
Web Service Interfaces∗

Dirk Beyer
EPFL, Lausanne, Switzerland

dirk.beyer@epfl.ch

Arindam Chakrabarti
University of California,

Berkeley, U.S.A.

arindam@cs.berkeley.edu

Thomas A. Henzinger
EPFL, Lausanne, Switzerland

& University of California,
Berkeley, U.S.A.

tah@epfl.ch

ABSTRACT
We present a language for specifying web service interfaces.
A web service interface puts three kinds of constraints on
the users of the service. First, the interface specifies the
methods that can be called by a client, together with types
of input and output parameters; these are called signature

constraints. Second, the interface may specify propositional
constraints on method calls and output values that may oc-
cur in a web service conversation; these are called consis-

tency constraints. Third, the interface may specify temporal
constraints on the ordering of method calls; these are called
protocol constraints. The interfaces can be used to check,
first, if two or more web services are compatible, and second,
if a web service A can be safely substituted for a web ser-
vice B. The algorithm for compatibility checking verifies that
two or more interfaces fulfill each others’ constraints. The
algorithm for substitutivity checking verifies that service A
demands fewer and fulfills more constraints than service B.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Require-
ments/Specifications; D.2.4 [Software Engineering]:
Software/Program Verification—Formal methods, Model

checking ; D.2.12 [Software Engineering]: Interoperabil-
ity—Interface definition languages

General Terms
Design, Reliability, Verification

Keywords
Web services, Web service interfaces, Web service compati-
bility, Web service substitutivity, Formal specification, For-
mal verification

∗This research was supported in part by the ONR grant
N00014-02-1-0671 and by the NSF grants CCR-0234690 and
CCR-0225610.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

1. INTRODUCTION
Interface formalisms are used to avoid errors in

component-based system design. In particular, by check-
ing at design-time if two or more interfaces are compatible,
we can ensure that the corresponding components work to-
gether properly at run-time. For example, programming-
language types offer a simple interface formalism: it can be
checked at compile-time if the number and types of the pa-
rameters of a function call and the function definition match.
Richer interface formalisms have been devised for software
components whose correct interaction depends on commu-
nication protocols [7], timing [9], or resource use [5].
Web services offer a particularly natural and important

application domain for interface formalisms. A web service
often depends on other web services, which have been im-
plemented by different vendors, and their correct usage is
governed by rules. Such rules may constrain data types, but
they may also express temporal constraints (e.g., “a ship-
ping order should be placed only if a credit card check has
succeeded”). We present a language for equipping web ser-
vices with interfaces that formalize such rules. The benefits
of our language are two-fold. First, it can be checked algo-
rithmically if two or more interfaces fulfill each other’s rules;
in this case the interfaces are called compatible. Second, it
can be checked algorithmically if one interface can be safely
replaced by another one; in this case the latter interface is
said to refine the former.
Compatibility and refinement checks, like model check-

ing, reduce the burden on testing for system integration and
validation. However, we explicitly propose to use formal
methods to specify and verify the interfaces of web services,
not their implementations (for implementation checking see,
e.g., [13, 15, 11, 20]). Interface checking stands a much bet-
ter chance of succeeding in practice than implementation
checking, as interfaces are usually less complex than the cor-
responding implementations. Indeed, good interface design
suggests that an interface exposes all information about a
web service that is needed to use the service properly, and
that the interface does not expose more than that. This is
why we offer not one, but three interface languages, which
are increasingly more expressive.
The first language, called web service signatures, ex-

poses only the names and types of externally callable meth-
ods and their return values. For example, a web ser-
vice signature may offer the method credit card check

with the two return values success and failure. The
second language, called consistency interfaces, equips web
service signatures with propositional constraints on the

148

consistency between various method calls and return val-
ues. For example, it may be inconsistent to have both
〈credit card check, failure〉 and 〈ship order, success〉
in the same web service conversation. The third and rich-
est language, called protocol interfaces, equips web ser-
vice signatures with temporal constraints between method
calls. For example, a protocol interface may prohibit
conversations where 〈ship order, success〉 occurs before
〈credit card check, success〉.
The compatibility and refinement of web service signa-

tures can be type checked. Consistency interfaces are state-
less; their compatibility and refinement can be checked by
solving propositional (boolean) constraints. Protocol inter-
faces are stateful; they can be naturally expressed by au-
tomata (state machines) with nondeterminism, recursion,
and thread creation. Their compatibility can be checked by
model checking temporal safety constraints.

2. WEB SERVICE SIGNATURES
Let M be a finite set of web methods and O be a finite

set of outcomes. The outcome is used to encode a return
value from the web method, or other behavioral differences
between various calls to the web method; for instance, if the
invocation will lead to a call to a callback method or not.
An action a on M and O is a pair 〈m, o〉 ∈ M × O. An
action 〈m, o〉 constitutes an “assumption” at the invocation
point that the call to web method m will eventually lead
to the outcome o for this call. This coupling of the call
together with its eventual outcome is found to be very useful
in reasoning about the behavior of web services. The set of
actions on M and O is denoted by A ⊆M×O.
A web service signature S is a partial function S : A → 2A,

which assigns to an action a a set of actions which can be
invoked by a. A web service signature S supports an action
a ∈ A if S(a) is defined; S supports a web method m ∈M if
some action 〈m, o〉 is supported by S. An action a requires

an action a′ in S if a′ ∈ S(a). A web service signature
S requires an action a′ if some action a requires action a′

in S. A web service signature S is well-formed if for every
web method m supported by S, every action 〈m, o〉 ∈ A
required by S is supported by S. In the rest of the paper,
the word “signature” stands for “well-formed signature”.
Intuitively, a signature element (〈m, o〉, S) says that when

the web method m is called, and the caller assumes the out-
come o, this signature pledges to support this action, and
itself relies on that the assumptions carried by the actions
a′ ∈ S are fulfilled (by either this signature, or by the envi-
ronment). Thus, a web service signature relates the “guar-
antees” made (actions supported) by the interface to the
“assumptions” (actions assumed to be supported, either by
the interface itself or by the environment) under which they
are made. The signature is well-formed if the assumptions
and guarantees are mutually consistent.

Example 1. (Supply chain management applica-
tion) We briefly describe a supply chain management ap-
plication [2] that we will use as a running example in the
rest of the paper to illustrate concepts as we introduce them.
The application consists of five web services: Shop, Store,
Bank, Transport, and Supplier. We will present interface
models for Shop and Store in the following sections. We will
focus on particular aspects of the services and not provide
a full-fledged model.

Figure 1: The supply chain management application

Figure 1 gives an overview of the interactions between the
web services. The Shop interface supports the web method
SellItem which is called by the Client application to start
the selling process, and it supports ChkAvail which is a
subroutine (called by Shop itself) that checks availability
of items for sale. Shop requires the web method ChkStore

to be implemented by Store to check whether the desired
items are available in stock. It also requires ShipItem to be
implemented by Transport to ship the sold items to the cus-
tomer, and it requires ProcPay to be implemented by Bank

to process credit card payments. Store requires two web
methods to be implemented by Supplier: GetOffer and
Order, to get an offer for an item, and to order new items if
the stock falls below a certain threshold.

Example 2. (Well-formed signature) To model the
Shop we need the following sets of methods, outcomes and
actions, before we can define a web service signature for it:

M = {SellItem, ChkAvail, ChkStore, ProcPay, ShipItem,
GetOffer, Order}

O = {SOLD, NOTFOUND, OK, FAIL, REC}
A = {〈SellItem, SOLD〉, 〈SellItem, FAIL〉,
〈SellItem, NOTFOUND〉, 〈ChkAvail, OK〉, 〈ChkAvail, FAIL〉,
〈ChkStore, OK〉, 〈ChkStore, FAIL〉, 〈ProcPay, OK〉,
〈ProcPay, FAIL〉, 〈ShipItem, OK〉, 〈ShipItem, FAIL〉,
〈GetOffer, REC〉, 〈Order, OK〉}

The Shop interface can be modeled as the following web
service signature:

SShop = {
〈SellItem, SOLD〉 7→ {〈ChkAvail, OK〉, 〈ProcPay, OK〉,

〈ShipItem, OK〉}
〈SellItem, FAIL〉 7→ {〈ChkAvail, OK〉, 〈ChkAvail, FAIL〉,

〈ProcPay, OK〉, 〈ProcPay, FAIL〉,
〈ShipItem, FAIL〉}

〈ChkAvail, OK〉 7→ {〈ChkStore, OK〉}
〈ChkAvail, FAIL〉 7→ {〈ChkStore, FAIL〉}
}

For instance, action 〈SellItem, SOLD〉 is supported
by SShop, and actions 〈ChkAvail, OK〉, 〈ProcPay, OK〉 and
〈ShipItem, OK〉 are assumed to be supported by the environ-
ment. Signature SShop is well-formed, because it supports
all possible actions for its supported methods.

