
Automated Synthesis of Executable Web Service
Compositions from BPEL4WS Processes

M. Pistore
University of Trento - Italy

pistore@dit.unitn.it

P. Traverso, P. Bertoli, A. Marconi
ITC-IRST - Trento - Italy

[traverso,bertoli,marconi]@itc.it

ABSTRACT
We propose a technique for the automated synthesis of new com-
posite web services. Given a set of abstractBPEL4WS descriptions
of component services, and a composition requirement, we auto-
matically generate a concreteBPEL4WS process that, when exe-
cuted, interacts with the components and satisfies the requirement.
We implement the proposed approach exploiting efficient repre-
sentation techniques, and we show its scalability over casestud-
ies taken from a real world application and over a parameterized
domain.

Categories and Subject Descriptors: H.3.5 Online Information
Services: Web-Based Services

General Terms: Algorithms, Experimentation

Keywords: Web Service Composition, Business Processes, Auto-
mated Synthesis

THE APPROACH
BPEL4WS (Business Process Execution Language for Web Ser-
vices) [1] is one of the emerging standards for describing the state-
ful behavior of web services. More precisely, it allows for publish-
ing the interaction protocols of the web services usingBPEL4WS

abstract process specifications, whileBPEL4WS executablepro-
cesses are used to implement the internal flow of activities defin-
ing the services and to execute them on standard business process
execution engines.

The manual analysis ofBPEL4WS processes, and the implemen-
tation of programs that interact with them, is usually a verydiffi-
cult, time consuming, and error prone task. Automated web service
composition has the potential to reduce development time and ef-
fort for new applications, by automatically synthesizing executable
composite web services from the published description of existing
(component) services. We propose a technique for the automatic
synthesis of web service composition, which is based on the fol-
lowing steps.

Step 1. We assume that component services are described as
BPEL4WS abstract processes, and we automatically translate then
into state transition systems. They describe dynamic systems that
can be in one of their possible states and can evolve to new states
as a result of performing some actions (namely, input and output
actions, which represent message exchanging, and special “invisi-
ble” actions used to model internal evolutions of the services). A
transition relation describes how the state can evolve on the basis
of input, output, and internal actions.

Copyright is held by the author/owner.
WWW 2005,May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

Step 2. We model the requirements for the composite service
using EAGLE [4], an expressive formal requirement language al-
lowing expressing preferences and for specifying achievement and
maintenance conditions of different strengths.

Step 3. Given the state transition systems of the components,
and the formal requirements, we automatically generate a state
transition system that encodes a process behavior which satisfies
the requirements expressed in EAGLE. We first build the parallel
combinationΣ‖ of the systemsΣW1

, . . . , ΣWn
associated to the

component services, which represents all the possible behaviors of
these services. We then synthesize the composite system as astate
transition systemΣc such that the interactions ofΣc with Σ‖ sat-
isfy the composition requirement. In the synthesis we need to take
into account thatΣ‖ is only partially observable byΣc: due to the
“invisible” internal transitions and the nondeterministic behaviors,
at execution time the composite serviceΣc cannot in general get to
know exactly what is the current state ofΣW1

, . . . , ΣWn
. In [5] we

show how to adapt to this task a plan synthesis technique [2, 3, 4],
known asplanning via model checking, which is able to deal with
nondeterminism and partial observability, as well as with EAGLE

requirements.
Step 4. We automatically translate the resulting state transition

systemΣc into an executable concreteBPEL4WS program. The
translation is conceptually simple, but particular care has been put
in the implementation of this module in order to guarantee that the
generatedBPEL4WS is of good quality, e.g. it is emitted as a struc-
tured program rather than using on jumps and labels.

It is widely recognized that, in general, automated synthesis is a
hard problem, both in theory and in practice. In the next section,
we show that automated synthesis is also possible in practice. In-
deed, theplanning via model checkingtechniques we exploit in the
synthesis have been shown to be able to scale up to rather large do-
mains for the problem of planning under uncertainty. Moreover, in
the considered cases, it is possible to generateBPEL4WS programs
that are easy to read and analyze by a programmer, and the size
of the program is reasonable compared with the one that can be
programmed by hand.

EXPERIMENTAL EVALUATION
In order to test the performance of the proposed technique, we have
conducted some experiments. In the first set of experiments,we test
automated synthesis w.r.t. the number of services to be composed.
Each component is represented by a very simple abstractBPEL4WS

process that is requested to provide a service and can respond either
positively or negatively. The composition requirement is that either
all services end successfully or a failure is reported to theinvoker
of the composed service. The results are shown in the following
graph, where we report the number of components on the horizontal

1186

axis, and the total time for the automated synthesis (inclusive of
conversion from/toBPEL4WS) on the vertical axis:

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

With these examples, the time required for the automated synthesis
increases less than exponentially and manages to deal with arather
high number of components in a rather short time: in the case of 20
components, the automated composition takes about 1000 seconds.

