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ABSTRACT 
We present an approach in which the semantics of an XML 
language is defined by means of a transformation from an XML 
document model (an XML schema) to an application specific 
model. The application specific model implements the intended 
behavior of documents written in the language. A transformation 
is specified in a model transformation language used in the 
Model Driven Architecture (MDA) approach for software 
development. Our approach provides a better separation of three 
concerns found in XML applications: syntax, syntax processing 
logic and intended meaning of the syntax. It frees the developer 
of low-level syntactical details and improves the adaptability and 
reusability of XML applications. Declarative transformation rules 
and the explicit application model provide a finer control over 
the application parts affected by adaptations. Transformation 
rules and the application model for an XML language may be 
composed with the corresponding rules and application models 
defined for other XML languages. In that way we achieve reuse 
and composition of XML applications. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – Frameworks. D.3.4 [Programming Languages]: 
Processors – Interpreters. I.7.2 [Document and Text 
Processing]: Document Preparation – Markup languages.  

General Terms 
Documentation, Design, Languages. 

Keywords 
XML, XML Processing, MDA, Transformation Language, Model 
Transformations. 

1. INTRODUCTION 
Extensible Markup Language (XML) is nowadays a dominant 
data representation format used in many areas in computer 
science and industry such as World Wide Web (WWW), 
eCommerce and Web Services Architecture. As a result many 
XML markup languages emerged focusing on a particular 
problem domain. This opens the possibility for reuse of existing 
languages into new ones (known as hybrid languages) and 
creating compound documents based on more than one 

vocabulary. This trend is clearly exemplified by the recent 
standards created within W3C based on composition and reuse of 
modules defined for the popular Web languages such as 
XHTML, SMIL, MathML, SVG. 

The wide acceptance of XML motivates the need for techniques 
and tools that support the development of XML-based 
applications. Today, XML technology offers mature standards 
and tools that mainly facilitate the definition and processing of 
the syntactical part of XML applications. These are the XML 
Schema for definition of markup language syntax, XSLT for 
defining document transformations, XPath/XQuery for navigation 
and extraction over documents, and a large set of high quality 
XML parsers. 

Apart from the traditional tasks of syntax definition and parsing, 
an XML application requires processing that reflects the 
semantics of the markup used in the documents. Since the 
semantics is specific to the application it is much more difficult 
to standardize the application-specific processing phase in 
contrast with the syntax parsing phase. The application usually 
has to transform XML documents into application-specific 
structures that implement the concepts in the domain for which 
XML is used. That is a recurring task and is a candidate for at 
least a partial automation. Furthermore, today’s applications 
must satisfy certain quality properties. The first property we 
consider is the adaptability of the application that allows it to be 
easily adapted at low cost when the syntax of the markup 
language changes. The second property is the reusability of the 
processing application. This is motivated by the need of 
compound documents based on multiple vocabularies. The ability 
to reuse the vocabulary is naturally followed by the need to reuse 
processing logic for that vocabulary. One possible reuse is in the 
composition of several XML applications in a new one. In that 
respect reusability is a prerequisite for the composability of the 
applications.   

Generally, the programmer may choose between two technologies 
to process XML documents with a programming language: 
generic document interfaces (such as DOM and SAX), and data 
binding. Simple API for XML (SAX) [24] and Document Object 
Model (DOM) [26] provide interfaces to documents that reflect 
the document syntax. It is acknowledged that this approach is too 
low level and error-prone. Moreover, the application is often 
designed in an ad-hoc manner and hardly possesses the 
adaptability and reusability properties. For instance, a change in 
the syntax may lead to many changes in the code and 
recompilation of the whole application. 

In data binding [23] a document schema is compiled into a set of 
classes in a given language and the processing of documents is 
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automated (a process known as unmarshaling). This approach, 
however, is not applicable if the application classes already exist 
and differ significantly from the document syntax structure. 
Reusability and adaptability are deteriorated because every 
change in the schema requires schema recompilation. 

The problems of adaptability and reusability caused by the need 
for redesign and recompilation of applications are strongly 
related to the fact that the XML technology does not provide a 
standard means for specifying semantics of markup languages. In 
current XML applications the relation between syntax and its 
intended meaning is not explicit. It is often hard-coded in the 
application and it is difficult to reuse and maintain it. On the 
other hand, the domain of programming language specification 
offers a number of frameworks for defining language semantics 
in an explicit way [30]. Issues like the evolution and composition 
of languages and their translators have been on the research 
agenda for a long time [12][13][3]. Clearly, the experience 
gained in that area can be used to develop tools and techniques 
required for XML applications. 

In this paper we propose an approach for XML processing based 
on a declarative specification and execution of a model 
transformation from the language syntax structures (the source 
model) to the application structures (the target model).  That 
transformation can be regarded as a semantic specification for the 
markup language syntax. We assume that the document syntax is 
either defined in an XML schema or as a set of elements and 
attributes (schema-less approach). If a schema is present it is 
treated as a model of XML documents. The application classes 
form the target model. A given transformation contains 
declarative rules that encode how the syntax constructs defined 
in the source schema represent components in the target model. 
Transformations are specified in a domain-specific model 
transformation language. We present a language that has been 
developed for another problem domain in software engineering: 
the OMG’s Model Driven Architecture (MDA) [17] approach 
and show how the language is applied in the context of XML 
processing. 

By using transformations we achieve a better separation of 
concerns. XML applications are decomposed in three 
components: syntax definition (schema), transformation 
specification and application classes. Application classes do not 
contain syntax processing code; this is captured in the 
transformation specification. 

