process that has
requested a loan whose conditions are imposed from the specific
country. A behavioral exception within the Loan Request activity
needs to be mapped to the corresponding activity instance. These
mappings are modeled by the data connections Affects between
the Exception Instance and Activity Instance / Case entities. In
this way, it is always possible to retrieve the exceptions that are
raised for an activity instance and (or) a case, and vice-versa.

Further objects in the exception metadata are introduced for
exception handling. The executor of the appropriate exception
handler is either the user who has actually performed the affected
activity instance and is recognized by the “Executed By”
connection, or the user denoted by the “Managed By” connection
as the responsible to handle exceptions for the specific case.

We define the current page of an active activity as the last page
that the server has generated after a request by the client. This
information is stored into the CurrentPage entity of the workflow
metadata schema. For example, the identification of the current

173

page for an activity in Figure 3 occurs after a user request within
the corresponding activity. Within a process case, it is always
possible to retrieve the currently active activities, and, for each of
them, the current page. The current page has two important
properties: (i) it is always uniquely defined for an active activity,
and (ii) it gives us correct idea of the progress of the activity.
Even if the client uses the back and forward buttons of the
browser, the current page of the activity does not change, since
the client does not make any request to the server. Moreover, by
clicking the back button the system does not roll back the
operations between consecutive pages, it just reloads an old page.

Finally, the last object useful for applying recovery mechanisms is
the Created relationship that connects the Activity Instance to the
application data object that is managed within the workflow. It
keeps track of the activity during which a specific object has been
created, at the purpose of allowing possible removals of the object
when the activity is cancelled. Handling exceptions occurs at the
price of managing such extra-information, which is a sort of
process log.

3.5 Handling Approach
In this section, we show how the workflow meta-data introduced
in Section 3.4 can be used to manage exceptions. Our exception
handling proposal is based on three models: (1) the capturing
model, used to capture events and to store the exceptions data in
the workflow meta-data model, (2) the notifying model, used to
notify the occurred exceptions to the user inside the hypertext
model, and (3) the handling model, used to resolve the exceptions,
by applying a recovery policy. In this scenario, the exception
management remains apart from the normal workflow design.

The capturing model incorporates all the mechanisms used to
capture events and generate exceptions in the workflow meta-
model. We propose two different mechanisms for the exceptions
classified in Section 3.2, namely, a) triggers, used for capturing
exceptions caused by data modifications: b) Web services, used
for capturing exceptions explicitly notified by external sources
(or, possibly, by the application itself). Figure 5 summarizes how
these mechanisms can be used by the different kinds of
exceptions.

System Client-Side Exceptions

Behavioral Exceptions

Workflow
Data

Exception
Data

Semantic Exceptions

Application
Data

Triggers on Workflow Data

Runtime

Triggers on Application Data

Runtime

Web Services Request-Response

Web Services Notification

Web Services Notification

Runtime

EVENT update the Current Page
 for the Current Activity
CONDITION user navigation is not initiated
 from the last visited page
ACTION create a new Exception Instance
 of type 'Wrong Starting Page'

Session End
Web Service

Loan Search
Web ServiceProcess

Hypertext

3rd party
application

Web
Server

Discount Rate
Web Service

Figure 5. Capture Model for Behavioral, Semantic

and System client-side exceptions

Behavioral exceptions can be captured by the application by
means of triggers defined on the workflow meta-data. For
example, Figure 5 shows the trigger for the generation of the
behavioral exception “Wrong Starting Page”, raised when the user
reaches a page preceding the actual current page of the workflow,
thus trying to repeat part of the same activity or an already
completed activity. The event part of the trigger captures the
exception event: the update of the current page for the current
activity in the workflow meta-data. This update is performed
every time a client request is made within an activity in order to
identify the last page the server has generated for the activity. The
condition part checks if the current client request does not come
from the page identified as the actual current page in the database.
If the condition holds, the action part of the trigger generates a
new exception instance of type “Wrong Starting Page” and
connects it to the current activity instance.