Compatibility and composition. For two web service
interfaces, we want to check whether they can cooperate
properly, i.e., whether their signatures mutually fulfill their
guarantees and assumptions.

149

Given two web service signatures S1 and S2 with
dom(S1) ∩ dom(S2) = ∅, if Sc = S1 ∪ S2 is well-formed,
then S1 and S2 are compatible (denoted by comp(S1,S2)),
and their composition (denoted by S1 ‖ S2) is Sc. The com-
position operation is commutative and associative. Com-
patibility and composition of web service signatures can be
computed in linear time.
Composing web services allows us to reason about the

behavior exhibited when, for instance, a particular airline
reservation service Sa and a particular hotel reservation ser-
vice Sh are used as part of a larger system. Note that the
composition is still an open system. For instance, Sa and Sh

may both use a credit card processing service Sc. Assump-
tions made about the environment are allowed; the goal is
to check whether an environment fulfilling such assumptions
can exist. The airline ticket reservation service and the ho-
tel room reservation service may make assumptions about
the behavior they expect of each other, and additionally
about the credit card processing service in their environ-
ment, which they both use. Our formalism considers the
airline and hotel reservation web services compatible as long
as their mutual behavioral assumptions and guarantees are
consistent, assuming that a credit card processing service
fulfilling all expected requirements can exist. Intuitively,
this is why our formalism is an interface theory [8].

Example 3. (Compatibility of signatures) Let us
build the composition of the signature SShop with the fol-
lowing signature for Store:

SStore = {
〈ChkStore, OK〉 7→ {〈GetOffer, OK〉, 〈Order, OK〉}
〈ChkStore, FAIL〉 7→ {〈GetOffer, OK〉, 〈Order, OK〉}
}

Both actions require two other actions supported by
Supplier to order new items if the stock is below a cer-
tain threshold. Signature SStore is well-formed. The union
SShop ∪ SStore is also well-formed because it supports all ac-
tions for its supported methods and no action is supported
in both signatures. Therefore the signatures are compatible
and their composition is SShop ∪ SStore.

Substitutivity. To enable top-down design, we want to be
able to replace a component embedded as part of a larger
system (its environment) with a new component, while en-
suring that the entire system still cooperates properly as
before. Intuitively, we need to ensure that the replacement
component behaves similarly to the replaced one as far as
the environment assumptions and guarantees are concerned.
Given two web service signatures S and S ′, we say S ′

refines S (written S ′ 4 S) if

i) for every a ∈ A, if S supports a, then S ′ supports a,

ii) for every a, a′ ∈ A, if S supports a, and a requires a′

in S ′, then a requires a′ in S, and

iii) for all web methods m not supported by S ′, if S ′ re-
quires an action 〈m, o〉, then S requires 〈m, o〉.

The first condition ensures that the refined web service
signature “guarantees” to support every action supported
by the abstract one. The other two conditions ensure that
the refined web service signature does not “assume” addi-
tional actions to be supported by the environment under

situations where it is used exactly as the abstract one would
have been used. Given two web service signatures S and S ′,
the question if S ′ 4 S can be decided in linear time.

Example 4. (Substitutivity of signatures) Let S ′Shop
be a second web service signature defined as

S ′Shop = {
〈SellItem, SOLD〉 7→ {〈ChkAvail, OK〉, 〈ProcPay, OK〉}
〈SellItem, FAIL〉 7→ {〈ChkAvail, OK〉, 〈ProcPay, OK〉,

〈ProcPay, FAIL〉}
〈SellItem, NOTFOUND〉 7→ {〈ChkAvail, FAIL〉}
〈ChkAvail, OK〉 7→ {〈ChkStore, OK〉}
〈ChkAvail, FAIL〉 7→ {〈ChkStore, FAIL〉}
}

Compared with SShop, the signature S ′Shop supports an
additional action 〈SellItem, NOTFOUND〉 and requires no
action for shipping (e.g., because it implements the shipping
functionality itself). It is a refinement of SShop because
it i) supports all actions which SShop supports, ii) these
“refined” actions require only a subset of the actions which
are required by the actions in SShop, iii) the new action
requires only actions which are already required by some
action in SShop.

3. CONSISTENCY INTERFACES
Let B(P) be the set of expressions over the set of propo-

sitions P , using the binary operators u and t, and the
propositional constant t. Our language of expressions has
some important properties in common with the language of
boolean expressions, but there are some essential differences
which we will point out as appropriate. We use the symbols
t and u instead of ∨ and ∧ to reflect the similarity, and the
difference.
Given a set of actions A, a consistency interface C is a

partial function C : A → B(A). The element (〈m, o〉,t) ∈ C
means that interface C supports a method m, and when
m is called, and the caller expects the outcome to be o,
the interface C guarantees to fulfill the expectation, since
C(〈m, o〉) is defined. Further, C provides this guarantee mak-
ing the assumption t, which is always fulfilled, i.e., action
〈m, o〉 is supported under no assumptions. Intuitively, this
means that the code executed when web method m is called
can lead to the outcome o without calling any other web
method. The element (a, a′) ∈ C, where a′ = 〈m′, o′〉, says
that the action a is supported by C, and when a is invoked,
C calls m′ in turn, and expects the outcome o′. The element
(a, ϕ1 u ϕ2) ∈ C says that action a is supported by C, and
leads to the combination of the two sets of conversations,
one represented by ϕ1 and one represented by ϕ2. The ele-
ment (a, ϕ1 t ϕ2) ∈ C says that action a is supported by C,
but can lead to the set of conversations represented by ϕ1, or
to the set of conversations represented by ϕ2, nondetermin-
istically chosen by the interface. Allowing nondeterminism
in interfaces allows us to make them abstract; i.e., the in-
terface can forget about the implementation details of the
web service code, and only capture its external behavior in
terms of patterns of the web method calls it makes.
Given a consistency interface C, the underlying web ser-

vice signature of C (denoted by sig(C)) is defined as follows:
for all a ∈ A, if C(a) is defined, then sig(C)(a) = {a′ |
a′ occurs in C(a)}, and sig(C)(a) is undefined otherwise. A
consistency interface C is well-formed if sig(C) is well-formed.

150

In the rest of the paper, “consistency interface” stands for
“well-formed consistency interface”.

Example 5. (Well-formed consistency interface)
Let us model the Shop web service as consistency interface:

CShop = {
〈SellItem, SOLD〉 7→ 〈ChkAvail, OK〉 u 〈ProcPay, OK〉

u 〈ShipItem, OK〉
〈SellItem, FAIL〉 7→ 〈ChkAvail, FAIL〉 t (〈ChkAvail, OK〉

u (〈ProcPay, FAIL〉 t
(〈ProcPay, OK〉 u 〈ShipItem, FAIL〉)
))

〈ChkAvail, OK〉 7→ 〈ChkStore, OK〉
〈ChkAvail, FAIL〉 7→ 〈ChkStore, FAIL〉
}

For action 〈SellItem, SOLD〉, all three actions occur together.
For action 〈SellItem, FAIL〉, action 〈ChkAvail, FAIL〉 occurs
alone, or action 〈ChkAvail, OK〉 occurs together with either
action 〈ProcPay, FAIL〉 or both, actions 〈ProcPay, OK〉 and
〈ShipItem, FAIL〉. Note that nothing is said about the or-
der of their occurrence. The actions for method ChkAvail

result in calls of the method ChkStore in Store (delegation
of service).
The underlying signature sig(CShop) of CShop is SShop from

Example 2, which is a well-formed signature, and hence CShop
is a well-formed consistency interface.

3.1 Compatibility and Composition
Intuitively, given two consistency interfaces, if their mu-

tual behavioral assumptions and guarantees allow them to
co-operate, we say they are compatible, and we can compose

them to a single consistency interface, in which some of their
internal details are forgotten and the combined behavioral
assumptions and guarantees of interest for the environment
are retained.
Given two consistency interfaces C1 and C2, if the under-

lying signatures sig(C1) and sig(C2) are compatible, then
C1 and C2 are compatible (denoted by comp(C1, C2)), and
their composition (denoted C1 ‖ C2) is C1 ∪ C2. The com-
position operation is commutative and associative. Com-
patibility and composition of consistency interfaces can be
computed in linear time.

Example 6. (Compatibility of consistency inter-
faces) Consider the following consistency interface for
Store:

CStoreF1 = {
〈ChkStore, OK〉 7→ {t t (〈GetOffer, REC〉 u 〈Order, OK〉)}
}

When action 〈ChkStore, OK〉 is invoked, Store does nothing,
or gets offers and orders more items (if the stock is below
threshold). Note that nondeterminism allows the stock to
be abstracted away.
Let us try to compose the Shop and Store interfaces.