The benefits of our approach are the following: 

• developers are freed from writing a low level syntax 
processing code; 

• it opens a possibility for automatic generation of language 
translators similar to the compiler-compiler approach;  

• syntax and application code may evolve independently; 

• transformation rules can be designed at the granularity that 
provides good adaptability of the application. Only rules that 
reflect changes in the syntax are updated; 

• reusability of the applications is improved. Using multiple 
vocabularies in a document is achieved by composing 
corresponding transformation rules and application classes. 

This paper is organized as follows. Section 2 gives a detailed 
overview of the approach. Section 3 presents an example used 
further in Section 4 to present the features of our transformation 
language. Section 5 discusses related work. Section 6 gives 
conclusions and directions for future work. 

2. OVERVIEW OF THE APPROACH 
Our approach is based on specification and execution of 
transformations between models. We borrow this technique from 
the Model Driven Architecture (MDA) approach for software 
development. The application of model transformations to XML 
processing shown here is an elaboration of our previous work 
reported in [9]. 

In an MDA-based process the development of a software system 
starts with making a detailed model of it. That model is a 
system’s specification at an abstract level that does not contain 
information about the technologies that will be used for the 
system implementation (so called Platform Independent Model, 
PIM). When the implementation technologies are chosen the PIM 
is (semi) automatically transformed to a model that contains 
implementation information known as Platform Specific Model 
(PSM). The PSM has to contain enough information to allow 
automatic code generation of the system. As we can see 
transformations between models is the main operation in an 
MDA-based process. Recent activities in the area are focused on 
development of domain-specific transformation languages and 
supporting tools [18]. 

In our approach to XML processing we benefit from the ability to 
express and execute transformations for specifying, in a 
declarative and explicit way, the actions that an application takes 
during the processing of XML documents. We use a 
transformation language developed in the context of an MDA 
process [10]. 

Fig. 1 shows the basic model transformation pattern in MDA. 

 

Figure 1. The basic model transformation pattern 

In this pattern a transformation is executed by the transformation 
engine taking model A as a source and producing model B as a 
target. A transformation specification is written in a 
transformation language. In MDA, models are conforming to (or 
are instances of) meta-models that define the rules of the 
modeling languages used to create the models. An example of a 
modeling language is Unified Modeling Language (UML) [19]. A 
transformation specification is based on the knowledge of the 
meta-models (in Fig. 1 meta-model A and meta-model B). A 

161



transformation can be executed on every input model that 
conforms to the meta-model A. 

To apply this approach to XML processing we adapt the pattern 
in that context (see Fig. 2). The transformation engine takes an 
XML document as input and generates an output. This output can 
be a set of rows in a relational database, another XML document 
or objects instances of classes written in a given programming 
language (e.g. Java). In this paper we focus on applications that 
instantiate objects on the base of XML documents. These objects 
may be implemented in any programming language. Our 
transformation language is independent of concrete languages 
used to specify the models. We chose Java to illustrate our 
approach. To apply the approach we must identify the meta-
models that will be used to specify the transformation. Fig. 2 
shows the transformational pattern applied in the context of 
XML processing. 

First we have to identify the model of XML documents. 
Available alternatives are the Document Object Model (DOM) 
and the XML Information Set. Both reflect the XML grammar 
that is used to check if an XML document is well-formed. In this 
paper we choose DOM as a more popular standard among the 
developers but any other model that reflects the notion of well-
formedness may be used. Furthermore, XML documents may 
conform to a schema. Most of the today’s XML languages are 
defined by an XML schema. The schema can be perceived as a 
model of the class of documents that are valid against that 
schema. 

 

Figure 2. Transformation pattern for XML processing 

We assume that the schema may be available and the processing 
may use the schema constructs. Moreover, the presence of 
schema does not inhibit the conformance to the generic XML 
document model. It only imposes additional constraints. 
Therefore the documents may be considered as instances of two 
different models: the generic document model and the document 
schema. The instanceOf relationships are defined in different 
ways in these cases and may exist together. Working with both 
models is important and should be available in the 
transformations. A software engineer should be able to specify 
both generic document processing reflecting DOM and document 
processing that uses type information based on schema types. To 
employ schemas in our approach we include a model of XML 
Schema that can be derived from the specification. In that way 
the source meta-model (meta-model A in Fig. 1) is split into two 
separate models in the case of XML processing: the XML 
Schema Model and the XML Document Model. The 
transformation specification may use both the schema and the 
generic document types. The XML Document Model is defined 

in UML and shown in Fig. 3. The XML Schema Model is 
referred to [27]. 

 

Figure 3. The XML document model 

A concrete schema and a concrete XML document are used as a 
source of the transformation but only the document is 
transformed. The schema is used only for purposes of selection of 
concrete document nodes on the base of their types and 
associated element or attribute declarations. This is done by 
using a Post Schema Validation Infoset (PSVI). 

The target meta-model in the pattern in Fig. 2 consists of the 
application-specific classes. The output model (corresponding to 
model B in Fig.1) is therefore a set of objects instances of the 
application classes. 

The structure of an XML application based on model 
transformations is shown in Fig. 4. The static part of the 
application consists of the components surrounded by the gray 
area. In this part the optional XML schema, the transformation 
specification and the classes are the application specific 
components. Application classes implement the intended 
meaning of the markup syntax constructs and the transformation 
specification specifies how the syntax is related to that meaning. 
Application classes do not contain syntax processing 
functionality. This functionality is captured in the transformation 
specification. 