Semantic exceptions may instead be notified by external sources,
and therefore be captured through Web services, as reported in
Figure 51. Web services capture the two following kinds of
exceptions: 1) an exceptional response received after calling a
Web service (for example, if the loan search activity calls a Web
Service to get the loans satisfying the criteria specified by the
user, and the amount inserted by the user exceeds the limits for
which the loan can be approved, a failure in the response may be
raised); 2) an exception notified by an external application by
means of a notification Web service (for example, the notification
of the discount rate variation for a country). In both cases the Web
services are responsible to generate the new exception instances
and to connect them to the corresponding activity instances or
cases. Semantic exceptions can also be captured by means of
triggers defined on the application data. As an example, consider
the modification of the expiration date of an installment plan. This
event affects all the cases where the requested loan fulfilled such
installment plan. In this case a trigger can be specified to generate
a new exception instance of type “Expiration Date Modification”
for every affected case and to connect it to the corresponding
cases.

System (client-side) exceptions result in a communication failure
between the client and the server. In such situations, the client
unavailability is not immediately detected from the Web Server:
such detection occurs after a timeout or after an unsuccessful
communication from the server-side. Also the notification of such
failures can be done by means of Web Services (see Figure 5).
When the Web Server detects the communication failure with the
client, either because it cannot send the server’s response or
because the client does not make a request for a specific amount
of time, it calls the Session Web Service published at server side,
with the necessary parameters, like the identifiers of the activities
that were in progress and have been interrupted. The Session End
Web Service generates a new exception instance of type “Session
End” and connects it to the corresponding activity instances.

1 Our choice of using Web services as opposed to other inter-

process communication mechanisms is motivated by our focus
on interoperability and portability. Web services are published
by the Exception Manager and are invoked either by the
workflow application itself or by external applications.

174

The capturing model presented above can be designed separately
from the process modeling. In the following, we will see how the
generated exceptions are utilized and therefore integrated in the
normal process flow in order to be handled.

The notifying model incorporates all the mechanisms used to
present the captured exception (stored into the database) to the
user. Synchronous and asynchronous exceptions require different
mechanisms. Indeed, if the exception occurs synchronously during
the execution of the workflow activities, it can be notified
immediately inside the affected activity; otherwise, the
notification should take place outside the process flow. To notify
the exceptions the process hypertext modeling introduced in
Section 2.3 is extended with new primitives, allowing the
detection of exceptions in the workflow meta-data: in particular,
in order to support synchronous exceptions the concept of
exception-aware link is introduced, which is a navigational link
extended with the ability to check the exceptions occurrence in the
database and to redirect the process flow to the recovery
mechanisms; in order to support asynchronous exceptions an
exception-control mechanism is defined to be included in a
generic page: it activates a hypertext link to the recovery
mechanism in case of exception occurrence. These two
mechanisms are illustrated in Figure 6 and Figure 7.

Loan Request Activity

Available
Loans

Loan
Details

E Loan
Ack

E E

Figure 6. Notification of the user in mode synchronous

Figure 6 demonstrates the mechanism of notification for
synchronous exceptions; i.e., exceptions generated after a user
request within the activity execution. Hypertext links within the
activity flow can be marked as exception-aware links (graphically
represented with the “E” label). The navigation of these links fires
an automatic control to the database, checking the occurrence of
specific exceptions for the current activity. If such an exception
has occurred, the link leads the user to a recovery process,
presented in the following subsection. For example, the
Exception-aware links outgoing from the pages “Available
Loans”, “Loan Details” and “Loan Ack” in the Loan Request
activity are defined (at design time) to check (at navigation time)
the occurrence of the behavioral exceptions for the activity.

“Loan Request” Process

Page P

Financial Check Activity

Financial
Details

Financial
Check Ack

Exception
Page

Workflow
Home PageEmployee’s

Generic Hypertext Control

Control

Job Check Activity

Job
Details

Job
Check Ack

Figure 7. Notification of the user in mode asynchronous

Figure 7 shows an example of user notification in case of
asynchronous exceptions; in this case, exceptions may occur
independently of the process execution but are generated for
activities executed by the current user or for cases managed by the
current user. In the hypertext design an Exception Control
primitive can be inserted inside normal hypertext pages (e.g., in
the Workflow Home Page or in Page P in the figure) to control
exceptions occurrence before the page is loaded and to activate a
hypertext link if such exceptions have been generated in the
database. Navigating this link, the user is led to an Exception page
where information about the above exceptions is retrieved.