Are they compatible ? No, because their union Cc is not
a well-formed interface; because Cc supports an action
〈ChkStore, OK〉 and thus supports method ChkStore, but
requires an action 〈ChkStore, FAIL〉 that is not supported.
Intuitively, this means that Shop and Store do not agree
on their mutual guarantees and assumptions, and therefore
cannot work with each other.

The following consistency interface fixes the bug of
CStoreF1 by supporting action 〈ChkStore, FAIL〉:

CStore = {
〈ChkStore, OK〉 7→ {t t (〈GetOffer, OK〉 u 〈Order, OK〉)}
〈ChkStore, FAIL〉 7→ {〈GetOffer, OK〉 u 〈Order, OK〉}
}

The action 〈ChkStore, OK〉 is the same as in CStoreF, and
for action 〈ChkStore, FAIL〉 it orders new items. The
consistency interfaces CShop and CStore are compatible, and
can be composed to CShop ‖ CStore.

3.2 Specifications
The notion of well-formedness removes a general class of

errors in consistency interfaces. However, depending on the
particular application in which a service will be used, addi-
tional properties would be required of it. We identify a class
of safety properties that seem the most useful in practice and
propose a property specification language and a verification
scheme as follows.
In the context of consistency interfaces, a conversation is

a set of actions that are exhibited together. Sets of conversa-
tions are concisely represented using expressions ϕ ∈ B(A).
Intuitively, the expression t represents the empty conver-
sation. The expression a (where a is a supported action)
represents the set of possible conversations exhibited when
action a is invoked. If a is not supported, then the expression
a represents the set consisting of only the conversation {a}.
Thus, we postpone judgement about the behavior exhibited
by an action a until enough information is available about
the actions a requires. Intuitively, this is why our formalism
allows systems to be developed and analyzed incrementally;
as long as some environment exists in which the (open) sys-
tem under development can operate correctly, it will be con-
sidered to be correct. The expression ϕ1 t ϕ2 represents a
nondeterministic choice between ϕ1 and ϕ2, and hence rep-
resents the set consisting of all conversations represented by
ϕ1 or ϕ2. The expression ϕ1 u ϕ2 represents the combi-
nation of the two sets of conversations, i.e., the actions of
each pair of conversations, one each from ϕ1 and ϕ2, can be
exhibited together in a conversation of ϕ1 u ϕ2.
The set of conversations represented by an expression from

B(A) is defined by the function [[.]] : B(A)→ 22A , which is
inductively defined as the least solution of the following sys-
tem of equations:

[[t]] = {{}}
[[a]] = {{a} ∪ y | y ∈ [[C(a)]]} if a ∈ dom(C)
[[a]] = {{a}} if ¬a ∈ dom(C)
[[ϕ1 t ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]
[[ϕ1 u ϕ2]] = {x ∪ y | x ∈ [[ϕ1]], y ∈ [[ϕ2]]}

where a ∈ A and ϕ1, ϕ2 ∈ B(A).
Note that according to the above definition, the operators

t and u are commutative and associative, and distribute
over each other, thus acting like the boolean ∨ and ∧ oper-
ators respectively. However, while t is idempotent (like ∨),
u is not (unlike ∧). The following example illustrates the
idea concretely.

Example 7. (Idempotence) The expression ϕ t ϕ
represents choice between two completely equivalent alter-
natives, so t must be idempotent. Now consider the ex-
pression ϕ = (a t b) u (a t b). It represents two duplicate

151

invocations of (a t b), which make independent choices and
hence ϕ exhibits a richer set of conversations than a single
invocation of (a t b). Formally, [[(a t b) u (a t b)]] =
{{a}, {a, b}, {b}} 6= {{a}, {b}} = [[a t b]].

A specification ψ for a consistency interface is a formula
a 6Ã S where a ∈ A and S ⊆ A. Intuitively, a specification
represents the property that the invocation of action a must
not lead to a conversation in which the actions in set S are
all exhibited together. Formally, a specification ψ = a 6Ã S
is satisfied by a consistency interface C (denoted C |= ψ)
if S * y for all y ∈ [[C(a)]]. The specification satisfaction
problem for consistency interfaces is in co-NP.
Given two compatible consistency interfaces C1

and C2, and a specification ψ, then the following holds:
(C1 ‖ C2) |= ψ ⇒ (C1 |= ψ ∧ C2 |= ψ). The converse is not
true.

Example 8. (Specification for consistency inter-
faces) Consider the interface Cc = CShop ‖ CStore and the
following specification ψ:

〈SellItem, FAIL〉 6Ã {〈ChkStore, FAIL〉, 〈ProcPay, OK〉}

The specification requires that the client must not be
charged for an item which is not available at the store.
To check whether Cc satisfies ψ, we have to compute
[[Cc(〈SellItem, FAIL〉)]], i.e.,

[[〈ChkAvail, FAIL〉 t (〈ChkAvail, OK〉 u (〈ProcPay, FAIL〉 t
(〈ProcPay, OK〉 u 〈ShipItem, FAIL〉)))]],

which is the following set (of sets):
{

{〈ChkAvail, FAIL〉, 〈ChkStore, FAIL〉,
〈GetOffer, OK〉, 〈Order, OK〉},

{〈ChkAvail, OK〉, 〈ChkStore, OK〉, 〈ProcPay, FAIL〉},

{〈ChkAvail, OK〉, 〈ChkStore, OK〉, 〈GetOffer, OK〉, 〈Order, OK〉,
〈ProcPay, FAIL〉},

{〈ChkAvail, OK〉, 〈ChkStore, OK〉,
〈ProcPay, OK〉, 〈ShipItem, FAIL〉}

{〈ChkAvail, OK〉, 〈ChkStore, OK〉, 〈GetOffer, OK〉, 〈Order, OK〉,
〈ProcPay, OK〉, 〈ShipItem, FAIL〉}

}

We observe that there is no y in [[Cc(〈SellItem, FAIL〉)]] such
that {〈ChkStore, FAIL〉, 〈ProcPay, OK〉} ⊆ y, and therefore
(CShop ‖ CStore) |= ψ.

Example 9. (Non-recursive conversation) Consider
now the following interface for the Shop web service:

C′Shop = {
〈SellItem, SOLD〉 7→ 〈ChkAvail, OK〉 u 〈ProcPay, OK〉
〈SellItem, FAIL〉 7→ 〈ChkAvail, FAIL〉 t (

〈ChkAvail, OK〉 u 〈ProcPay, FAIL〉)
〈SellItem, NOTFOUND〉 7→〈ChkAvail, FAIL〉
〈ChkAvail, OK〉 7→ 〈ChkStore, OK〉
〈ChkAvail, FAIL〉 7→ 〈ChkStore, FAIL〉
}

Let us compose C′Shop with the following version of Store:

CStoreF2 = {
〈ChkStore, OK〉 7→ t t (〈GetOffer, OK〉 u 〈Order, OK〉)
〈ChkStore, FAIL〉 7→ 〈SellItem, NOTFOUND〉 u

〈GetOffer, OK〉 u 〈Order, OK〉
}

Whenever method ChkStore reports that there are no more
items available (by action 〈ChkStore, FAIL〉), the Store

interface notifies the Shop interface that there are no more
items available. We can check whether the conversations
of these two web services contain a recursive invocation of
〈ChkStore, FAIL〉 by checking the following specification on
the composed interface:

ψR = 〈ChkStore, FAIL〉 6Ã {〈ChkStore, FAIL〉}

The property does not hold because 〈ChkStore, FAIL〉 in-
vokes 〈SellItem, NOTFOUND〉 which invokes 〈ChkAvail, FAIL〉,
and this action invokes 〈ChkStore, FAIL〉 again.

3.3 Substitutivity
While implementing a web service application, a developer

often wants to use an off-the-shelf service P ′ to implement
some desired functionality for which she has an abstract
place-holder P in her overall design. In such situations, it is
required to decide if P ′ fulfills the behavioral requirements
specified in P, to avoid errors in the overall design. Intu-
itively, refinement captures the notion of one service being
substitutable in place of another.
Given two consistency interfaces C and C′, we say C′ re-

fines C (written C′ 4 C) if

i) sig(C′) 4 sig(C), and

ii) for every a ∈ A, if C supports a, then for all conversa-
tions y ∈ [[C′(a)]], there exists a conversation x ∈ [[C(a)]]
such that y ⊆ x.

The definition above allows the refinement C ′ to drop con-
versations, or actions from a conversation, for actions sup-
ported by C; C′ is also allowed to support additional actions
that C does not, but it is not allowed to require additional
actions; it can implement actions a not supported by C only
by requiring actions b already required by C, and that too,
only as long as it does not introduce a new conversation y
in C′ for an action c supported by C such that y is not a
fragment (subset) of a conversation x of c in C itself.

