Automated Synthesis of Executable Web Service
Compositions from BPEL4WS Processes

M. Pistore
University of Trento - Italy

pistore@dit.unitn.it

ABSTRACT

We propose a technique for the automated synthesis of new com
posite web services. Given a set of absteitL4ws descriptions

of component services, and a composition requirement, e au
matically generate a concretPELAWS process that, when exe-
cuted, interacts with the components and satisfies theregant.

We implement the proposed approach exploiting efficienterep
sentation techniques, and we show its scalability over sasd

ies taken from a real world application and over a paramegdri
domain.

Categories and Subject Descriptors: H.3.5 Online Information
Services: Web-Based Services

General Terms: Algorithms, Experimentation

Keywords: Web Service Composition, Business Processes, Auto-
mated Synthesis

THE APPROACH

BPEL4AWS (Business Process Execution Language for Web Ser-
vices) [1] is one of the emerging standards for describimgstiate-
ful behavior of web services. More precisely, it allows fabtish-
ing the interaction protocols of the web services usimgEL4WS
abstract process specifications, whiBPEL4WS executablepro-
cesses are used to implement the internal flow of activitefnd
ing the services and to execute them on standard businesssgro
execution engines.

The manual analysis @&PELAWS processes, and the implemen-
tation of programs that interact with them, is usually a veiffi-
cult, time consuming, and error prone task. Automated welice
composition has the potential to reduce development tindeedn
fort for new applications, by automatically synthesizingeutable
composite web services from the published description stiex
(component) services. We propose a technique for the atimma
synthesis of web service composition, which is based ondhe f
lowing steps.

P. Traverso, P. Bertoli, A. Marconi
ITC-IRST - Trento - Italy

[traverso,bertoli,marconi]@itc.it

Step 2. We model the requirements for the composite service
using EAGLE [4], an expressive formal requirement language al-
lowing expressing preferences and for specifying achi@rérand
maintenance conditions of different strengths.

Step 3. Given the state transition systems of the components,
and the formal requirements, we automatically generateate st
transition system that encodes a process behavior whigsfisat
the requirements expressed inGLE. We first build the parallel
combinationX of the system&w,, ..., Xw, associated to the
component services, which represents all the possiblevimbaf
these services. We then synthesize the composite systestate a
transition systent. such that the interactions af. with X sat-
isfy the composition requirement. In the synthesis we neddke
into account thak| is only partially observable bi.: due to the
“invisible” internal transitions and the nondetermingskiehaviors,
at execution time the composite service cannot in general get to
know exactly what is the current state®fy, , ..., Zw,, . In [5] we
show how to adapt to this task a plan synthesis technique #, 3
known asplanning via model checkingvhich is able to deal with
nondeterminism and partial observability, as well as witiGE E
requirements.

Step 4. We automatically translate the resulting state transition
systemX. into an executable concre®PEL4WS program. The
translation is conceptually simple, but particular care haen put
in the implementation of this module in order to guarantes the
generate@PEL4AWS is of good quality, e.g. it is emitted as a struc-
tured program rather than using on jumps and labels.

It is widely recognized that, in general, automated syrithissa
hard problem, both in theory and in practice. In the nextieact
we show that automated synthesis is also possible in peactic
deed, theplanning via model checkingchniques we exploit in the
synthesis have been shown to be able to scale up to ratherdarg
mains for the problem of planning under uncertainty. Moerpin
the considered cases, it is possible to genesate4ws programs
that are easy to read and analyze by a programmer, and the size
of the program is reasonable compared with the one that can be

Step 1. We assume that component services are described asprogrammed by hand.

BPEL4WS abstract processes, and we automatically translate then
into state transition systemd hey describe dynamic systems that
can be in one of their possible states and can evolve to néessta
as a result of performing some actions (namely, input angudut
actions, which represent message exchanging, and spewidi-

ble” actions used to model internal evolutions of the sasjc A
transition relation describes how the state can evolve erbtsis

of input, output, and internal actions.