The handling model represents the mechanisms used to recover
the exceptions. It consists in recovery operations that take place
on the affected activities or cases in order to bring the application
to a consistent state, so that the process execution can proceed.
The recovery policies can be either predefined or user-defined.
Predefined policies are server-side operations that receive initial
input parameters about the exception to resolve.

They are automated mechanisms that can be applied to different
exception types. The process execution, after the exception is
handled, is implicitly specified and routed from the predefined
policy. We have identified five predefined policies:

(a) The Accept policy: it accepts all the operations done by the
affected activity/case and concludes the activity/case
execution by setting its status to Completed.

(b) The Reject policy: it deletes all the data created by the affected
activity/case and enables its re-execution by setting its status
to Inactive.

(c) The Abort policy: it accepts all the operations done by the
affected activity/case and concludes the activity/case
execution by setting its status to Aborted.

(d) The Ignore policy: it informs the user of the occurred
exception with a message and resumes the flow execution.

(e) The Resume policy: it resumes the user navigation from the
last visited page generated by the server for the affected
activity; all the data created by the affected activity/case after
the last visited page navigation are deleted.

User-defined policies are defined by the application designer to
manage critical situations when automated mechanisms cannot
restore the process state. For example, the exception caused by the
discount rate modification may require the revision of the
conditions of the loan proposals: such variations need to be
explicitly modeled by the designer. User-defined policies specify:
(i) the pages/operations to be executed to handle the exception
and (ii) how to continue the process execution after the exception
handling.

Figure 8 and Figure 9 illustrate two examples of specification of
the handling model to recover a synchronous and an asynchronous
exception, respectively. Recovery policies are modeled as
operations (graphically depicted as circles). Dotted curved lines
represent the calling of an exception handling mechanism and the
returning to the normal workflow.

The exception handling depicted in Figure 8 represents a possible
runtime scenario for an exception caused by the improper user
navigation within the Loan Request activity. Suppose, for

175

example, that the user has visited the last page of the activity,
“Loan Ack” and that the loan request details are registered in the
database (a). At this point, the only enabled link is the one exiting
the page. By navigating this link, the activity is completed. If the
user does not follow this link but presses the back button of the
browser twice, he reloads the already visited page “Available
Loans” and can therefore navigate the outgoing link of that page
(b). This navigation is automatically followed by the modification
of the Current Page in the exception meta-data, which fires the
corresponding trigger. A new exception instance of type “Wrong
Starting Page” is raised for the current activity. The Exception-
Aware Link is defined to check the occurrence of behavioral
exceptions related to the current activity/case for the user
navigating this link. If the “Wrong Starting Page” exception is
recognized, the exception-aware link leads the user to the
corresponding recovery policy. In this example, the Resume
policy is automatically applied. As a consequence, the user
navigation is resumed from the last visited page, that is the “Loan
Ack” page (c).

Loan Request Activity

Available
Loans

Loan
Details

E Loan
Ack

E

Loan Request Activity

Available
Loans

Loan
Details

E Loan
Ack

E

Loan Request Activity

Available
Loans

Loan
Details

E Loan
Ack

E

Resume

(a)

(b)

(c)

E

E

E

Figure 8. “Wrong Starting Page” handling in mode
synchronous for the “Loan Request” activity

Figure 9 presents an example of the exception handling for an
asynchronous exception of type “Session End”, caused by the
delayed user navigation within the “Financial Check” activity. In
particular, the following situation is described: the employee has
visited the second page of the activity, “Financial Check Ack”. In
the database, the financial control details are registered in the
Loan Request entity and the Current Page denotes the “Financial
Check Ack” page as the last one loaded by the server page for the
current activity. For 10 minutes, the user does not navigate the
outgoing link of that page; thus, a timeout defined in the Web
Server expires, the Session End Web Service is called from the
Web Server and the corresponding exception is stored into the
database (a). When the user finally tries to navigate to the next
page of the activity, since the session has expired he is redirected
(from the Web Server) to the login page (b). After the successful
login, the Workflow Home Page is requested to the server. Before
loading this page, the Exception Control unit checks if exceptions
have been stored in the database for the user, and activates the
link to the “Exception” page. From the “Exception” page the user
may choose to Resume or Reject the “Session End” exception for

the Financial Check activity. If he chooses the Resume policy,
then he is redirected to the last loaded page before the exception,
the “Financial Check Ack” page, and the process execution may
proceed. If he chooses the Reject policy, the system tries to
recover the initial state of the database before the activity
execution; thus, it deletes the financial control details from the
Loan Request entity and assigns the Inactive status to the activity
so that the activity may be re-executed. The user is then
transferred to the Home Page.