The dynamic part of the application contains the components 
surrounded by the white rectangle in the lower right corner of 
Fig.4. 

 

Figure 4. Static and runtime part of an XML application 

The objects are part of the dynamic state of the XML application 
and are instantiated at runtime after the execution of the 
transformation.  
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3. RUNNING EXAMPLE 
We will illustrate our approach on the base of an example 
presented in this section. Then in Section 4, we show the 
transformation specification for the example and explains the 
transformation language constructs. 

The example uses a simplified version of the SMIL timing 
synchronization module [28] intended to be used together with 
other markup languages such as XHTML. A set of application 
classes written in Java is used to implement the behavior of the 
time dependency graph nodes according to the time model of 
SMIL. The structure of the example is shown in Fig. 5. It is an 
instance of the general pattern for XML processing in Fig. 2. 

 

Figure 5. Structure of the example application 

It should be noted that the SMIL timing model is rather complex 
and includes many capabilities. It is beyond the scope of the 
paper to provide a detailed description of that model and the way 
to design a time scheduler program that executes the model. We 
limit ourselves to a very simplified subset of the timing module 
that uses a set of attributes indicating the type of the time 
element (interval, parallel or sequence) and the start, end and 
duration properties. Our source schema therefore contains four 
attributes taken from the SMIL specification. The following 
schema snippet shows the attribute definitions. 
<attribute name=’begin’ type=’string’/> 

<attribute name=’end’ type=’string’/> 

<attribute name=’dur’ type=’string’/> 

<attribute name=’timeContainer’ type=’string’/> 

The attribute timeContainer may assume 3 values: none, par and 
seq. The first value none indicates that an element that has an 
attribute with value none is an atomic timed element (interval). 
The two values par and seq determine the element as a time 
container with a parallel and sequential scheduling of its 
children. 

The processing of an XML document that uses these attributes 
results in creation of a time dependency graph that captures the 
timing constraints and dependencies expressed in the document. 
The nodes of that graph reflect the semantics of interval and 
container nodes and implement their functionality. Time graph 
nodes are instances of application classes written in Java. A 
sketch of the classes is given below. We focus on building the 
time dependency graph, and do not include an implementation of 
the timing functionality. 

public interface ControlledObject { 

  public void activate(); 

  public void deactivate(); 

} 

public abstract class TimedElement{ 

  public int begin; 

  public int end; 

  public int dur; 

  public ControlledObject ctrlObject; 

  public void abstract start(); 

  public void abstract stop(); 

} 

public class Interval extends TimedElement{ 

  public void start()  {//concrete implementation} 

  public void stop()  {//concrete implementation} 

} 

public abstract class TimeContainer extends TimedElement{ 

  public Vector components; 

} 

public class Parallel extends TimeContainer{ 

  public void start()  {//concrete implementation} 

  public void stop()  {//concrete implementation} 

} 

public class Sequence extends TimeContainer{ 

  public void start()  {//concrete implementation} 

  public void stop()  {//concrete implementation} 

} 

Class TimedElement is the abstract root class of the application 
hierarchy. Every node in the time graph is an indirect instance of 
that class. It has fields for the begin, end and the duration of the 
timed element. A node in the graph manipulates the behavior of 
an object. That object could be a text, picture, an audio clip or 
any other element. Timed objects must implement the interface 
ControlledObject. At the time of activation/deactivation of a 
node it invokes the operations activate()/deactivate() on the 
controlled object. 

We have three types of time nodes: Interval, Parallel and 
Sequence. The latter two are time operators that specialize the 
abstract class TimeContainer. Time containers have other nodes 
as children and impose a sequential or parallel order on their 
activation. Time containers may be nested. The execution 
semantics of the time graph is described in the SMIL 
specification [28]. 

4. TRANSFORMATION LANGUAGE 
The transformation language presented here is developed 
according to the requirements formulated in the 
Query/Views/Transformations Request for Proposals by OMG 
[18]. According to this OMG document transformations describe 
relationships between a source meta-model and a target meta-
model in a declarative way. Another requirement is for 
mechanisms that support reusability and extensibility of 
transformation definitions. We shall see in Section 4.5 that this 
requirement is essential in achieving the adaptability and 
reusability of XML applications. 

4.1 Transformation Specification 
The transformation language is used for the specification of 
transformations. The following code is the transformation 
specification for processing XML documents that use the timing 
attributes in the example to impose timing constraints upon other 
objects. After the execution of this transformation an XML 
application will build a time graph that captures the timing 
constraints specified in the document. It does not process the 
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concrete controlled objects which are described by another 
markup language. An example of such a markup language that 
uses timing constraints is given in section 4.5. 

The transformation is explained throughout this section in 
combination with an explanation of the transformation language 
constructs. Language keywords are given in bold. A more 
detailed description of the language can be found in [10]. 