Copyright is held by the author/owner.
WWW 2005May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

1186

EXPERIMENTAL EVALUATION

In order to test the performance of the proposed technigadave
conducted some experiments. In the first set of experimenmttest
automated synthesis w.r.t. the number of services to be oseth
Each component is represented by a very simple abgtrettdws
process that is requested to provide a service and can resjtber
positively or negatively. The composition requirementiatteither
all services end successfully or a failure is reported toitkieker
of the composed service. The results are shown in the fatigwi
graph, where we report the number of components on the hagko

axis, and the total time for the automated synthesis (in@usf
conversion from/t@PEL4WS) on the vertical axis:
1000

100 ¢

10 ¢

0.1

2 4 6 8 10 12 14 16 18 20
With these examples, the time required for the automatethegis
increases less than exponentially and manages to deal wdather
high number of components in a rather short time: in the ch26 o
components, the automated composition takes about 1006d®c
The component web services used in the previous experiment
are very elementary, and implement essentially an invekpanse
protocol very common in the domain of web services. To model
more complex situations, we have complicated the paraimeter
domain by imposing a composition that requires a high degfee
interleaving between components. Here, the interactiatiseach
component are more complex than a single invoke-respoege st
and, to achieve the goal, it is necessary to carry out intierss
with all components in an interleaved way. The results amvsh
in the following graph:

1000

100 ¢

10

0.1

1 2 3 4 5 6 7 8

Automated synthesis in this case is more difficult than inpihei-
ous set of experiments. In spite of the fact that the requimest-
leaving reduces performances, the technique still manemgedsal
with a rather large number of components: we expect thaisteal
BPEL4WS compositions will include no more than a few compo-
nents.

To validate the results of this experimental evaluation,haree
also conducted some experiments of automated composition o
problems extracted from realistic web service domains. rékalts
are reported in the following table:

| nr. of components] composition time|]

P& S 3 9.4 sec.
P& S + BANK 4 75.0 sec.
wmol 5 210.1 sec.
WMO2 5 221.7 sec.
WMO3 5 295.5 sec.

The first case is thB&S example explained in [5], where a shipper
and a producer must be integrated to provide a user withtfuni
Automated composition is very fast, since in spite of theriieav-

ing required, we have just three components (shipper, meriu
and user). We also experiment with a more complex version of
P&S, where a bank is delegated to handle the user’s payment, and

1187

the interleaving of interactions is increased by the nates$re-
ceiving a payment confirmation from the bank before the ocder
be confirmed to the producer and the shipper. For this mofie dif
cult problem, automated composition time increases of oderaf
magnitude. Finally, we experiment with a case study takemfa
real e-government application we are developing for a pgicam-
pany. We aim at providing a service that implements a (public
waste management offices{10), i.e., a service that manages user
requests to open sites for the disposal of dangerous wast@rd-
ing to the existing ltalian laws, such a request involvesitierac-
tion of different offices of the public administration. Thernspo-
sition requirement here can be described with a set of caingsr
on the order of execution of different procedural stepsqrentd

by different offices. We consider three variants of this doma
corresponding to an increasing interleaving between tfferdnt
services, getting in all cases a very good performance.

In all the realistic examples, automated synthesis has rstiow
be feasible and take a rather low amount of time, surely much
faster than manual developmentsHEL4WS composite processes.
Moreover, the times required for the synthesis confirm teeds
of the scalable experiments reported previously.

An important question is the quality of the generasst1L4ws
processes. To evaluate this aspect, we have asked one ofaui-e
enced programmers to develop manuallyalreL4ws program for
the basidP&S case and we have compared the automatically gen-
erated and the hand-written solutions. As a result, we devenl
that the two solutions implement the same strategy and haie-a
ilar structure. The main difference is that the automalycgéner-
ated process contains a big switch implementing the préparaf
the offer for the user, while the program developed manuasiys
additional temporary variables to perform the preparatigmout
branching. As a consequence, the automatically generatéelis
larger than the manual one (22 KBytes vs. 11 KBytes). Exaapt f
this problem, that could be solved by optimizing the gerienadf
the branches, the automatically generated code is redsoraatul
rather easy to read and understand.

ACNOWLEDGEMENTS

This work is partially funded by the MIUR-FIRB project
RBNEOQ0195K5, “Knowledge Level Automated Software Engineer
ing”, and by the MIUR-PRIN 2004 project “Advanced Artificial
Intelligence Systems for Web Services”.

The authors want to thank all members of tAstro project
(http://lwww,astroproject.org/) for their collaboration and their
feedback.

1. REFERENCES

[1] T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
|. Trickovic, and S. Weeravarana. Business Process Executi
Language for Web Services (version 1.1), 2003.

[2] P.Bertoli, A. Cimatti, M. Pistore, and P. Traverso. A
Framework for Planning with Extended Goals under Partial
Observability. InProc. ICAPS’032003.

[3] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak,
Strong, and Strong Cyclic Planning via Symbolic Model
Checking Artificial Intelligence 147(1-2):35-84, 2003.

[4] U. Dal Lago, M. Pistore, and P. Traverso. Planning with a
Language for Extended Goals.Rtoc. AAAI'02 2002.

[5] M. Pistore, P. Traverso, and P. Bertoli. Automated
Composition of Web Services by Planning in Asynchronous
Domains. InProc. ICAPS’052005.