Financial Check Activity

Financial
Details

Financial
Check Ack

(a)

Financial Check Activity

Financial
Details

Financial
Check Ack

Resume

(b)

Exception
Page

Login Page

Employee’s
Generic Hypertext

Reject

Workflow
Home Page

Control

Figure 9. “Session End” Handling in mode asynchronous for
the “Financial Check” activity

4. IMPLEMENTATION AND
EXPERIENCE
The approach for the exception handling illustrated in Section 2
has been specified using the WebML language [5][17], a high-
level notation for data- and process-centric Web applications, and
has been implemented in a prototype that extends the CASE tool
WebRatio [18], a development environment for the visual
specification of applications in WebML and the automatic
generation of code for the J2EE and Microsoft .NET platforms.
After a brief overview of WebML we present the main extensions
of the language needed to specify the exceptions and the recovery
policies, and show some typical usage patterns.

4.1 A Brief Overview of WebML
WebML allows specifying a Web site on top of a database. Such a
conceptual Web specification consists of a data schema,
describing application data, and of one or more hypertexts,
expressing the Web interface used to publish this data.

The WebML data model is the standard Entity-Relationship (E-R)
model, widely used in general-purpose design tools. Upon the
same data model, it is possible to define different hypertexts (e.g.,
for different types of users or for different publishing devices),
called site views. A site view is a graph of pages, allowing users
from the corresponding group to perform their specific activities.
Pages consist of connected units, representing at a conceptual
level atomic pieces of homogeneous information to be published:
the content that a unit displays is extracted from an entity, and
selected by means of a selector, testing complex logical conditions
over the unit’s entity. Units within a Web site are often related to

176

each other thru links carrying data from a unit to another, to allow
the computation of the hypertext.

WebML allows specifying also update operations on the data
underlying the site too (e.g., the creation/deletion of instances of
an entity, or the creation and deletion of instances of a
relationship) or operations performing other actions (e.g. send an
e-mail). In [5] the language has been extended with operations
supporting process specifications (but not exception handling),
while in [11] also Web service calls and specifications have been
included.

Loan Ack PageEnd Activity

Loan Request

Available Loans Page

Available Loans

Installment Plan

Loan Details Page

Loan Proposal

Loan Proposal Create Loan
Request

Loan Request

Connect

LoanRequestToInstallmentPlan

Start Activity

Loan Request

OK

Loan Request
[Activity="Preliminary Validation"]

[User=”Manager”]
[Case=CurrentCase]

Assign

AOK

Loan Request

Loan Request

OK

Installment Plan ID

Figure 10. WebML implementation of the “Loan Request”
activity

Figure 10 shows a fragment of hypertext specified in WebML. A
start activity operation starts the Loan Request activity, setting its
state to “active”. Then, the Available Loans Page is shown to the
user: it contains an index unit showing all the available loans
matching the search criteria of the previous activity. When the
user selects a loan, the Loan Details page shows the details of the
selected loan to the user (Loan Proposal Data unit). If the user
chooses to submit a request for the selected loan type, a create
operation inserts a new instance in the Loan Request table and a
connect operations, creates the relationships between this new
instance and the LoanRequestToInstallment relation. In the next
Loan Ack page, the confirmation details of the newly created
requested loan are shown to the user by the Loan Request Data
unit. The activity ends with the assignment (assign operation) of
the newly created instance to the manager and to the Preliminary
Validation activity, which is therefore enabled for its execution,
and with the End activity operation, which sets the status of the
Loan Request activity to “completed”.

The language is extensible, allowing for the definition of
customized operations and units, implemented in the WebRatio
CASE tool as plug-ins. In our prototype, the language has been
therefore extended with new primitives to support exceptions. For
a complete description of the language and of the architecture
supporting WebML the reader may refer to [5][17].

4.2 Extensions of WebML for Supporting
Workflow Exception Handling
The specification of the exceptions in WebML and the
implementation of all the policies require the following
extensions.