 
1. timedElementMapping abstract ModelElementRule { 

2.   source[e:Element link-to(node), 
3.                    condition{XPath($e[@timeContainer])} ] 

4.   target [node: TimedElement{begin, end, dur, ctrlObject}] 

5.   SlotRules{ 

6.      beginValue 

7.         source[beg:Attribute=XPath($e/@begin)] 

8.         target [begin=toInt(beg.value)] 

9.      endValue 

10.        source[end:Attribute=XPath($e/@end)] 

11.        target [end=toInt(end.value)] 

12.     durValue 

13.        source[duration:Attribute=XPath($e/@dur)] 

14.        target [dur=toInt(duration.value)] 

15.  } 

16. } 

17. parallelContainer ModelElementRule inherits    

18.                         timedElementMapping{ 

19.   source[ condition{XPath($e[@timeContainer=’par’])} ] 

20.   target[ node: Parallel{components} ] 

21.   SlotRules{ 

22.      componentsValue 

23.         source[timedChild:Element=XPath($e/*[@timeContainer])] 

24.         target[components=target(timedChild, node)]   

25.   } 

26. } 

27. intervalNode ModelElementRule inherits                        

28.                               timedElementMapping{ 

29.    source[ condition{XPath($e[@timeContainer=’none’])}] 

30.    target[ node: Interval] 

31. } 

4.2 Language Overview 
A transformation specification is written in the transformation 
language being described here and is based on the meta-models 
of the source model and the target model. In the case of XML 
processing the source and target models and their meta-models 
are shown in Fig. 2. 

A transformation specification is a set of rules. There are two 
types of rules: model element rules and slot rules. Model element 
rules select elements in the source model and execute actions. 
Actions are creation of elements in the target model, update of 
existing elements and deletion of elements. In our approach the 
model elements in the source model are XML document nodes 
and the model elements in the target model are Java objects. Slot 
rules are used to relate the elements by setting their slot values. 
For Java objects slots are defined by the class fields. For XML 
nodes slots are defined by the attributes and association roles in 
the XML Document Model in Fig. 3. Both types of rules have 
rule source that selects elements in the source model. 

Our example transformation consists of 3 model element rules 
which in turn have associated slot rules. 

4.3 Language Constructs 
4.3.1 Model Element Rules 
Model element rules create new elements in the target model or 
modify existing ones in the source and the target models. The 
creation of new elements is done by instantiating the types in the 
target meta-model, in our example these are the Java classes. 

The syntax of model element rules is specified below in a pseudo 
EBNF notation. Non-terminals are in italic. 

ruleName ModelElementRule InputParameters? { 

   RuleSource 

   target [Action +] 

   SlotRule* 

} 

Every model element rule has a name, a source, a target, an 
optional list of input parameters and is associated with a number 
of slot rules. Model element rules specify a correspondence 
between elements enumerated in the rule source and elements in 
the rule target. When a rule is executed elements in the rule 
target are instantiated for every tuple that matches the rule 
source. Model element rules may be defined as abstract. If a rule 
is abstract it cannot be executed directly. It can be inherited by 
other rules and provides its components for reuse. 

Rule source specifies the characteristics of the elements in the 
source model that will be selected by a transformation rule. Rule 
source is an expression that is evaluated to a set of tuples 
containing elements in the source model. 

A rule source enumerates at least one component. An optional 
condition may be imposed on the components. The components 
of a rule source are two kinds: a model element identifier that 
uniquely identifies an element in the source model and variable 
that can be bound to more than one source element. Each 
variable has a type. The type is a model element from the source 
meta-model. The variable matches the instances of this type in 
the source model. Variables can be initialized by an expression 
written in Object Constraints Language (OCL). For the purposes 
of XML processing we allow the usage of XPath expressions. 
The condition of a rule source is a Boolean expression. The 
result of the evaluation of a rule source is a set of tuples formed 
by the Cartesian product of the matches for each component. 
Tuples that do not satisfy the condition of the rule source are 
excluded. 

Consider the first model element rule named 
timedElementMapping (lines 1-16). The source contains one 
component, which is a variable of type Element with an imposed 
condition. The evaluation of the rule source will produce a set of 
element nodes in the source document that satisfy the condition, 
that is, all the XML elements that have an attribute 
timeContainer no matter what the attribute value is. Note that the 
condition is written in XPath and refers to the variable e by using 
the notation $e (line 3). In that way we select all the elements on 
which some time constraints are imposed. 

The target of a model element rule contains a set of actions. Two 
types of actions are supported: instantiation and update. Only 
instantiation action will be explained here. An instantiation 
specifies a type in the target meta-model that will be instantiated. 
The element created by an instantiation might be assigned with 
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an identifier. Instantiations enumerate the names of the slots that 
will be assigned with value after the instantiation. Slot values are 
determined from an optional expression specified in the slot list 
and an optional set of slot rules. 

The rule timedElementMapping contains one instantiation action 
based on class TimedElement and is assigned with the identifier 
node (line 4). Since this is an abstract class the rule cannot be 
executed and is declared as abstract. The instantiation 
enumerates the slots that must be assigned with values: begin, 
end, dur and ctrlObject. 

The transformation language supports single inheritance among 
model element rules. The inheriting (or child) rule inherits from 
the inherited (or parent) rule its source, target and the associated 
slot rules. Inheriting rule may define its own source, target and 
slot rules and may override the corresponding inherited 
components. 

Rules parallelContainer (lines 17-26) and intervalNode (lines 
27-31) inherit the rule timedElementMapping. They specify the 
classes that will be instantiated for the parallel time operator and 
interval node by overriding the instantiation labeled node in the 
parent rule. The identifier is preserved, however, the classes are 
changed (lines 20 and 30). New classes are concrete and may be 
instantiated. Slot rules for obtaining the values of slots begin, 
end and dur are inherited. In this example rule inheritance 
follows the inheritance in the target meta-model. It allows 
reusing of the logic for calculating slot values defined in the 
super class. The rule for processing of sequential time operator is 
skipped. It is similar to the rule for the parallel operator. 