Theorem 1. (Substitutivity of consistency inter-
faces) Let C1, C

′
1, and C2 be three consistency interfaces

such that comp(C1, C2) and comp(C′1, C2). Let ψ = a 6Ã S be

a specification such that a is supported by either C1 or C2. If
(C1 ‖ C2) |= ψ and C′1 4 C1, then (C′1 ‖ C2) |= ψ.

The above theorem allows a developer to substitute a ser-
vice C′ in place of an abstract place-holder C in a design,
if C′ refines C. Thus, our framework allows compositional
refinement: separate parts of a design can be independently
refined, say by independent development teams in a paral-
lelized development environment, or even by separate com-
panies that do not want to disclose any information about
their code, without having to worry about global consis-
tency issues. Once interfaces are decided at the top level,
they can be handed off to separate development teams to be
implemented in a more concrete form. As long as the design
produced by each team is a refinement of the interface it had
been handed to start with, the design of the entire applica-
tion is guaranteed to be correct. Formally, for consistency
interfaces C1, C

′
1, and C2, if comp(C1, C2) and comp(C′1, C2)

and C′1 4 C1, then (C′1 ‖ C2) 4 (C1 ‖ C2). The refinement-
checking problem for consistency interfaces is in NP.

152

Example 10. (Substitutivity of consistency inter-
faces) The interface C′Shop (from Example 9) is a refinement
of interface CShop (from Example 5), because i) sig(C′Shop) =
S ′Shop is a refinement of sig(CShop) = SShop, and ii) actions
supported in C′Shop require less actions than those supported
in CShop (C

′
Shop does not require the actions for shipping) and

C′Shop supports an additional action 〈SellItem, NOTFOUND〉,
which requires only actions already used by CShop. Apply-
ing Theorem 1 we conclude that if we replace interface CShop
by its refinement C′Shop in the composition with the Store

interface CStore, the new composition is a refinement of the
old composition, and the specification ψ from Example 8 is
satisfied by the new composition:

(C′Shop ‖ CStore) 4 (CShop ‖ CStore) and (C′Shop ‖ CStore) |= ψ.

4. PROTOCOL INTERFACES
Consistency interfaces and the associated specification

formalism are used to reason about sets of actions. Though
it is sufficient to catch a large set of web service errors and
represent many properties of interest, there is often a need
for a richer model of web service behavior that allows rea-
soning about evolution of behavior over time. In addition
to reasoning about sequences of actions, it is important to
be able to model thread creation, parallel executions of mul-
tiple threads, and joining threads after a parallel call. We
introduce the formalism of protocol interfaces which is a rich
model for representing web service behavior.
The set of terms over a set of actions A is defined by the

following grammar (a, b ∈ A):

term :: a | a t b | a u b | a ¢ b

A protocol automaton is a tuple F = (Q,⊥, δ), where Q is
a set of control locations, ⊥ ∈ Q is the return location, and
δ : (Q \ {⊥}) → (terms × Q) is the switch function of the
protocol automaton, which assigns to each location different
from ⊥ a term and a successor location. The execution halts
when location ⊥ is reached. A protocol interface P is a pair
(D,F), where D : A → 2Q is a partial function that assigns
to an action a set of locations, and F is a protocol automaton.
The semantics of a protocol interface is presented infor-

mally as follows. A formal semantics will be presented in
Section 4.2. Intuitively, the execution of an action a starts
in one of the locations in D(a). A switch of the automa-
ton δ(q) = (term, q′) means that, if the automaton is in
location q, it recursively invokes term, and remembers the
successor location q′ as the return location, where control
returns when the recursive invocation of term terminates.
If the automaton reaches location ⊥, it returns control to
the return location; a return for the very first invocation
of action a leads to termination of execution. The term
a = 〈m, o〉 represents a call to web method m with expected
outcome o. The term a t b represents a nondeterministic
choice between a and b. The term a u b represents spawning
two threads for a and b in parallel, while the parent thread
waits for both to finish. The term a ¢ b represents spawning
two threads for a and b in parallel, while the parent thread
waits for whichever child finishes first. Note that all three
of t, u, and ¢ are commutative, and t is idempotent while
u and ¢ are not.
A location q is well-formed if there exists a terminating

execution of F starting in location q. An action a is
well-formed if at least one of the locations in D(a) is well-

formed. To formally define the notion of well-formedness
of locations, we use a function wf : Q → {t, f}, which is
inductively defined as follows:

wf (⊥) = t.

wf (q) =
∨

qa∈D(a)

wf (qa) ∧ wf (q′), if δ(q) = (a, q′).

wf (q) =
∨

qa∈D(a),qb∈D(b)

(wf (qa) ∧ wf (qb)) ∧ wf (q′),

if δ(q) = (a u b, q′).

wf (q) =
∨

qa∈D(a),qb∈D(b)

(wf (qa) ∨ wf (qb)) ∧ wf (q′),

if δ(q) = (a ◦ b, q′), ◦ ∈ {t,¢}.

The function wf can be computed using a least fixed
point computation (starting from the function that maps
all locations to f) that converges in time O(n2 · k2), where
n = |Q| is the number of locations of the protocol automa-
ton and k = maxa(|D(a)|) is the maximal nondeterministic-
branching factor of the interface.
Given a protocol interface P = (D,F), the underlying web

service signature of P (denoted sig(P)) is the partial func-
tion S : A → 2A such that S(a) =

⋃

q∈D(a) sigl(q) if D(a)

is defined, and S(a) is undefined otherwise. The function
sigl : Q → 2A assigns a set of actions to every location
q ∈ Q of the protocol interface, and is inductively defined
as follows: sigl(q) = g(term) ∪ sigl(q′) for δ(q) = (term, q′)
with q 6= ⊥, and sigl(⊥) = ∅. The function g : terms → 2A

is inductively defined as g(a) = a, g(a ◦ b) = {a, b} with
◦ ∈ {t,u,¢}, with a, b ∈ A. A protocol interface P is well-
formed, if sig(P) is well-formed and all actions supported
by P are well-formed. In the rest of the paper, “protocol
interface” stands for “well-formed protocol interface”.

Example 11. (Well-formed protocol interface) Let
us model the Shop web service as a protocol interface. For
simplicity, protocol interfaces are defined concisely here by
giving the switch function δ of the automaton as a sequence
of triples q : (term, q′), and the partial function D is indi-
cated by writing an action in front of every location it is
mapped to.

PShop = {
〈SellItem, SOLD〉 7→ q0 : (〈ChkAvail, OK〉, q1)

q1 : (〈ProcPay, OK〉,⊥)
〈SellItem, FAIL〉 7→ q2 : (〈ChkAvail, FAIL〉 t

〈SellStep1, FAIL〉,⊥)
〈SellStep1, FAIL〉 7→ q3 : (〈ChkAvail, OK〉, q4)

q4 : (〈ProcPay, FAIL〉 t
〈SellStep2, FAIL〉,⊥)

〈SellStep2, FAIL〉 7→ q5 : (〈ProcPay, OK〉, q6)
q6 : (〈ShipItem, FAIL〉,⊥)

〈ChkAvail, OK〉 7→ q7 : (〈ChkStore, OK〉,⊥)
〈ChkAvail, FAIL〉 7→ q8 : (〈ChkStore, FAIL〉,⊥)
}

Compare this protocol interface with the consistency inter-
face CShop; they have a relationship and we will formalize the
idea in Section 4.4.
The protocol interface models that for action

〈SellItem, SOLD〉 the three actions occur in the given se-
quence in a conversation. When the action 〈SellItem, FAIL〉
is invoked, Shop nondeterministically can check the avail-
ability of the item (using ChkAvail) with the expectation

153

of failure, or can invoke SellStep1 with the expectation
of failure. In the latter case, ChkAvail is invoked with
expectation of success, and then either the payment
processing web method (ProcPay) or the Sellstep2 web
method is invoked, in both cases with expectation of failure.
The invocation of 〈SellStep2, FAIL〉 leads to a successful
invocation of the payment processing web method, and then
a failed attempt to ship the item sold (using ShipItem).
The protocol interface PShop is well-formed, because its

underlying signature is well-formed and all its actions are
well-formed.

Example 12. (Concurrency and nondeterministic
actions) The following interface is the protocol interface
for the Store web service:

PStore = {
〈ChkStore, OK〉 7→ ⊥
〈ChkStore, OK〉 7→ q10
〈ChkStore, FAIL〉 7→ q10 : (〈Supp1.GetOffer, REC〉 u

〈Supp2.GetOffer, REC〉, q11)
q11 : (〈Supp1.Order, OK〉 t

〈Supp2.Order, OK〉,⊥)
}

Let us first consider action 〈ChkStore, FAIL〉. The inter-
face models for this action that two different supplier web
services are simultaneously asked to make an offer. This ex-
ample shows how the protocol interface expresses not only
sequence, but also concurrency. After both offers are re-
ceived, the automaton switches to location q11, where the
Store orders the missing item from one of the two suppli-
ers. After this action, the automaton switches to the re-
turn location ⊥, and the conversation induced by action
〈ChkStore, FAIL〉 terminates.
The invocation of action 〈ChkStore, OK〉 either immedi-

ately returns, or orders new items, when the stock is below
a certain threshold. This is modeled by assigning two differ-
ent locations to the same action. Note that for ordering new
items the implementation of 〈ChkStore, FAIL〉 is shared.

