
Answering Order-Based Queries Over XML Data�

Zografoula Vagena Nick Koudas Divesh Srivastava Vassilis J. Tsotras
UC Riverside University of Toronto AT&T Labs-Research UC Riverside

foula@cs.ucr.edu koudas@cs.toronto.edu divesh@research.att.com tsotras@cs.ucr.edu

ABSTRACT
Order-based queries over XML data include XPath navigation axes
such as following-sibling and following. In this pa-
per, we present holistic algorithms that evaluate such order-based
queries. An experimental comparison with previous approaches
shows the performance benefits of our algorithms.

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Systems—query processing

General Terms: Algorithms, Experimentation

Keywords: Holistic algorithms, order-based queries, XML

1. INTRODUCTION
XML is poised to become the basis for web-based and database-

centric applications. Thanks to standard specifications for web ser-
vices (such as SOAP, WSDL, etc.), applications can receive re-
quests for data and return their answers tagged in XML. A key
issue in XML data management is effective support of the ordered,
tree-structured data model that the language employs.

Consider an XML database of articles. For each article entry,
the tree structure and the order in which its sections are listed is
relevant. Information extraction tools can extract the sections of an
article following the related work section using the query:

/article/section[title � ‘Related Work’]/
following-sibling::section

Queries with navigation axes such as following-sibling
and following are referred to as order-based queries. This pa-
per complements previous approaches [4, 5, 6] and investigates
whether holistic techniques can be devised to answer order-based
queries in XPath and XQuery. Our contributions are:

1. We devise algorithms for the following-sibling and
following axes as well as their backward counterparts.

2. We propose holistic approaches for “twig” queries with order-
based forward and backward axes of the same type.

3. We experimentally show that our solutions offer better query
performance than previous approaches.

We proceed with Section 2 that describes our techniques, while
in Section 3, their efficiency is experimentally investigated. Sec-
tion 4 concludes the paper.
�The research of Zografoula Vagena and Vassilis J. Tsotras was
partially supported by NSF grant IIS-0339032, UC MICRO and
Lotus Interworks.

Copyright is held by the author/owner.
WWW 2005, May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

2. ALGORITHMIC APPROACHES
We describe set-based processing techniques for the order-based

axes. For queries that contain both forward and backward axes,
we first convert the backward axes into their forward counterparts,
based on the ideas presented in [2]. Efficient algorithms are then
developed to answer the modified queries.

2.1 The Tree Encoding
To enable set-at-a-time structural matching, we map the docu-

ment into sequences of nodes. Each sequence maintains nodes with
the same tag and each node is augmented with information that
identifies its position within the XML tree, as in [1]. The position
of an XML node is represented as: (LeftPos, RightPos,
PRightPos) where: (a) LeftPos and RightPos are gener-
ated by counting tags from the beginning of the document until
the start and the end tags of the element are visited, respectively,
and, (c) PRightPos is the RightPos of its parent node. Sev-
eral structural relationships between elements can thus be identi-
fied. An element y follows an element x if the RightPos of
x is smaller than the LeftPos of y. Similarly, an element y is
following-sibling of an element x if the RightPos of x is
smaller than the LeftPos of y and the PRightPos of x is equal
to the PRightPos of y.

2.2 Single Forward Axis Step
Consider the query a/following-sibling::b. Our pro-

cessing algorithm’s input consists of two streams, one with a nodes
and one with b nodes. These streams are sequentially accessed, ef-
fectively computing a (merge) join. An important observation is
that the following-siblings for some document node ax occur after
its descendants have been encountered. In other words, node ax has
to be buffered until the following-siblings of its descendants have
been processed first. This is achieved by maintaining a stack Sa
that keeps a nodes which have been accessed and are still needed
to identify future following-sibling nodes. Note that an a node may
be followed by many other nodes with the same label. Such nodes
conceptually form a linked-list (CSL list). New nodes are appended
to the end of such a list. If a node by becomes a following-sibling to
the ax node at the end of a CSL list, it is automatically a following-
sibling to all other nodes in that list.

If the query contains a following axis, we need to identify
for each document node ax with label a, all b nodes that occur after
ax in document order and are not its descendants. The processing
algorithm resembles the one for the following-sibling axis. The
main difference is that after having identified the first match for a
node ax, all other b nodes in the stream have to be joined with it.

Since the processing of the two forward axes are similar, we fo-
cus on the following-sibling axis from now on.