Inheriting rules also inherit the source element and add new 
conditions. The conditions specified in the inheriting rules are 
logically and-ed to the inherited condition. Therefore rule 
parallelContainer will be applied on all elements that have 
attribute timeContainer with value ‘par’ (see the condition in 
line 19) and rule intervalNode will be applied on elements with 
attribute value ‘none’ (condition in line 29).  

4.3.2 Slot Rules 
Slot rules are always associated to a model element rule and 
specify how to obtain the values of the slots of its instantiations. 
The syntax of the slot rules is given below: 

ruleName RuleSource target[(slotName=Expression)+ ] 

Every slot rule has a name, a source and a target. Rule target 
enumerates the slots to be set up with a value. Rule source 
specifies the elements in the source model that will be used to 
obtain the value of the slots.  A given slot may have more than 
one slot rule for the calculation of the value. Expressions in the 
rule source may refer to variables defined in the source of the 
owner model element rule. In many cases the source of a slot rule 
is determined relatively to the source of its owner model element 
rule. For example, the value of the slot begin is determined by 
the rule beginValue (lines 6-8). The source of the rule specifies 
that the value must be taken from an attribute that is located by 
the XPath expression $e/@begin where e is the component in the 
owner model element rule. 

To determine the value of a slot the transformation engine first 
evaluates the expression assigned to the slot in the instantiation. 
If there is no expression then the value is obtained by executing 
the associated slot rules. For every match of the source of a slot 
rule the expression assigned to the slot is evaluated. Results 

obtained from the matches are united in a set. The sets obtained 
from the slot rules are united and the result is used as value of 
the slot. Multiplicity and type constraints are checked. 

It should be noted that our example transformation is not 
complete since there is no slot rule for the slot ctrlObject. The 
reason is that it is not known in advance what the controlled 
object is and how it is located. This is determined when the 
timing module is used together with another module to form a 
full language. Only in that case the information about the 
controlled object is available. Therefore, a new slot rule should 
be added based on the specific composition between the timing 
module and the other module. This is explained in section 4.5 
where our example is completed. 

4.3.3 Linking Source and Target Elements 
Whenever a model element rule is executed the execution engine 
establishes an association link between the elements matched by 
the source and the elements instantiated by the target of the rule. 

The created target model elements may be located via this 
association and used as slot values of other model elements 
created by other rules. They are accessed by querying the source 
element for the associated elements in the target model. The 
linking is done by the link-to construct that instructs the 
transformation engine to establish a link between an element of 
the source and the instantiations in the target of the rule. An 
example usage of this construct is shown in line 2 where the 
timed element is associated to the time graph node created for it. 
This association is used in rule parallelContainer to obtain the 
children nodes of the container. This is done by the slot rule 
componentsValue (line 22-24) where for every child XML 
element with imposed timing constraints the corresponding time 
graph node is located by using the built-in function target (line 
24). This function has two arguments. The first is the variable 
that holds the source node (in our example timedChild) and the 
second is the identifier of the element in the target model (node). 
The element in the target model may be created by any rule. The 
important point here is the usage of the same identifier across the 
rules. 

4.4 Transformation Execution 
Generally, there are two ways in the transformation engine to 
execute transformations: by interpretation and by compilation. 
Currently, rules are executed by interpretation and a prototype of 
an interpreter has been developed. 

Rules are declarative and there is no predefined execution order 
among them. A single source element may be processed by many 
rules. The execution of a model element rule is a sequence of 
instantiations of its target classes. The main problem here is the 
dependency among the instantiations introduced by the fact that 
an object may require another object as a slot value. In case of a 
constructor of a Java class that requires parameters the values of 
the parameters must be available before the class instantiation. 
Again, this leads to a dependency among instantiations. 
Instantiations and their dependencies form a graph. An execution 
order is derived after a topological sort over the graph. A 
transformation is executable if the graph does not contain cycles. 

4.5 Composing Transformations 
In this section we show how our approach supports reuse of XML 
applications in the context of processing of compound 
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documents. For this purpose we introduce another simple XML 
language that will be composed with the timing constructs in our 
previous example. For this new language we specify a second 
transformation that will be composed with the first one to form a 
new transformation capable of processing compound documents 
that use markup from both languages. 

4.5.1 Our Second Example Language 
The second language contains primitive elements that encode 
widgets and container elements that organize the widgets 
horizontally and vertically. We have two simple widgets for 
labels and images and two containers. The element names are 
label, image, hbox, and vbox respectively. For simplicity we skip 
the details about the size, font and color of the elements. A 
document written in that widget language is visualized by 
building and showing a hierarchy of layout objects following the 
nesting hierarchy of the document. Layout objects are again 
instances of Java classes. The following code gives a sketch of 
the application class hierarchy. 
public abstract class LayoutElement { 

  public boolean visible; 

  public boolean displayed; 

  public abstract void draw(); 

  public abstract void refresh(); 

} 

public abstract class Container extends LayoutElement{ 

  public Vector components; 

} 

public class Label extends LayoutElement{ 

  public String labelText; 

  public void draw() {//implementation} 

} 

public class Image extends LayoutElement{ 

  public String imageFile; 

  public void draw() {//implementation} 

} 

public class HBox extends Container{ 

  public void draw() {//implementation} 

} 

public class VBox extends Container{ 

  public void draw() {//implementation} 

} 

4.5.2 The Transformation Specification 
The transformation specification used to transform documents 
into a hierarchy of layout widget objects is given below. Some 
slot rules are omitted to safe space. 