4.1 Compatibility and Composition
Intuitively, as for consistency interfaces, given two proto-

col interfaces, if their behavior allows them to co-operate, we
say they are compatible, and we are able to compose them,
forgetting their internal distinctions and allowing ourselves
to focus instead on their behavioral contract with their en-
vironment.
Given two protocol interfaces P1 = (D1,F1) and P2 =

(D2,F2), if the underlying signatures sig(P1) and sig(P2)
are compatible, and Q1 ∩ Q2 = {⊥}, and Pc = (Dc,Fc)
is a protocol interface, where Dc = D1 ∪ D2, Fc = (Q1 ∪
Q2,⊥, δ1 ∪ δ2), where Qi and δi are the set of locations and
the switch function of the automaton Fi for i ∈ {1, 2}, then
P1 and P2 are compatible (denoted comp(P1,P2)), and their
composition (denoted by P1 ‖ P2) is Pc. The composition
operation is commutative and associative. Compatibility
and composition of protocol interfaces can be computed in
linear time.
A protocol interface P is closed if its underlying web ser-

vice signature sig(P) supports all actions it requires, for-
mally, ∀a ∈ A : a ∈ RP ⇒ a ∈ dom(sig(P)), where
RP = {a | ∃a′ ∈ A : a ∈ sig(P)(a′)} is the set of ac-
tions required by P. An interface that is not closed is called

open. Given an open protocol interface P, an environment

for P is a protocol interface EP that is compatible with P
and supports all actions that are required but not supported
by P. Note that the composition (P ‖ EP) is closed, and
EP is not unique. Intuitively, each EP represents a design
context in which P can be used.

Example 13. (Compatibility of protocol interfaces)
The two protocol interfaces PShop and PStore are compatible,
because their underlying signatures are compatible, their
protocol automata have no location in common except ⊥,
and all their actions are well-formed. Thus their composition
PShop ‖ PStore is a protocol interface.

4.2 Specifications
We use a specification language which is capable of ex-

pressing temporal safety constraints to represent protocol
properties. In the context of protocol interfaces, a conversa-
tion is a set of sequences of objects A, where each A is a set
of actions; intuitively, it is a directed acyclic graph of actions
that are exhibited in sequence or in parallel. Sets of conver-
sations are represented by protocol automata, which con-
cisely represent multi-threaded systems with an unbounded
number of threads.
A specification ψ for a protocol interface is a formula

a 6Ã ϕ where a ∈ A, and ϕ is a temporal formula of the form
(¬C) U B (“not C until B”), with C,B ⊆ A. Intuitively,
a specification a 6Ã (¬C) U B means that the invocation
of action a must not lead to a conversation in which an ac-
tion from the set B occurs before any action from the set C
has occurred. The expressions ϕ can be extended to allow
right-associative nesting of U operators, as well as boolean
combinations of U formulas. We omit such extensions here
for simplicity of presentation.
A specification ψ for a protocol interface P is interpreted

over traces generated by the underlying transition relation

of P, which is defined as follows.
Underlying transition relation. Given a finite set of

symbols L, a (binary) tree t over L is a partial function
t : B∗ → L, where B∗ denotes the set of finite words over
B = {0, 1}, and the domain dom(t) = {p ∈ B∗ | ∃(p, l) ∈ t}
is prefix-closed. Each element from dom(t) represents a node
of tree t, and each node p is named with the symbol t(p).
The root is represented by the empty word ρ. The set of
child nodes of node p in tree t is denoted by ch(t, p) =
{p′ | ∃b ∈ B : p′ = p · b ∧ p′ ∈ dom(t)}, where · is the
concatenation operator. The set of leaf nodes of a tree t is
leaf (t) = {p ∈ dom(t) | ch(t, p) = ∅}. The set of all trees
over a finite set L is denoted T (L).
Given a protocol interface P = (D,F), the underly-

ing transition relation of P is a labeled transition relation
→P ⊆ T (Q

¢)×2A∪{ret}×T (Q¢), where the states are trees

over the tree symbols Q¢ = Q×{¢, ◦}, where Q is the set of
locations of protocol automaton F , and the transitions be-
tween states are labeled with sets of elements from A∪{ret}.

We write t
A
→ t′ for (t, A, t′) ∈ →P . In the rules below, if ac-

tion c is supported by P, qc is an element of D(c), otherwise
qc is ⊥. The relation →P is defined as follows:

• Call: t
{a}
→ t′ if there exists a node p such that p ∈

leaf (t), t(p) = q◦, and δ(q) = (a, q′) is a switch of F ,
and t′ = (t \ {(p, q◦)}) ∪ {(p, q′◦), (p · 0, qa◦)}.

154

• Fork: t
{a,b}
→ t′ if there exists a node p such that p ∈

leaf (t), t(p) = q◦, and δ(q) = (a u b, q′) is a switch
of F , and t′ = (t \ {(p, q◦)}) ∪ {(p, q′◦), (p · 0, qa◦), (p ·
1, qb◦)}.

• Choice: t
{c}
→ t′ if there exists a node p such that p ∈

leaf (t), t(p) = q◦, and δ(q) = (a t b, q′) is a switch of
F , and t′ = (t\{(p, q◦)})∪{(p, q′◦), (p ·0, qc◦)}, where
c ∈ {a, b}.

• Fork-Choice: t
{a,b}
→ t′ if there exists a node p such

that p ∈ leaf (t), t(p) = q◦, and δ(q) = (a ¢ b, q ′) is
a switch of F , and t′ = (t \ {(p, q◦)}) ∪ {(p, q′¢), (p ·
0, qa◦), (p · 1, qb◦)}.

• Return: t
{ret}
→ t′ if there exists a node p · b, where

b ∈ B, such that p · b ∈ leaf (t), t(p · b) = ⊥◦, t(p) = q◦,
and t′ = t \ {(p · b,⊥◦)}.

• Return & Remove Sibling Tree: t
{ret}
→ t′ if there exists

a node p ·b, b ∈ B such that p ·b ∈ leaf (t), t(p ·b) = ⊥◦,
t(p) = q¢, and

t′ = (t \ {(p · p′, q′?) | p′ ∈ B∗ ∧ q′? ∈ Q¢}) ∪ {(p, q◦)}.

Intuitively, we have a pushdown system whose state is
a tree, not a stack (tree with branching out-degree 1). The
primitives Call, Choice, and Return contribute to pushdown
behavior, and the primitives Fork and Fork-Choice lead to
branching in the pushdown state. The leaves of the tree
represent parallel threads of control. A node p of the tree
is labeled with an element of Q¢ , the label representing the
“return location” where control should reach when all the
children of node p are removed from the tree. For a Call of
a supported action, the current location is popped as a leaf
from the tree, the successor location is first pushed, and then
one of the locations corresponding to the called action (non-
deterministically chosen) is pushed as child of the successor
location. Choice behaves similarly except that it produces
the successor tree for any of the two actions. In case of a
Fork and a Fork-Choice, the current location is popped, the
successor location is pushed, and a branch point is created
in the state, two locations corresponding to the two parallel
actions are pushed as children of the successor location. In
case of Return, a leaf labeled with the return location ⊥ is
popped. If the parent of the return location is the succes-
sor of a fork-choice term, the whole sibling subtree is also
removed. In other words, a node with two children result-
ing from a fork can only be popped if both children were
popped before, but a node with two children resulting from
a fork-choice is popped if one of the children was popped. To
remember this fact in the tree symbols, every control loca-
tion is paired with a flag from {¢, ◦}. Note that invocations
of unsupported actions are assumed to immediately return.
A run of a transition relation is an alternating sequence

of trees and sets of actions t0, A1, t1, A2, t2, . . ., with ∀i ∈

{1, . . . n} : ti−1
Ai→ ti. A trace is the projection of a run

to its action sets, e.g., for the run t0, A1, t1, A2, t2, . . ., the
corresponding trace is A1, A2, . . .; for a location q, a q-run
is a run t0, A1, t1, . . . with t0 = {(ρ, q◦)}, i.e., a run starting
from location q; a q-trace is a trace corresponding to a q-run.
Specification checking. A location q satisfies a tem-

poral formula (¬C) U B (written q |= (¬C) U B) if there
exists a q-trace A1, A2, . . . such that there exists a j such