The component web services used in the previous experiment
are very elementary, and implement essentially an invoke-response
protocol very common in the domain of web services. To model
more complex situations, we have complicated the parameterized
domain by imposing a composition that requires a high degreeof
interleaving between components. Here, the interactions with each
component are more complex than a single invoke-response step,
and, to achieve the goal, it is necessary to carry out interactions
with all components in an interleaved way. The results are shown
in the following graph:

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8

Automated synthesis in this case is more difficult than in theprevi-
ous set of experiments. In spite of the fact that the requiredinter-
leaving reduces performances, the technique still managesto deal
with a rather large number of components: we expect that realistic
BPEL4WS compositions will include no more than a few compo-
nents.

To validate the results of this experimental evaluation, wehave
also conducted some experiments of automated composition on
problems extracted from realistic web service domains. Theresults
are reported in the following table:

nr. of components composition time

P& S 3 9.4 sec.
P& S + BANK 4 75.0 sec.
WMO1 5 210.1 sec.
WMO2 5 221.7 sec.
WMO3 5 295.5 sec.

The first case is theP&S example explained in [5], where a shipper
and a producer must be integrated to provide a user with furniture.
Automated composition is very fast, since in spite of the interleav-
ing required, we have just three components (shipper, producer,
and user). We also experiment with a more complex version of
P&S, where a bank is delegated to handle the user’s payment, and

the interleaving of interactions is increased by the necessity of re-
ceiving a payment confirmation from the bank before the ordercan
be confirmed to the producer and the shipper. For this more diffi-
cult problem, automated composition time increases of one order of
magnitude. Finally, we experiment with a case study taken from a
real e-government application we are developing for a private com-
pany. We aim at providing a service that implements a (public)
waste management office (WMO), i.e., a service that manages user
requests to open sites for the disposal of dangerous waste. Accord-
ing to the existing Italian laws, such a request involves theinterac-
tion of different offices of the public administration. The compo-
sition requirement here can be described with a set of constraints
on the order of execution of different procedural steps performed
by different offices. We consider three variants of this domain,
corresponding to an increasing interleaving between the different
services, getting in all cases a very good performance.

In all the realistic examples, automated synthesis has shown to
be feasible and take a rather low amount of time, surely much
faster than manual development ofBPEL4WS composite processes.
Moreover, the times required for the synthesis confirm the trends
of the scalable experiments reported previously.

An important question is the quality of the generatedBPEL4WS

processes. To evaluate this aspect, we have asked one of our experi-
enced programmers to develop manually theBPEL4WSprogram for
the basicP&S case and we have compared the automatically gen-
erated and the hand-written solutions. As a result, we discovered
that the two solutions implement the same strategy and have asim-
ilar structure. The main difference is that the automatically gener-
ated process contains a big switch implementing the preparation of
the offer for the user, while the program developed manuallyuses
additional temporary variables to perform the preparationwithout
branching. As a consequence, the automatically generated code is
larger than the manual one (22 KBytes vs. 11 KBytes). Except for
this problem, that could be solved by optimizing the generation of
the branches, the automatically generated code is reasonable, and
rather easy to read and understand.

ACNOWLEDGEMENTS
This work is partially funded by the MIUR-FIRB project
RBNE0195K5, “Knowledge Level Automated Software Engineer-
ing”, and by the MIUR-PRIN 2004 project “Advanced Artificial
Intelligence Systems for Web Services”.

The authors want to thank all members of theAstro project
(http://www,astroproject.org/) for their collaboration and their
feedback.

1. REFERENCES
[1] T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein,

F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weeravarana. Business Process Execution
Language for Web Services (version 1.1), 2003.

[2] P. Bertoli, A. Cimatti, M. Pistore, and P. Traverso. A
Framework for Planning with Extended Goals under Partial
Observability. InProc. ICAPS’03, 2003.

[3] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak,
Strong, and Strong Cyclic Planning via Symbolic Model
Checking.Artificial Intelligence, 147(1-2):35–84, 2003.

[4] U. Dal Lago, M. Pistore, and P. Traverso. Planning with a
Language for Extended Goals. InProc. AAAI’02, 2002.

[5] M. Pistore, P. Traverso, and P. Bertoli. Automated
Composition of Web Services by Planning in Asynchronous
Domains. InProc. ICAPS’05, 2005.

1187