 

labelRule ModelElementRule { 

   source [e: Element link-to(widget),     

              condition{e.name=’label’}] 

   target [widget: Label{labelText}] 

} 

imageRule ModelElementRule{ 

   source [e:Element link-to(widget),    

             condition{e.name=’image’}] 

   target [widget: Image{imageFile}] 

} 

containerRule abstract ModelElementRule { 

   source [e: Element link-to(widget)] 

   target [widget: Container{components}] 

   SlotRules{ 

      componentsRule 

         source[child:Element=XPath($e/*)]   

         target[components=target(child, widget)] 

   } 

} 

hBoxRule ModelElementRule inherits containerRule{ 

   source[condition{e.name=’hbox’}] 

   target[widget: HBox] 

} 

vBoxRule ModelElementRule inherits containerRule{ 

   source[condition{e.name=’vbox’}] 

   target[widget: VBox] 

} 

4.5.3 Composing Languages 
The structure of the application that processes documents with 
time constrained widgets is shown in Fig. 6. The schema of the 
hybrid language contains constructs in the timing module and the 
widget language. Transformation specification is a composition 
of the transformations for the two languages. The application 
model is a composition of the widget classes and time 
dependency graph classes. 

 

Figure 6. Composition of timing and widget markup 
languages and their processors 

The required step for integration of the two markup languages is 
to establish an interpretation of the activation and deactivation 
events in terms of the hosting language. Following the ideas of 
XHTML+SMIL [29] we choose two possible interpretations of 
activation. The first one affects the visibility of an element and 
the second one affects the display of an element. Making an 
element invisible means that it is not shown on the screen but 
generates a layout element and still affects the layout of other 
elements. Turning of the display property means that the element 
is not shown and no layout element is created for it. This 
interpretation is specific for the composition of the two languages 
and needs an explicit indication. Therefore a new attribute will 
be introduced to indicate the exact time action. Similarly to 
XHTML+SMIL the attribute name is timeAction with two 
possible values: visibility and display. 

The next step is to integrate the two applications in order to 
obtain a processor for compound documents. This requires 
composition of the transformations and the application classes. 
We first discuss the integration of the application classes. 

4.5.4 Composing Application Classes 
Every node in the time dependency graph must hold a reference 
to the object it controls. After the integration of the languages it 
is known what the controlled objects are. Controlled objects must 
implement the ControlledObject interface, however, class 
LayoutElement does not. Therefore we have a type compatibility 
problem. To overcome the problem and to perform the required 
composition between the classes we turn to the Adapter design 
pattern [6]. We introduce a new Java class that implements 
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ControlledObject interface and holds a reference to the actual 
layout element being controlled. The invocations of activate and 
deactivate methods are transformed to changing the visible and 
displayed properties of the layout objects. Since there are two 
possible interpretations of activation/deactivation we create one 
adapter class per interpretation: 
public class ChangeVisibility implements ControlledObject{ 

  public LayoutElement obj; 

  public void activate(){ 

    obj.visible=true; 

    obj.refresh(); 

  } 

  public void deactivate(){ 

    obj.visible=false; 

    obj.refresh(); 

  } 

} 

The second class ChangeDisplay is implemented in a similar 
way. 

4.5.5 Composing Transformations 
Now we can turn to the composition of the transformations. All 
the rules are reused and new rules must be added to instantiate 
the glue classes shown above. Two model element rules are 
added for that purpose and one slot rule that determines the value 
of the slot ctrlObject. Rules are shown below. 
visibilityRule ModelElementRule{ 

   source[e:Element link-to(adapter),   

           condition{XPath($e[@timeAction=’visibility’])}] 

   target[adapter:ChangeVisibility{obj=target(e, widget)}]  

} 

displayRule ModelElementRule{ 

   source[e:Element link-to(adapter),  

           condition{XPath($e[@timeAction=’display’])}] 

   target[adapter: ChangeDisplay {obj=target(e, widget)}]  

} 

ctrlObjectValue SlotRule owner=timedElementMapping { 

   target[ctrlObject=target(e, adapter)] 

} 

The slot rule is associated to the timedElementMapping rule from 
the first transformation. Apart from the simple additions of rules 
the transformation language also allows overriding of existing 
rules. 

5. RELATED WORK 
Explicit specification of the XML semantics can be done in one 
of the formalisms used in the area of programming language 
specification. A number of papers adapt techniques for 
specification of computer language semantics in the context of 
XML as a syntactical framework. In [21] the semantics of an 
XML language is given in the form of an attribute grammar [8]. 
This opens the possibility for applying the results and tools of 
extensive research available in that area. In attribute grammars 
translation is performed over attributed trees. The difference 
with our approach is that in our approach translation is 
performed as a transformation from a document tree to a graph. 

RelaxNGCC [15] is based on compiler-compiler techniques to 
build a processor for a language conforming to a RelaxNG 
schema. This provides more flexibility in bridging between the 
application model and document syntax and in associating 

behavior with XML documents. It allows reuse of already 
existing classes and deals better with structural differences 
between the syntax and classes. In addition, it generates a 
dedicated parser for a given XML language. Our transformation 
rules can be seen as similar schema annotations for W3C 
schemas and for schema-less documents. The approach for 
modular and extensible processors presented in [25] is inspired 
by denotational semantics of computer languages. Processors 
operate on document trees and do not rely on a schema. Our 
approach permits both types of processing: document-based and 
schema based. 

