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ABSTRACT
Focused crawlers are considered as a promising way to tackle
the scalability problem of topic-oriented or personalized search
engines. To design a focused crawler, the choice of strategy
for prioritizing unvisited URLs is crucial. In this paper, we
propose a method using a decision tree on anchor texts of
hyperlinks. We conducted experiments on the real data sets
of four Japanese universities and verified our approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process; I.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, and Search—
graph and tree search strategies

General Terms
Algorithms, Experimentation, Performance

Keywords
Focused Crawling, Anchor Text, Decision Tree Learning,
Shortest Path

1. INTRODUCTION
Recently, topic-oriented search engines and personalized

searching tools are getting popular. Unlike general-purpose
search engines, these applications only need to crawl rele-
vant pages from the WWW. Focused crawlers, which fetch
relevant pages efficiently, were proposed in recent literature
such as [1, 2]. To design a focused crawler, the choice of
strategy for prioritizing unvisited URLs is crucial. In this
paper, we propose a method to utilize anchor texts for de-
termining the priorities. Our approach is motivated by the
following two observations: (1) In many cases, anchor texts
on hyperlinks are good summaries on the target pages; (2)
Other methods, which are used in the conventional search
engines and focused crawlers, tend to underestimate low in-
degree pages, therefore miss low in-degree relevant pages.
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2. METHODOLOGIES AND ALGORITHMS

2.1 Assumptions
We have two assumptions about the web space in which

our crawler is designed for crawling. First, we assume that
our crawler is crawling in a limited URL domain, e.g., the
web site(s) of a university or a company. Second, we assume
that there exists an entry page to the URL domain, e.g., the
home page of a university. So, our crawler is supposed to
crawl in the limited URL domain starting from the entry
page. In the following, we let G = (V, E, r) denote the web
graph of a limited URL domain, where V is the set of web
pages, E is the set of hyperlinks between these web pages,
and r is the entry page.

2.2 Modeling Anchor Text Using Decision Tree
The number of terms in an instance of anchor text is small

compared to that of the whole content of a web page. To
effectively exploit the information contained in anchor texts,
we employ a decision tree to predict the relevance of the
target pages.

2.3 Training Data and Feature Selection
For a web graph G = (V, E, r), we first crawl all the pages

in V and identify the relevant pages in V by using a prop-
erly trained SVM (Support Vector Machine) classifier. A
user needs to prepare some relevant and irrelevant example
pages of topic in mind for the classifier. In the following, we
represent the classifier by a function C such that C(v) = true
if v is classified as a relevant page, and C(v) = false other-
wise.

Second, for each page t ∈ {v | C(v) = true , v ∈ V }, we
compute the shortest path from the entry page r to t by the
Dijkstra’s algorithm. We denote the union of all the pages
on each of these shortest paths as a set S.

Third, let l = (b, e) ∈ E be a hyperlink, where b and e
denote the source and target pages of l respectively, and let
f(l) be a function returning the anchor text associated with
l. We use P = {f(l) | l = (b, e) ∈ E ∧ b ∈ S ∧ e ∈ S}
as positive examples and N = {f(l) | l = (b, e) ∈ E ∧
b ∈ S ∧ e �∈ S} as negative examples of the decision tree
learning. We simply ignore those hyperlinks whose anchor
text is blank. The image of the training data is depicted
in Figure 1. The black disks are relevant pages and double
circles are irrelevant pages on the shortest paths. Anchor
texts on thick edges are used as positive examples and those
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Figure 1: Relevant Pages and Shortest Paths

on dotted edges are used as negative examples. As feature
space, we use F = Fp ∩ Fn where Fp and Fn are the set of
words appeared at least once in P and N , respectively.

2.4 Decision Tree Construction
Given an instance of anchor text a, let g(a) be a function

returning the set of features (terms) appeared in a. Note
that g(a) ⊆ F . The decision tree we are going to construct
is a Boolean function B(g(a)). This function is constructed
by applying the ID3 algorithm [3] to the positive and nega-
tive examples in 2.3. If there exists a term set s that cannot
separate positive examples and negative examples perfectly
and there are no other terms that could be used to fur-
ther distinguish these examples, we define B(s) based on the
probability. Let Ps, Ns be the set of positive and negative

examples that contain all the terms in s. If |Ps|
|P | 〉 |Ns|

|N| , then

the positive case is more probable than the negative case, so
we define B(s) = true. Otherwise, we define B(s) = false.

2.5 Focused Crawling
We use B(g(a)) to determine the priority of unvisited

URLs, and call the crawler decision tree crawler (DTC, for
short).

3. EXPERIMENTS
We conducted experiments on the data sets of four Japanese

universities on the target topic “lecture”. These four univer-
sities were the University of Tokyo (UT), Kyoto University
(KU), Keio University (KO), and Waseda University (WU).

We compared the efficiency of our DTC to two crawlers:
(1) a standard breadth-first crawler; (2) a traditional focused
crawler, which gives high priorities to all the children of
relevant fetched pages.

3.1 Performance on the Same Data Set
The performance of DTC on the data set of UT from

which the DTC is constructed, along with the performances
of the other two crawlers, are depicted in Figure 2. In the
figure, the number of crawled relevant pages (Y-axis) is plot-
ted against the number of all crawled pages (X-axis). The
performance of the idealistic crawler which crawls only the
pages on the shortest paths is also depicted. The figure
shows that DTC outperforms the other two crawlers signif-
icantly. To crawl 50% (recall) of the relevant pages, DTC
only needs to crawl about 3% of the entire pages. Further-
more, most of the lengths of the shortest path from the
entry pages to these relevant pages range from 6 to 9 (not
depicted), which means that the decision tree guides the
crawler to find deep relevant pages effectively.
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Figure 2: Crawling Performances on UT
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Figure 3: Crawling Performances on KU

3.2 Performance on Different Data Sets
To evaluate generalization performance, we conducted ex-

periments by crawling the other three data sets using the
DTC trained from the data set of UT. In all these exper-
iments, DTC outperforms the breadth-first crawler. Com-
pared to the traditional focused crawler, DTC is competitive
with it on the data sets of KU and WU, but slightly inferior
to it on the data set of KO. The performances on the data
set of KU is depicted in Figure 3. It needs further study to
improve the generalization performance and make it steady.

4. CONCLUSION
In this paper, we proposed a focused crawler guided by

anchor texts using a decision tree. We also showed the ef-
fectiveness of the proposed crawler by experiments on the
data set of four universities.
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