that Aj ∩ B 6= ∅, and for all i < j, we have Ai ∩ C = ∅. A
closed protocol interface P = (D,F) satisfies a specification
ψ = a 6Ã ϕ (written P |= ψ) if for all q ∈ D(a), we have
q 6|= ϕ.
Although we defined the semantics of q |= ϕ in terms of

traces of the underlying transition relation, to check satisfi-
ability in practice we do not compute the transition relation
because it may be infinite. Instead, we define a set of proof
rules (cf. Figure 2) and give a polynomial-time algorithm
(cf. Algorithm 1). Using the proof rules in Figure 2 we induc-
tively decide judgements Γ = q |= ϕ where ϕ is a temporal
formula of the form ϕU = (¬C) U B, or ϕ2 = 2(¬C). All
leaves of the proof result from the proof rules “Return 2”
and “Reached U0”. If a judgement is true, there exists a
short proof of linear size, and its existence can be decided in
polynomial time. We explain some of the proof rules below.
The rule “Return 2” at the top of Figure 2 asserts that

the location ⊥ satisfies the property 2(¬C) i.e., no ⊥-trace
should contain an element from C; which is true, since the
⊥-trace is empty. The “Call 2” rule says that if the invo-
cation of action a does not (recursively) lead to an element
from C, and a itself is not in C, and furthermore, the suc-
cessor location q′, where control returns after execution of
a, does not lead to an element from C, then the location q,
at which a is called, never leads to an element of C. The
rule “Choice 2” for the operator t is similar to “Call 2”,
except that one of the nondeterministically chosen actions
from the term invoked must fulfill the requirements in the
antecedent. The remaining rules similarly enforce the se-
mantics of a recursive system with nondeterministic choice,
process-spawning and joining, and a pushdown tree store.

Proposition 1. (Correctness of specification check-
ing) For a given closed protocol interface P and a specifi-

cation ψ = a 6Ã (¬C) U B, procedure CheckSpec(P, a, B,C)
in Algorithm 1 stops with answer Yes if P satisfies ψ, and
No otherwise.

Algorithm 1 CheckSpec(P, a, B,C)

Input: Closed protocol interface P = (D,F),
Action sets B,C ⊆ A, and action a ∈ A

Output: Yes if P satisfies a 6Ã (¬C) U B, No otherwise
Variables: Set of judgements S, boolean done

1: done := f

2: while (¬ done) do
3: done := t

4: for each location q of automaton F do
5: // Try to prove q |= 2(¬C).
6: if all premises of a rule for q |= 2(¬C) are in S

then
7: S := S ∪ {q |= 2(¬C)}
8: done := f

9: // Try to prove q |= (¬C) U B.
10: if all premises of a rule for q |= (¬C) U B are in S

then
11: S := S ∪ {q |= (¬C) U B}
12: done := f

end
13: if (q |= (¬C) U B) ∈ S for some q ∈ D(a) then
14: return No

end
15: return Yes

155

⊥ |= 2(¬C)
(Return 2)

qa |= 2(¬C) a 6∈ C q′ |= 2(¬C)

q |= 2(¬C)

δ(q) = (a, q′),
qa ∈ D(a)

(Call 2)

qc |= 2(¬C) c 6∈ C q′ |= 2(¬C)

q |= 2(¬C)

δ(q) = (a t b, q′), c ∈ {a, b},
qc ∈ D(c)

(Choice 2)

qa |= 2(¬C) a 6∈ C qb |= 2(¬C) b 6∈ C q′ |= 2(¬C)

q |= 2(¬C)

δ(q) = (a u b, q′),
qa ∈ D(a), qb ∈ D(b)

(Fork 2)

qc |= 2(¬C) a 6∈ C b 6∈ C q′ |= 2(¬C)

q |= 2(¬C)

δ(q) = (a ¢ b, q′), c ∈ {a, b},
qc ∈ D(c)

(Fork-Choice 2)

c ∈ B

q |= (¬C) U B

δ(q) = (c, q′) ∨ (δ(q) = (a ◦ b, q′) ∧ c ∈ {a, b}),
qc ∈ D(c), ◦ ∈ {t,u,¢}

(Reached U0)

c |= (¬C) U B c 6∈ C

q |= (¬C) U B

δ(q) = (c, q′) ∨ (δ(q) = (a ◦ b, q′) ∧ c ∈ {a, b}),
qc ∈ D(c), ◦ ∈ {t,u,¢}

(Reached U+)

qa |= 2(¬C) a 6∈ C q′ |= (¬C) U B

q |= (¬C) U B

δ(q) = (a, q′),
qa ∈ D(a)

(Call U)

qc |= 2(¬C) c 6∈ C q′ |= (¬C) U B

q |= (¬C) U B

δ(q) = (a t b, q′), c ∈ {a, b},
qc ∈ D(c)

(Choice U)

qa |= 2(¬C) a 6∈ C qb |= 2(¬C) b 6∈ C q′ |= (¬C) U B

q |= (¬C) U B

δ(q) = (a u b, q′),
qa ∈ D(a), qb ∈ D(b)

(Fork U)

qc |= 2(¬C) a 6∈ C b 6∈ C q′ |= (¬C) U B

q |= (¬C) U B

δ(q) = (a ¢ b, q′), c ∈ {a, b},
qc ∈ D(c)

(Fork-Choice U)

Figure 2: Proof rules for specification checking

The algorithm computes the least fixed point of the set of
provable judgements w.r.t. the proof rules by starting with
the empty set of judgements, and trying to prove every still-
unproven judgement until no new judgements can be proved.
For every location q, it iterates through the all rules that can
be used to prove the two judgements q |= (¬C) U B and
q |= 2(¬C). If all antecedents of a rule are already proven,
the rule is “triggered”, and the consequent is considered
proven. This corresponds to a leaves-to-root traversal of the
proof for each judgement, where a proof for a judgement Γ
is seen as a tree with Γ as root, instances of the proof rules
as internal nodes, and judgements axiomatically known to
be true, as leaves. Since there are only finitely many proof
rules for each location, finitely many locations, and finitely
many judgements, and the algorithm proves at least one new
judgement in each iteration till the fixed point is reached, the
procedure must terminate. For each judgement Γ for which
a proof exists, a shortest proof p(Γ) exists. By induction
over the length of p(Γ), we conclude that every Γ for which
a proof exists, is eventually proved by our algorithm, and
vice versa.

Proposition 2. (Complexity of specification check-
ing) Given a closed protocol interface P = (D,F), and

given a specification ψ = a 6Ã (¬C) U B, the question if

P satisfies ψ can be decided in O(n2 · k2) time, where n is

the number of locations of F , and k = maxa∈A |D(a)| is the
maximal nondeterministic-branching factor of P.

The set operations insertion and membership-checking
can be done in O(1) time, using, for example, a direct-access
array of flags, since the number of judgements is bounded.
A term in a switch can have the form a u b; hence the al-
gorithm, in the worst case, has to check O(k2) proof rules
for a location (lines 6 and 10). Line 13 takes O(k) time.
Therefore, lines 5 to 14 altogether are in O(k2) time. The
loop over locations (line 4) always makes n iterations. The
fixpoint iteration (line 2) is executed at most 2n times since
we have only 2n judgements. Note that for the special case
when C is empty, the problem reduces to reachability of
a state where an action from B is invoked, which can be
decided in linear time.

156

Example 14. (Specification for protocol interfaces)
The Shop web service is not allowed to process payments if
the item to be sold is not available. Therefore, we need to
check that in PShop the payment is never processed before
the availability of the item is checked; this property is ex-
pressed in the following specification ψ:

〈SellItem, FAIL〉 6Ã ¬{〈ChkStore, OK〉} U {〈ProcPay, OK〉}

This property is satisfied if none of the conversations of PShop

has the following characteristic: it starts with a sequence
of actions which are all different from 〈ChkStore, OK〉, and
eventually an action 〈ProcPay, OK〉 occurs. Note that this
particular specification is “stronger” than the correspond-
ing specification we discussed for consistency interfaces: it
forbids not only the conversations that fail checking of avail-
ability before payment, but also those that do not check for
availability at all; and also the desired sequence is enforced.
Observe that the composition Pc = PShop ‖ PStore, along
with a minimal environment for Pc that does not require
any actions, satisfies the specification ψ.
Properties like ψ in general cannot be verified using consis-

tency interfaces, because consistency interfaces do not keep
track on the order of actions in conversations. However, a
subset of the protocol specifications can be checked even
using consistency interfaces using a relationship between
consistency and protocol interfaces (intuitively “conserva-
tive extension”) that will be formalized in Section 4.4.