Workflow metadata modelling. The data model of the Web
application has been extended with the workflow and exception
meta-models as described in Section 2.4.

Capturing model. Exceptions captured using the triggering
mechanisms have been directly specified in the underlying
database management system. Exceptions captured using the Web
service mechanisms are instead specified using the WebML
extensions for Web services, illustrated in [11]. Figure 11 shows
some examples of WebML specification for capturing exceptions.

 Loan Search

Search Criteria

Loan Search

Modify Discount
Rate

Country

 Discount Rate

 Session End Create Exception

Exception Instance

Connect To
Session End

ExceptionInstanceToExceptionType
[Exception.Type=”Session End”]

Connect To Aff.
Activity

Affects

OK OK

Test Response

Create Exception

Exception Instance

Connect To
Amount Over

Limit

ExceptionInstanceToExceptionType
[Exception.Type=”Amount Over Limit”]

Connect To Aff.
Activity

Affects
[Activity=Current Activity]

OK OK

EVENT update the Country.Discount_Rate
CONDITION true
ACTION create a new Exception Instance
 of type 'Discount Rate'

(a)

(b)

(c) End Activity

Loan Search

Activity ID

Exception Instance ID

Exception Instance ID

OK

KO

Figure 11. Capturing an external exception with a Web service

The hypertext fragment (a) shows the capturing mechanism of a
semantic asynchronous exception coming from an external
application, representing the variation of the discount rate for a
country. A notification service operation (called Discount Rate) is
published. When it is called, it performs the modification of the
Discount Rate attribute in the Country entity of the application
data. This modification fires then an existing trigger, whose action
part generates a new exception instance of type “Discount Rate”
and connects it to the all the cases that have requested a loan
whose conditions are imposed from the specific country.

The hypertext fragment (b) in Figure 11 shows the WebML
implementation for capturing Session End exceptions. Even in
this case, a notification service operation (called Session End) is
published. When it is called, a create operation inserts a new
instance in the Exception Instance entity, connects the newly
created instance with the exception type “Session End” (thus
creating a new instance of the relationship Type), and with the
entity representing the affected activity (thus creating a new
instance of the Affects relationship).

The hypertext fragment (c) in Figure 11 shows the WebML
implementation for capturing the semantic synchronous exception
representing the failure of the loan search based on customer’s
criteria because the requested loan amount exceeds the supported
limit. A request-response operation (Loan Search) is published
and called within the Loan Search activity. If the response
message indicates the failure, the following operations apply; a
new exception instance is created, and connected through the
Type and Affects relationships to the “Amount Over Limit”
Exception Type, and to the instance of the current activity. After
capturing the event, the recovery of the exception will be then
specified.

177

Notifying and handling models. These two models have been
implemented by adding the following new primitives to the
WebML language:

1. Exception control unit: checks whether an exception has
occurred either for an activity executed by the current user,
or for a case managed by the current user.

2. Exception-aware content unit: retrieves the activities
instances or the cases affected by an exception of a specific
type occurred for the current user and shows also the
recovery policies associated (at design-time) with that kind of
exception.

3. Recovery units for implementing the five recovery policies
described in Section 2.5 (accept, reject, abort, ignore,
resume): such units can automatically handle the exception to
recover. Indeed, as described in the exception meta-data
model in Section 2.4, given a specific exception instance it is
possible to retrieve the affected activity instance and/or the
corresponding case, all the objects created within the activity,
all the objects assigned to that activity, and the current page
visited by the user within that activity. All these data allow
an automatic implementation of all the policies.

4. A set of units for specifying user-defined handlers: in
particular, the operations to be performed by the handler are
enclosed between a start and an end exception handler unit
(like the start and the end activity operations shown Figure
10), and when all the operations have been performed a
Goto-page unit allows to specify the page in the hypertext
from which the navigation must continue (e.g., the current
page, the first page of a particular activity, the home page,
and so on).

These units can be considered as “macros” performing suitable
queries and updates on the exception subschema of the meta-
model. In addition, WebML supports the new notion of
exception-aware link, as discussed in Section 3.5. Notice that with
the help of these units the designer should not directly access
exception data; he must specify where exceptions should be
checked and then concentrate only on the recovery policies to
adopt for each kind of exception. For their specification, some
typical patterns have been identified. Here we show two
examples, one applied to a synchronous exception and one
applied to an asynchronous exception.