Another dimension of the work presented in the paper is the 
explicit specification of the relation between the syntax and 
another type of structure (a model, a database, an ontology). The 
approach presented in [1] maps XML documents to domain 
ontologies. Mapping rules rely on XPath. The primary goal of 
mapping is to allow translation of queries over the ontology to 
queries over the source documents. In our work the rules are used 
to transform source documents into a set of objects. Other papers 
that discuss the problem of bridging between XML syntax and 
ontology are [16] where a mapping ontology is presented that 
transforms XML documents to their RDF representation and [20] 
where the authors suggest a unification approach for XML and 
RDF based on model-theoretic semantics. In [2] a framework for 
expressing the semantics of markup is defined. The semantics of 
markup is a set of inferences that can be drawn from the 
document. PROLOG is used as an implementation language for 
inference rules. In the context of this work our transformation 
rules are particular types of inference rules. However, we rely on 
a domain-specific language for transformation specification and 
aim at a closer integration with object-oriented programming 
languages. 

There exist a number of languages dedicated to XML processing: 
XSLT, XDuce [7], XL [5]. All of them transform XML 
documents to other XML documents and their type system is 
based on XML types. Our approach is focused on transformation 
to application objects and uses types from a programming 
language, in our case Java. 

The problem of reuse of language processors and building new 
languages by composing existing modules has been addressed in 
research of programming language development and the problem 
proved to be hard. Existing work studies the composability 
properties of frameworks for semantics specification: attribute 
grammars [3], denotational semantics, operational and action 
semantics [13][12]. These techniques rely on mathematical 
formalisms to specify the semantics. Transformation rules in our 
approach may be perceived as specification of the language 
semantics in a domain-specific transformation language that has 
features closer to programming languages. In this respect it is 
more familiar to software developers than the enumerated formal 
techniques. 

There are tools supporting XML processing in browsers. 
XSmiles [22] is a browser that supports some of the today’s 
popular web languages. Mozilla browser [14] provides a 
framework for client-side web applications relying on a set of 
XML languages. Both tools provide an extensible architecture for 
XML applications. In contrast, our approach does not define an 
architecture nor a tool but stresses on the explicit specification of 
the language semantics that can be further employed in a tool. 
XVM [11] is an extensible architecture for XML processing 
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based on an association between XML elements and software 
components that implement their behavior. Our approach allows 
similar association of processing logic to more complex 
structures in the document (e.g. a tuple of elements and 
attributes). In XVM many aspects of the processing may remain 
hard-coded in the components while our approach declares this 
explicitly. 

6. CONCLUSION AND FUTURE WORK 
We presented an approach for development of XML applications 
based on specification of model transformations from a document 
model (or document schema) to a set of application-specific 
classes. In our approach transformations are specified in a model 
transformation language developed in the context of MDA. 

The approach frees the software engineer from writing low level 
and error-prone code against the generic syntax document model 
such as DOM and SAX. Instead, a declarative transformation 
specification is written that establishes the relations between 
syntax constructs and application structures. Transformation 
specification has an operational semantics and is executed by an 
interpreter. We plan to apply a compilation on transformation 
specifications to produce a dedicated XML processor for a given 
language. This is inspired by the compiler-compiler approach 
mentioned in the paper. Transformation rules are considered as 
semantic annotations. 

The main purpose of the approach is to improve adaptability and 
reusability properties of XML applications. The strength of the 
approach is that it makes processing logic of the application 
explicit by expressing it in a set of rules that can be manipulated. 
However, we observe also problems in achieving these 
properties. 

Adaptability is required to respond to changes in the application 
in an easy and cheap way without a redesign and recompilation 
of the whole application. Changes may occur in the language 
syntax, in the transformation specification and in the application 
classes. These three aspects are clearly separated from each other 
and may evolve independently. The most difficult case is the 
change of the syntax since it usually brings changes in the 
transformation specification and in the application classes. In our 
approach the required changes can be isolated in specific rule(s) 
and classes. The adaptability in that case is derived from the 
finer control over the application components. Additive 
adaptations seem to be easier for handling. This type of 
adaptation usually requires additions of new rules and classes 
that must be integrated with their counterparts. Deletions and 
replacement of components may be more difficult since this will 
require replacement of classes and refactoring of the 
transformation rules. However, these changes are still isolated 
and may be done without recompilation and redeployment of the 
whole application.  

Another quality property being pursuit is the reusability of XML 
applications motivated by the need of hybrid languages and 
compound documents. Usually an application is reused and 
composed together with other applications. In that case there are 
two distinct problems: the composition of transformation rules 
and the composition of application classes. They are driven by 
the composition of the XML languages. Composition of 
transformations is achieved by the available operators in the 
transformation language. It provides inheritance among rules, 

additions of both model element and slot rules and modules for 
reusing a set of rules. Rules may also be overridden. Every 
language, however, has limitations with respect to the available 
composition operators. Transformation technology provides us 
with a solution for composition operators non-supported by the 
transformation language: transformations may be considered as 
models and may be manipulated by another transformation. We 
investigate the required compositional operators for a 
transformation language and methods for introduction of new 
operators if required. 

The second problem related to the composition of XML 
applications is the composition of the application classes which 
is a case of software composition. In general, this is a problem 
that proved to be difficult. In our example it was easily solved by 
using the Adaptor design pattern. This is possible if the 
composition is anticipated and the application is properly 
designed. In most cases, however, the composition is not 
anticipated and the application classes are not composable. 
Composition may be done on source code and on already 
compiled classes. We can benefit from research in the area of 
aspect-oriented software development that provides advanced 
software composition techniques beyond the aggregation and 
inheritance [4]. This is the main direction for future research. 

