
Migrating Web Application Sessions in Mobile Computing
G. Canfora°, G. Di Santo°*, G. Venturi°*, E. Zimeo°, M. V. Zito°

*Department of Engineering – °RCOST - University of Sannio
via Traiano, 82100 – Benevento, Italy

+39 0824 305555
{canfora, giuseppe.disanto, venturi, zimeo, mariavittoria.zito}@unisannio.it

ABSTRACT
The capability to change user agent while working is starting to
appear in state of the art mobile computing due to the proliferation
of different kinds of devices, ranging from personal wireless devices
to desktop computers, and to the consequent necessity of migrating
working sessions from a device to a more apt one. Research results
related to the hand-off at low level are not sufficient to solve the
problem at application level. The paper presents a scheme for
session hand-off in Web applications which, by exploiting a proxy-
based architecture, is able to work without interventions on existing
code.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/server, Distributed
applications.

General Terms:
Algorithms, Performance, Design.

Keywords:
Web applications, session hand-off, mobile computing.

1. INTRODUCTION
The capability to change the whole host used by a user may become
a very central issue in next generation networked services. While
current devices have a great deal of partially overlapping
capabilities (mobile phones can browse the Web, PCs can act as
phones, and so on), the dream of a unique, really multipurpose,
device remains very far. In real, everyday, life many people use a
steeply increasing number of devices because their capabilities are
very tailored to the different purposes. Moreover, communication
sessions are taking an increasing time in our life as a whole and are
becoming longer taken singularly. This observation leads to two
corollaries: (a) it is highly probable for a communication session to
interfere with an activity requiring movement; (b) often is
unforeseeable what exact kind of device we will find more suitable
in the following of a session.

Some examples can illustrate the intermingling of the above
considerations. A driver can set a path using his car navigation
system to discover later that the last part of the path is in a
pedestrian zone, in which he can use the cell phone but not the car
navigator; an Internet user can start navigating from the PDA and
needs to continue the navigation on a PC if he discovers that a clip
needs a wider screen.

All these scenarios involve the capability to carry a session from a
host to another. The paper investigates the capabilities of current
and near future technologies to give answer to such scenarios, to
assess user needs and technology limitations and to propose and
experiment with possible solutions in the context of legacy
applications. Enabling session hand-off in legacy applications
allows them to compete with more modern ones due to the
possibility of increasing their usability. However, legacy code
owners are often afraid to incremental maintenance projects. Thus,
we present an architecture and a protocol capable of enabling legacy
applications to exploit a session hand-off service supplied with
minimal interventions on the application.

The following sections talk about a proxy-based architecture and the
proxy functionalities. Finally, we describe our implementation
effort, which is currently in progress.

2. PROXY-BASED SESSION HAND-OFF
Some proposals centered on a client-based architectural scheme are
presented in the literature [4]. With this approach, the code
responsible to track and store session information (the session hand-
off component SHOC) is close to the client.

User

Proxy

Interactions after session hand-off

Dummy User
Agent

Web Server 1

Web Server 2

Client 1 (not in use)

Client 2

User

Proxy

Interactions before session hand-off

Dummy User
Agent

Web Server 1

Web Server 2

Client 1

Client 2 (not in use)

Figure 1: Session hand-off with a dummy user agent.

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

1166

The proxy-based architectural scheme, instead, involves the use of
an intermediate proxy, the SHOC, between client and servers. Since
the interactions between client and servers cross the proxy, it is able
to store all the session information even in the case in which several
servers are employed for the application.

In this architecture, when a client issues a hand-off, the target client
can retrieve all the information it needs from the proxy.

The proxy-based technology allows for adding the service without
any intervention on both client and servers. Therefore, it can be used
on a large array of existing applications.

Although HTTP is a session-less protocol, web applications based
on HTTP are expected to maintain a state for a group of interactions
between client and servers. The state can be handled by the server,
by the client or by both. RFC-2965 [2] has introduced the Cookie
technology which directly addresses session management by storing
information at client side. Other session related information can be
carried by requests and responses in authentication and user agent
identification headers.

By adopting a proxy-based architecture, servers see a surrogate
(dummy user agent) of the client on the proxy even when the client
migrates from a device to another.