...

Available Loans Page

Available Loans

Installment Plan

Loan Details Page

Loan Proposal

Loan Proposal
Create Loan

Request

Loan Request

Start Activity

Loan Request

OK

Installment Plan ID

E

On Wrong Starting Page

Resume Policy

EOID

Figure 12. Example of pattern for a synchronous exception

Figure 12 presents the typical pattern for a synchronous
exception: it implements the example of the behavioral exception
“Wrong Starting Page” discussed in Section 3.5 and illustrated in
Figure 8. This exception is captured by a trigger (see Figure 5). In
the Available Loans Page, the customer receives a loans list

(represented by an index unit) matching his search criteria. When
the customer clicks on a link of the index the exception-aware link
labeled with “E” is followed, which checks if the “Wrong Starting
Page” exception has occurred. In such case, the Resume Policy,
represented by the corresponding recovery unit, is applied;
otherwise, the activity continues.

Employee’s Workflow
Home Page

Exception
Control Unit

E

Exception Page

Session End

Activity Instance
[Exception ID = “Session End”]

E

Resume Policy

Reject Policy

EOID

EOID

Figure 13. Example of pattern for an asynchronous exception

Figure 13 depicts the typical pattern for an asynchronous
exception: the “Session End” exception, discussed in Section 2.5
and illustrated in Figure 9. This exception is captured by means of
a Web service (see Figure 11.b). In this case, the exception is not
handled within an activity, but in a different page, for example, in
the home page of the customer workflow. In this page an
exception control unit checks if an asynchronous exception has
occurred for activities assigned to the customer or for cases
managed by the customer, and activates a link to the
corresponding exception handler page. In the Exception Page an
exception-aware index unit retrieves all the activities instances
affected by a “Session End” exception that can be recovered by
the employee and shows also the recovery policies associated with
it: in this example, the resume or the reject policies may be chosen
by the employee. The selection of a particular policy for a
particular activity instance yields to the execution of the
corresponding recovery unit.

Manager’s Workflow
Home Page

Exception
Control Unit

E

Modify

Loan Request
[self.ActInstance.Case=Case]

<Established Rate:=Established
Rate+LastVar>

Start Exception
Handler

Discount Rate

End Exception
Handler

Discount Rate

OK

Exception Page

Discount Rate
Variation

Case
[Exception ID = “Discount Rate”]

E

EOID

SendMail

OK

Extract Email

Loan Request
[self.ActInstance.Case=Case]

OK

Extract Last
Variation

Country
[self.LoaProposal.Installment

Plan.LoanRequest.ActInstance.
Case=Case]

OK

Figure 14. Example of user-defined policy

Finally, Figure 14 shows an example of user-defined policy,
recovering the discount rate variation exception. In our simplified
example, we suppose that the manager is asked to update the
affected loan requests by adding the LastVariation to the
Established Rate attribute of the Loan Request related to an
Installment Plan of the interested Country. More precisely, once
the exception is recognized: (i) the Cases related to the exception
are retrieved through an Exception index unit; (ii) the manager
chooses a case and the handling policy is started; (iii) the
Established Rate of the Loan Request related to the selected case
is updated; (iv) an email message is sent to the customer of the
Loan Request; and finally (v) the handling policy is closed.

178

4.3 Experience
The concepts presented in this paper have been proved valid on
the field. Several case studies exploiting exception handling
capabilities have been implemented, thus validating and refining
the approach. The most relevant applications include the Acer
Business Portal, an application invoking and defining remote
service calls for providing location and driving information to
users, and supporting workflow-based interaction between Acer
and its commercial partners; and MetalC [12], a complex
application including a set of B2B portals, one for each business
partner. The purpose of this second project is to allow business
interactions between small Italian companies of the mechanical
sector by means of their respective Web portals, through Web
services calls. In this context, complex workflow interactions have
been put in place, to grant reliable cooperation. For example, the
purchasing process in a B2B scenario consist of a very complex
set of interactions, since the buyer typically asks for a quote, the
seller makes his offer, then the buyer sends his order for the best
offer. In this context, exceptions management becomes very
critical. In the implemented communication platform all the
discussed recovery policies have been used. Some examples
follows: (i) if an exception occurs within the AskForQuote
activity, an accept policy is synchronously performed, and the
request is sent even if not all the data are submitted (less relevant
data are left in the last steps of the activity); (ii) if an exception
occurs within the SendOrder activity, the reject policy applies in
synchronous modality: data created within the activity is deleted,
and the user is asked to restart it; (iii) in case of exception within
the self-registration activity, which is a long sequence of data
submission by the partners, resume policy is exploited, to allow
the user resume the self-registration from the point in which he
left the application. An example of user-defined recovery becomes
necessary within the shipping confirmation activity: once the
order has been confirmed and the goods are ready to be shipped,
the seller must notify the buyer about the sending. If an exception
occurs during the execution of this activity, a user-defined
compensation chain is performed, automatically executing the
remaining steps of the activity. Finally, also some asynchronous
exceptions have been defined, like for example the “Session End”
exception.