One problem that remains open is the scalability of the approach. 
It works on examples that are relatively simple but it is not clear 
what happens in complex cases with larger number of languages 
involved. A possible approach is to start with a small stable set 
of languages and to create modular processors for them that can 
be composed with each other. This could be the domain of the 
Web languages. The composition of markup languages is 
complicated further by the requirement that software engineers 
should know the details of the language semantics which is not 
always simple. 

In this paper we focused on the possibility to utilize 
transformations for the specification of XML language semantics. 
We plan to go further by developing a tool that supports the tasks 
not discussed here such as deploying, updating and composing 
transformations and classes in a browser-like environment. This 
is similar to the architectures that XSmiles and Mozilla provide. 

We believe that another benefit of our approach may come from 
the increasing popularity of MDA and model transformations and 
the standard set of languages and tools that are expected. 

7. REFERENCES 
[1] Amann, B., Beeri, C., Fundulaki, I., Scholl, M. Querying 

XML Sources Using an Ontology-Based Mediator. In 
proceedings of CoopIS/DOA/ODBASE, 2002 

[2] Dubin, D. Object mapping for markup semantics. In B. T 
Usdin, editor, Proceedings of Extreme Markup Languages 
2003, Montreal, Quebec, August 2003 

[3] Farrow, R., Marlowe, T.J., and Yellin, D.M., Composable 
attribute grammars: support for modularity in translator 
design and implementation. 19th ACM SIGPLAN-SIGACT 
symposium on Principles of programming languages, 
Albuquerque, US. 1992 

[4] Filman, R., Elrad, T., Clarke, S., and Aksit, M. Aspect-
Oriented Software Development. Addison-Wesley. 2004 

168



[5] Florescu, D., Grunhagen, A., and Kossmann, D. XL: an 
XML programming language for web service specification 
and composition. 11th international conference on WWW, 
Honolulu, Hawaii, USA, 2002 

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design 
Patterns. Elements of Reusable Object-Oriented Software. 
Addison-Wesley. 1995 

[7] Hosoya, H., Pierce, B. XDuce: A typed XML processing 
language. In Third International Workshop on the Web and 
Databases (WebDB2000), volume 1997 of Lecture Notes in 
Computer Science, pages 226–244, 2000 

[8] Knuth, D. Semantics of context free languages. 1968 

[9] Kurtev, I., van den Berg, K. Model Driven Architecture 
Based XML Processing, ACM Symposium on Document 
Engineering, Grenoble, France, 2003 

[10] Kurtev, I., van den Berg, K. A Language for Model 
Transformations in the MOF Meta-modeling Architecture. 
Workshop on Model Driven Architecture: Foundations and 
Applications, Linkoping, Sweden, 2004 

[11] Li, Q., Kim, M.Y., So, E. Wood, S. XVM: a Bridge between 
XML Data and Its Behavior, 13th international conference 
on WWW, New York, USA, 2004 

[12] Mosses, P. Action semantics. Cambridge University Press. 
1992 

[13] Mosses, P. Pragmatics of Modular SOS, 9th International 
Conference on Algebraic Methodology and Software 
Technology, pp. 21-40. 2002 

[14] Mozilla Organization, http://www.mozilla.org 

[15] Okajima, D. RelaxNGCC - Bridging the Gap Between 
Schemas and Programs, Available at: http://www.xml.com 

[16] Omelayenko B. and Fensel D., A Two-Layered Integration 
Approach for Product Information in B2B E-commerce, In: 
K. Bauknecht, S. -K. Madria, G. Pernul (eds.), Electronic 
Commerce and Web Technologies, Proceedings of the 2nd 
Int. Conference on Electronic Commerce and Web 
Technologies, Germany, 2001 

[17] OMG. MDA Guide version 1.0.1. OMG document 
omg/2003-06-01, 2003 

[18] OMG. MOF 2.0 Query/Views/Transformations RFP. OMG 
document ad/2002-04-10, 2002 

[19] OMG/Unified Modeling Language Specification. 2001 

[20] Patel-Schneider, P., Siméon, J., The Yin/Yang Web: XML 
Syntax and RDF Semantics, 11th International WWW 
Conference, Hawaii, USA, 2002 

[21] Psaila, G. and S. Crespi-Reghizzi. Adding Semantics to 
XML. In Second Workshop on Attribute Grammars and 
their Applications, WAGA'99, 1999 

[22] Pihkala K., Honkala M. and Vuorimaa P., A browser 
framework for hybrid XML documents. 6th International 
Conference on Internet and Multimedia Systems and 
Applications, pp 164-169, Kauai, Hawaii, USA, 2002 

[23] Reinhold, M. An XML Data-Binding Facility for the Java 
Platform. 1999 

[24] SAX Project Home Page: http://www.saxproject.org/ 

[25] Sierra, J., L., Fernandez-Manjon, B., Fernandez-Valmayor, 
A., Navarro, A. An extensible and modular processing 
model for document trees. Extreme Markup Languages 
2002, Montreal, Canada, 2002 

[26] W3C. DOM Level 1 Specification, October 1999 

[27] W3C. XML Schema Part 0: Primer, Part 1: Structures. 2001 

[28] W3C. Synchronized Multimedia Integration Language 
(SMIL 2.0), 2001 

[29] W3C. XHTML+SMIL, 2002 

[30] Zhang, Y., and Xu, B. A survey of semantic description 
frameworks for programming languages. SIGPLAN Notices, 
vol. 39, 3, pp. 14-30, 2004

 

169