4.3 Substitutivity
As in the case of consistency interfaces, we want to enable

the substitution of a protocol interface in a design compris-
ing a set of web services, with the assurance that the change
will not allow violation by the combined system of any spec-
ification that it satisfied before the substitution. Our notion
of refinement for protocol interfaces is based on simulation
of labeled transition systems. We first define the notions
labeled transition system and simulation. Then we describe
how to build a labeled transition system from the underly-
ing transition relation of the protocol interface, and define
refinement of two protocol interfaces based on their labeled
transition systems.
A labeled transition system (LTS) T S is a tuple

(S, Si, L,→), where S the set of states, Si ⊆ S is the set
of initial states, L is the set of labels, and → ⊆ S × L × S
is the transition relation. An LTS T S ′ = (S′, S′i, L,→

′) is
simulated by an LTS T S = (S, Si, L,→) if there exists a
relation - ⊆ S′ × S such that:

• for every s1 ∈ S, s′1 ∈ S′, if s′1 - s1, then for every

transition s′1
l
→ s′2, there exists a transition s1

l
→ s2,

such that s′2 - s2, and

• for every s′ ∈ S′i, there exists s ∈ Si such that s′ - s.

Given a protocol interface P = (D,F) and an action
a supported by P, the underlying transition system ob-

tained by invoking a on P (denoted uts(P, a)) is the LTS

T S = (T (Q¢), {{ρ 7→ q◦} | q ∈ D(a)}, 2A∪{ret},→P), where

T (Q¢) is the set of trees over the set of labels Q¢ , and

Q¢ = Q × {¢, ◦}, where Q is the set of locations in F ,
and →P is the underlying transition relation of P defined
in Section 4.2. Intuitively, it is an LTS with a set of states
comprising the set of binary trees with nodes labeled with
elements from Q¢ , the set of initial states comprising trees

with a root labeled with an element of D(a), and the tran-
sition relation →P .
Given two protocol interfaces P and P ′,

we say P ′ refines P (written P ′ 4 P), if

• sig(P ′) 4 sig(P), and

• for every action a ∈ A, if P supports a, then the
LTS T S ′ = uts(P ′, a) is simulated by the LTS T S =
uts(P, a).

Note that for all protocol interfaces P and P ′, we have
P ′ 4 P if and only if (P ′ ‖ E0

P) 4 (P ‖ E0
P), where E0

P

is the minimal environment of P and P ′, which supports
each action required but not supported by P and P ′ with
an implementation that returns immediately on invocation.

Proposition 3. (Compositionality of refinement)
Let P1, P

′
1, and P2 be three protocol interfaces such that

comp(P1,P2) and comp(P ′
1,P2). If P ′

1 4 P1, then (P ′
1 ‖

P2) 4 (P1 ‖ P2).

From this proposition it follows that a component-based
system, after refinement of one component, still satisfies all
specifications that it satisfied before refinement.

Theorem 2. (Substitutivity of protocol interfaces)
Let P1, P

′
1, and P2 be three protocol interfaces such that

comp(P1,P2) and comp(P ′
1,P2); and (P1 ‖ P2) and (P ′

1 ‖
P2) are both closed. Let ψ = a 6Ã (¬C) U B be a specifica-

tion such that a is supported by P1. Then, if (P1 ‖ P2) |= ψ
and P ′

1 4 P1, then (P ′
1 ‖ P2) |= ψ.

Note that given protocol interfaces P = (D,F) and
P ′ = (D′,F ′), deciding the question if P ′ 4 P requires,
according to the definition of refinement above, checking
whether the corresponding underlying transition systems are
in simulation. However, the underlying transition systems
may be infinite-state systems: there can be an infinite num-
ber of trees representing the configuration of the parallel
and sequential action invocations in the multi-threaded sys-
tem. Our formalism of protocol automata and the under-
lying transition relation enables visibility of recursion and
control returns [1], therefore, the problem can be solved
efficiently as follows. We define a local simulation rela-
tion on locations: ¢ ⊆ Q′ × Q, where Q,Q′ are the sets
of locations of F and F ′, as follows: (q′, q) ∈ ¢ if the

LTS pair T S ′ = (T (Q′¢), {{ρ 7→ q′◦}}, 2A∪{ret},→P′) and

T S = (T (Q¢), {{ρ 7→ q◦}}, 2A∪{ret},→P) are such that
T S ′ - T S. Note that we can compute the relation ¢ us-
ing a greatest-fixed point computation starting from the set
of all pairs {(q′, q) | q′ location of F ′, q location of F} and
removing pairs (q′, q) when the one-step simulation locally
fails, i.e., q has no switches to match a term that q′ can
invoke; until a fixed point is reached and for every action
a supported by P, for every location q′ ∈ D′(a) there is a
location q ∈ D(a) such that the pair (q′, q) is in the fixed
point set, and we conclude simulation holds; or there exists
at least one action a supported by P such that all the pairs
{(q′, q) | q′ ∈ D′(a), q ∈ D(a)} are eventually removed from
the set of pairs, at which point we conclude that simulation
fails at some point on invocation of action a. Note that the
other condition for refinement involves checking refinement
on the underlying signatures sig(P) and sig(P ′), which takes
linear time.

157

Proposition 4. (Complexity of refinement check-
ing) Given protocol interfaces P = (D,F) and P ′ =
(D′,F ′), the question if P ′ 4 P can be decided in O(c·(|A|+
c)) time, where A is the set of actions, c = n ·n′ ·k ·k′, where
n and n′ are the numbers of locations in F and F ′ respec-

tively, k = maxa∈A(|D(a)|) and k
′ = maxa∈A(|D

′(a)|).

Example 15. (Substitutivity of protocol interfaces)
Consider the protocol interface PShop and the following pro-
tocol interface P ′

Shop:

P ′
Shop = {
〈SellItem, SOLD〉 7→ q20 : (〈ChkAvail, OK〉, q21)

q21 : (〈ProcPay, OK〉,⊥)
〈SellItem, FAIL〉 7→ q22 : (〈ChkAvail, FAIL〉 t

〈SellStep1, FAIL〉,⊥)
〈SellStep1, FAIL〉 7→ q23 : (〈ChkAvail, OK〉, q24)

q24 : (〈ProcPay, FAIL〉,⊥)
〈SellStep2, FAIL〉 7→ q25 : (〈ProcPay, OK〉, q26)

q26 : (〈ShipItem, FAIL〉,⊥)
〈SellItem, NOTFOUND〉 7→ q27 : (〈ChkAvail, FAIL〉,⊥)
〈ChkAvail, OK〉 7→ q28 : (〈ChkStore, OK〉,⊥)
〈ChkAvail, FAIL〉 7→ q29 : (〈ChkStore, FAIL〉,⊥)
}

The protocol interface P ′
Shop refines interface PShop be-

cause the refined version “implements” the abstraction: it
adds guarantees (it supports 〈SellItem, NOTFOUND〉), and
removes some nondeterministic choice in the behavior (in
〈SellStep1, FAIL〉). Note that the abstraction nondetermin-
istically generates some traces that cannot be matched by
the refinement.

4.4 Consistency and protocol interfaces
We have presented in Sections 3 and 4 two different the-

ories for modeling web service interfaces, with different def-
initions for composition and refinement. In the following
discussion we show that the two theories are consistent with
each other, and that the protocol theory is a conservative
extension of the consistency theory.
Given a protocol interface P = (D,F), the underlying

consistency interface of P (denoted uci(P)) is the partial
function C : A → B(A) such that C(a) =

⊔

q∈D(a) uce(q)

if D(a) is defined, and C(a) is undefined otherwise. The
function uce : Q → B(A) assigns an expression to every
location q ∈ Q of the protocol interface, and is induc-
tively defined as follows: uce(q) = f(term) u uce(q′) for
δ(q) = (term, q′) with q 6= ⊥, and uce(⊥) = t. The func-
tion f : terms → B(A) is inductively defined as f(a) = a,
f(a t b) = a t b, and f(a ◦ b) = a u b with ◦ ∈ {u,¢}, and
a, b ∈ A. Note that sig(uci(P)) = sig(P), as expected, and
hence for two protocol interfaces P1 and P2, comp(P1,P2)⇒
comp(uci(P1), uci(P2)), but the converse is not true. Given
a protocol specification ψp = a 6Ã (¬C) U B, the set
of underlying consistency specifications of ψp is defined as
ucs(ψp) = {a 6Ã {b} | b ∈ B}.

Theorem 3. (Conservative extension) The theory of

protocol interfaces is a conservative extension of the theory

of consistency interfaces. In particular:

1. Given two compatible protocol interfaces P1 and P2

such that P1 ‖ P2 is closed, and a protocol specification

ψp, if uci(P1) ‖ uci(P2) |= ψc for every ψc ∈ ucs(ψp),
then P1 ‖ P2 |= ψp. The converse is not true.