5. CONCLUSIONS
In this paper, we have proposed a conceptual approach to
exception handling within workflow-based Web applications. We
start with a formal classification of exceptions that can specifically
occur during the execution of Web applications. This
classification allows a clear identification of the possible sources
of critical situations, and provides simple guidelines for designing
appropriate solutions for the various scenarios. The Web
application is modeled with a very high level representation,
comprising a metadata model, a graph of activities made of pages,
and a set of primitives to be used into hypertext specification.
Thus, the main advantage of our approach stands in allowing the
definition of exception handling policies and compensation chains
without lowering the abstraction level of the design.

Once the policies and the high-level design are exploited, it is
possible to move to a more detailed design based on traditional
modeling languages (and therefore exploiting automatic
generation of the code), or directly on the implementation level.

Future work will include further implementation experiences, to
allow the refinement of our approach.

6. REFERENCES
[1] Atzeni, P., Mecca, G., Merialdo, P.: Design and Maintenance

of Data-Intensive Web Sites. EDBT 1998, 436-450.

[2] Baresi, L., Garzotto, F., Paolini, P.: From Web Sites to Web
Applications: New Issues for Conceptual Modeling. ER
Workshops 2000, 89-100.

[3] BPML and BPMN site http://www.bpmi.org/.

[4] Bultan, T., Fu, X., Hull, R., Su, J. : Conversation
specification: a new approach to design and analysis of e-
service composition. WWW 2003, 403-410.

[5] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S.,
Matera, M.: Designing Data-Intensive Web Applications,
Morgan-Kaufmann, 2002.

[6] Conallen, J.: Building Web Applications with UML.
Addison Wesley (OTS), 2000.

[7] Fernandez, M. F., Florescu, D., Kang, J., Levy, A. Y., Suciu,
D.: Catching the Boat with Strudel: Experiences with a Web-
Site Management System. SIGMOD 1998, 414-425.

[8] Gómez, J., Cachero, C., Pastor, O.: Conceptual Modeling of
Device-Independent Web Applications. IEEE MultiMedia
8(2), 26-39, 2001.

[9] Hagen, C., Alonso G.: Exception Handling in Workflow
Management Systems. IEEE TSE 26(10), 943-958, 2000.

[10] Hennicker, R., Koch, N.: A UML-based Methodology for
Hypermedia Design. UML 2000, 410-424.

[11] Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali,
P.: Model-Driven Design and Deployment of Service-
Enabled Web Applications, ACM TOIT, Vol. 5(2), May
2005.

[12] MetalC Web site http://www.metalc.it .

[13] Miller, J. A., Sheth, A. P., Kochut, K. J., Luo Z. W.:
Recovery Issues in Web-Based Workflow. CAINE-99,
Atlanta, Georgia, 101-105, November 1999.

[14] Schwabe, D., Rossi, G.: An Object Oriented Approach to
Web Applications Design. TAPOS 4(4), 1998.

[15] Van der Aalst, W. M. P., ter Hofstede, A. H. M., Weske:
Business Process Management: A Survey. Business Process
Management 2003.

[16] Van der Aalst, W. M. P., Aldred, L., Dumas, M., ter
Hofstede, A. H. M..: Design and Implementation of the
YAWL system, CAiSE 04, Riga, Latvia, June 2004. Springer
Verlag.

[17] WebML Web site http://www.webml.org .

[18] WebRatio site http://www.webratio.com .

[19] Workflow Management Coalition site http://www.wfmc.org

179