1162



2.3 Non-Branching Forward Path
Such queries contain a number of steps where all the intermedi-

ate nodes correspond to context nodes, while the leaf corresponds
to a test node. The algorithm maintains one stack for each query
context node. Each stack buffers nodes with following-siblings yet
to be visited. In addition, a number of CSL lists are associated at
each time with a stack. The role of a CSL list is similar to that in
Section 2.2, i.e., to hold context-siblings. What is different, how-
ever, is that now an element by that is added in a CSL list, “re-
members” the latest element ax (in document order) in the previ-
ous query step for which by is a following-sibling. This is achieved
by maintaining a step-pointer from by to the current last element in
the corresponding CSL list of ax. Step-pointers combine informa-
tion between query steps and, along with the CSL lists, encode all
partial results of the query. When a test node is accessed and the
stack of the previous step is not empty, the following-sibling paths
containing that node are decoded and returned.

2.4 Branching Forward Path
The most general query has the form of a subtree (or twig).

Such queries can be processed holistically through a variation of
the TwigStack [3] algorithm, which dealt with twig queries con-
taining descendant and child axes. One thing to note here
is that although TwigStack can guarantee node participation in the
final result for queries with the descendant axis by inspecting
a bounded number of lookahead symbols, such guarantees are not
possible in the case of the following-sibling axis. The rea-
son is that, as with the child axis, the necessary number of looka-
head symbols is in the order of the size of the document.

2.5 Forward and Backward Axes
By adapting the method proposed in [2], a twig query with both

following-sibling and preceding-sibling axes can
be converted to a DAG query with only following-sibling
axes. The key issue that needs to be addressed for DAG queries
is that a query node a may have multiple parents in the query, i.e.,
may need to satisfy the following-sibling constraint for multiple
context query nodes. We call such a query node a a join node from
now on. For a document node ax to participate in one total result,
it is necessary that: (a) ax has a following-sibling by in each of
the document node sequences that correspond to children of a in
the query, (b) ax is following-sibling for at least one cz in each of
the document node sequences that correspond to parent nodes of a
in the query, (c) each of the following-sibling nodes by recursively
satisfies this property, (d) each of the nodes cz recursively satisfies
this property, and (e) the join node conditions are satisfied. With
that in mind, we modify the approaches, described in the previous
sections, so as to check that a produced DAG instance satisfies all
these constraints. The special shape of the query DAG (i.e., if a
node has two or more parents, their unique common ancestor is the
ROOT node) enables the efficient checking of the above constraints.

3. EXPERIMENTAL EVALUATION
In this section, we present experimental results comparing the

performance of the proposed algorithms (we refer to them as GNF)
with the Staircase [4] and Arb [5] approaches. The dataset we
used was the 1G (text) database generated by the XMark bench-
mark. We used the queries shown in Table 1. Staircase Join
was excluded from query Q3 as it does not directly support twig
queries. For the Arb algorithm, we report the time after the Arb
database has been created.

The results are presented in Figure 1. In each case, the GNF tech-
nique performed better. For the single step query Q1, Staircase

Q1 : incategory/following-sibling::mailbox
Q2 : location/following-sibling::incategory/

following-sibling::mailbox
Q3 : location[./following-sibling::incategory]/

following-sibling::mailbox

Table 1: Queries for XMark data

Figure 1: Staircase Join, Arb and GNF.

and GNF perform very similarly because both algorithms take into
consideration only elements that are needed to create the results.
When the number of query steps increases, the Staircase be-
comes worse because it incurs the overhead of the intermediate re-
sult materialization. In every case, Arb performed considerably
worse; this is because it needs to access the whole document twice
for each query, while the other two approaches take into consider-
ation only relevant parts of the documents.

4. CONCLUSIONS
We studied the problem of supporting the ordered, tree shaped

model of XML data. We proposed efficient algorithms to answer
queries with the order-based navigation axes (both forward and
backward ones), and validated them experimentally. To the best of
our knowledge, this is the first approach that addresses those navi-
gational axes in a complete, scalable, XML model-aware fashion.

5. REFERENCES
[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel,

D. Srivastava, and Y. Wu. Structural joins: A primitive for
efficient XML query pattern matching. ICDE, 2002.

[2] C. Barton, P. Charles, M. Fontoura, and V. Josifovski.
Streaming XPath processing with forward and backward
axes. ICDE, 2003.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
Optimal XML pattern matching. SIGMOD, 2002.

[4] T. Grust, M. van Keulen, and J. Teubnem. Staircase join:
Teach a relational DBMS to watch its (axis) steps. VLDB,
2003.

[5] C. Koch. Efficient processing of expressive node-selecting
queries on XML data in secondary storage: A tree
automata-based approach. VLDB, 2003.

[6] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. SIGMOD, 2002.

1163