2. Given protocol interfaces P and P ′, if P ′ 4 P, then
uci(P ′) 4 uci(P). The converse is not true.

Example 16. (Conservative extension) Consider
the two compatible protocol interfaces PShop and PStore from
the previous examples in this section, and the following spec-
ification ψp:

〈SellItem, SOLD〉 6Ã ¬{} U {〈ProcPay, FAIL〉}

This specification requires that a conversation starting with
〈SellItem, SOLD〉 must not reach the action 〈ProcPay, FAIL〉,
no matter what other actions occur on the way to it. If we
apply the definition of underlying consistency interface to
the protocol interfaces PShop and PStore, we get the underly-
ing consistency interfaces uci(PShop) and uci(PStore) (which
are similar to, but not identical to the examples in Sec-
tion 3).
The set of underlying consistency specifications for ψp

is a singleton, it contains the following specification ψc =
ucs(ψp):

〈SellItem, SOLD〉 6Ã {〈ProcPay, FAIL〉}

Theorem 3 states in its first part that if the composition
uci(PShop) ‖ uci(PStore) satisfies all of the underlying con-
sistency specifications — which is true in our case — then
the composition PShop ‖ PStore satisfies the protocol specifi-
cation ψp. This particular ψp is a reachability specification,
but in general given a protocol specification that rules out a
sequence of actions, the conjunction of the underlying con-
sistency specifications rules out all possible orders of the
actions from the forbidden sequence. Then, for a protocol
specification ψp, the conjunction

∧

ucs(ψp) of the underly-
ing consistency specifications is “stronger” than ψp, which
forbids a conversation only if the actions occur in one par-
ticular order. Thus, the ability to reason about sequences
gives the designer the ability to much more precisely express
what kinds of behavior are undesired.

Example 17. (Conservative extension of refine-
ment) Consider the protocol interfaces PShop and P ′

Shop

from the previous examples. We already know that P ′
Shop re-

fines PShop. Theorem 3 states in its second part that in this
case the underlying consistency interfaces fulfill the refine-
ment relation as well. The underlying consistency interfaces
of PShop and P

′
Shop are uci(PShop) and uci(P

′
Shop), respectively.

The refinement relation uci(P ′
Shop) 4 uci(PShop) holds. Note

that the underlying consistency interfaces are very similar,
but not identical to the examples in Section 3.

5. RELATED WORK
The field of modeling web services and their interaction

protocols has received considerable attention in recent years.
We will briefly mention some of the related work.
A variety of formalisms have been proposed for e-business

conversation models [17], models for control flow [24, 16],
and to model dynamic contracts between services [6]. A
high-level programming language for web service implemen-
tation, XL [10], supports constructs like nondeterministic
choice and parallel execution. BPEL1, together with WS-C2

and WS-T3, have emerged as the technology for specifying

1
http://www.ibm.com/developerworks/library/ws-bpel/

2
http://xml.coverpages.org/WS-Coordination200309.pdf

3
http://xml.coverpages.org/WS-Transaction2002.pdf

158

interaction protocols between web services. They are built
on top of the XML-based messaging protocol SOAP4 and
the interface description language WSDL5.
Verification of BPEL descriptions using finite-state model

extraction and the NuSMV model-checker has been pro-
posed [21]. Temporal logics for compositional reasoning
about web service interfaces have been proposed [22]. Fu,
Bultan, and Su studied conversations which occur in com-
positions of web services [4, 12], and analyzed interactions
of composed web services by modeling them as conversa-
tions [13, 14]. An implementation supporting a guarded
automaton language and using the SPIN model-checker is
available in WSAT [15]. A similar approach was chosen
in [19], translating BPEL descriptions of web services into
Promela, and using the SPIN model-checker to analyze web
service flow. Unanticipated behaviors were detected in the
WS-AT6 protocol using a temporal specification language
and model checking [18]. Process interactions have been ver-
ified using finite-state representations for web service com-
position [11].
A DAML-S7-based semantics has been proposed for web

services [20]. First-order logic is used to express specifica-
tions, and web service descriptions are represented as Petri
nets for simulation, verification, and composition. A CCS-
based formalism to represent and analyze WSCI descriptions
has been proposed [3], and the issues of compatibility [23]
and substitutivity are discussed.
The protocol interface formalism proposed in this paper

supports programming and modeling language constructs
like spawning threads, nondeterministic choice, sequencing,
recursion, join operations, callbacks, etc., which are sup-
ported by web service programming or modeling frameworks
like the .NET framework, or WSCI8. However, while Turing-
complete programming environments or modeling languages
suffer from the undecidability of non-trivial properties, tem-
poral specifications and refinement of our interfaces can be
algorithmically checked.

Acknowledgement. We thank Nir Piterman for helpful
discussions about algorithms for checking properties of push-
down systems.

6. REFERENCES
[1] R. Alur and P. Madhusudan. Visibly pushdown

languages. Proc. STOC, pp. 202–211. ACM, 2004.

[2] S. Anderson, M. Chapman, M. Goodner, P. Kackinaw,
and R. Rekasius. Supply chain management use case
model. Working group interim report, Web
Services-Interoperability Organization, 2002.

[3] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo.
Formalizing web service choreographies. Proc.
WS-FM. Elsevier, 2004.

[4] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: a new approach to design and analysis
of e-service composition. Proc. WWW, pp. 403–410.
ACM, 2003.

4
http://www.w3.org/TR/soap12/

5
http://www.w3.org/TR/wsdl

6
http://www-106.ibm.com/developerworks/library/ws-atomtran/

7
http://www.daml.org/services/

8
http://www.w3c.org/TR/wsci/

[5] A. Chakrabarti, L. de Alfaro, T. Henzinger, and
M. Stoelinga. Resource interfaces. Proc. EMSOFT,
LNCS 2855, pp. 117–133. Springer, 2003.

[6] H. Davulcu, M. Kifer, and I. V. Ramakrishnan.
CTR-S: a logic for specifying contracts in semantic
web services. Proc. WWW, pp. 144–153. ACM, 2004.

[7] L. de Alfaro and T. Henzinger. Interface automata.
Proc. FSE, pp. 109–120. ACM, 2001.

[8] L. de Alfaro and T. Henzinger. Interface theories for
component-based design. Proc. EMSOFT,
LNCS 2211, pp. 148–165. Springer, 2001.

[9] L. de Alfaro, T. Henzinger, and M. Stoelinga. Timed
interfaces. Proc. EMSOFT, LNCS 2491, pp. 108–122.
Springer, 2002.

[10] D. Florescu, A. Grünhagen, and D. Kossmann. XL: an
XML programming language for web service
specification and composition. Proc. WWW, pp.
65–76. ACM, 2002.

[11] H. Foster, S. Uchitel, J. Magee, and J. Kramer.
Compatibility verification for web service
choreography. Proc. ICWS, pp. 738–741. IEEE, 2004.

[12] X. Fu, T. Bultan, and J. Su. Conversation protocols:
A formalism for specification and verification of
reactive electronic services. Proc. CIAA, LNCS 2759,
pp. 188–200. Springer, 2003.

[13] X. Fu, T. Bultan, and J. Su. Analysis of interacting
BPEL web services. Proc. WWW, pp. 621–630. ACM,
2004.

[14] X. Fu, T. Bultan, and J. Su. Realizability of
conversation protocols with message contents. Proc.
ICWS, pp. 96–103. IEEE, 2004.

[15] X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal
analysis of web services. Proc. CAV, LNCS 3114, pp.
510–514. Springer, 2004.

[16] R. Hamadi and B. Benatallah. A Petri net-based
model for web service composition. Proc. ADC, pp.
191–200. Australian Computer Society, 2003.

[17] J. E. Hanson, P. Nandi, and D. W. Levine.
Conversation-enabled web services for agents and
e-business. Proc. IC, pp. 791–796. CSREA, 2002.

[18] J. E. Johnson, D. E. Langworthy, L. Lamport, and
F. H. Vogt. Formal specification of a web services
protocol. Proc. WS-FM. Elsevier, 2004.

[19] S. Nakajima. Model-checking of safety and security
aspects in web service flows. Proc. ICWE, LNCS 3140,
pp. 488–501. Springer, 2004.

[20] S. Narayanan and S. A. McIlraith. Simulation,
verification and automated composition of web
services. Proc. WWW, pp. 77–88. ACM, 2002.

[21] M. Pistore, M. Roveri, and P. Busetta.
Requirements-driven verification of web services. Proc.
WS-FM. Elsevier, 2004.

[22] M. Solanki, A. Cau, and H. Zedan. Augmenting
semantic web service descriptions with compositional
specification. Proc. WWW, pp. 544–552. ACM, 2004.

[23] X. Yi and K. Kochut. A CP-nets-based design and
verification framework for web services composition.
Proc. ICWS, pp. 756–760. IEEE, 2004.

[24] J. Zhang, J.-Y. Chung, C. K. Chang, and S. Kim.
WS-Net: A Petri-net based specification model for
web services. Proc. ICWS, pp. 420–427. IEEE, 2004.

159