Figure 1 depicts a session hand-off in which the same dummy user
agent is contacted by servers before and after the hand-off. To keep
consistent the communication between client and server, the dummy
user agent must be capable to store some data exchanged between
client and server and to carry on the authentication mechanism of
RFC-2617 [1] and part of the cookie management of RFC-2965.

In particular, the proxy must implement the following activities:

 User authentication: the proxy needs the authentication of
each user in order to generate a specific dummy user agent.

 Server authentication: whenever a server requires an
authentication, the proxy must authenticate the dummy user
agent instead of the real one.

 Cache management: information exchanged between client
and servers must be stored notwithstanding proxy caching
directives and rules.

 Cookies management: the proxy must store cookies in order
to restore them in a new user agent after a hand-off.

In our model, the hand-off happens when a new user agent
authenticates itself on the proxy with any currently in use account.
Since authentication data is owned by the proxy it is quite simple to
re-enter authenticated sessions. However, the web session can not be
completely restored since it is not aware of cookies previously
exchanged by the other agent. Restoring cookies on the new client is
vital for a seamless migration of the session.

3. IMPLEMENTATION
The proxy presented in this paper, called MuffinSH, was
implemented in Java. It was built by extending a filtering system,
Muffin [3] freely available under GNU General Public License, and
supports HTTP/0.9, HTTP/1.0, HTTP/1.1 and SSL.

MuffinSH uses the filters inherited from the Muffin interfaces to
implement the session hand-off. The main interfaces implemented
by MuffinSH are: RequestFilter, ReplyFilter, ContentFilter,
HttpFilter, and RedirectFilter.

The RequestFilter interface is implemented by the filters that handle
request headers; ReplyFilter is used for response headers;
ContentFilter processes the content of responses; HttpFilter is used
to generate replies to requests that do not need of being sent to the
server; RedirectFilter redirects an URL to another. By using the
filters, the proxy is able to store, for each user and each domain, web
content replied by a server to a client before the user hands-off the
session.

The above interfaces were implemented by the following filters:

 ProxyAuthFilter: implements HttpFilter; the filter verifies
whether all attained requests contain the “Proxy-
Authorization” header. If it is not present or username and
password are not correct, the filter requires a Proxy-
Authorization with the basic authentication scheme and does
not forward the request to the server. If user credentials are
correct, the filter only verifies whether the authentication is
issued before or after a hand-off.

 CachedReplyFilter: implements HttpFilter; when a user
issues a request after a hand-off, the filter verifies whether
the domain of the requested resource exists in the proxy
cache and, in positive case, it creates a response to send the
client the resource stored in cache.

 ServerAuthFilter: implements RequestFilter and ReplyFilter;
it acts when a server asks the user for the authentication.

 HeaderChangeFilter: implements RequestFilter; it changes
the request headers to allow the server to recognize the client
with a new set of headers representing a dummy user agent.

 CacheFilter: implements ContentFilter; before a hand-off
occurs, this filter acts on the content of responses
characterized by a text/html content-type; it analyzes the
received html tags and basing on this analysis manages the
pages containing frames, the pages implementing the
contained frames and the pages referred inside the frames.

 UrlRedirectFilter: implements RedirectFilter; when this
filter intercepts in the request URL some identifiers
previously inserted by CacheFilter, it eliminates the
identifiers, stores the related information and forwards the
request to the server.

 RedFilter: implements RedirectFilter; it works after the
occurrence of a hand-off to perform a redirection to the URL
requested from the client before the hand-off in order to re-
collect all the cookies previously received by the client in
response to that request.

4. REFERENCES
[1] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,

Leach, P., Luotonen, A. and Stewart, L. HTTP Authentication:
Basic and Digest Access Authentication, RFC 2617, June
1999. http://www.rfc-editor.org/rfc/rfc2617.txt.

[2] Kristol, D., and Montulli, L. HTTP State Management
Mechanism, RFC 2965, Octber 2000. http://www.rfc-
editor.org/rfc/rfc2965.txt.

[3] Muffin: World Wide Web Filtering System.
http://muffin.doit.org.

[4] Song, H., Chu, H., Kurakake, S. Browser Session Preservation
and Migration. In Poster Session of WWW 2002, Hawai, USA.
7-11. May, 2002. pp. 2.

1167

