
Automated Semantic Web Services Orchestration via
Concept Covering

T. Di Noia†, E. Di Sciascio†, F. M. Donini‡, A. Ragone†, S. Colucci†§
†Politecnico di Bari - via Re David, 200 - I-70125, Bari, Italy

‡Università della Tuscia - via San Carlo, 32 - I-01100, Viterbo, Italy
§The Open University - Knowledge Media Institute - MK7 6AA, Milton Keynes, U.K.

{t.dinoia,disciascio,a.ragone,s.colucci}@poliba.it;donini@unitus.it

ABSTRACT
We exploit the recently proposed Concept Abduction infer-
ence service in Description Logics to solve Concept Covering
problems. We propose a framework and polynomial greedy
algorithm for semantic based automated Web service orches-
tration, fully compliant with Semantic Web technologies.
We show the proposed approach is able to deal with not ex-
act solutions, computing an approximate orchestration with
respect to an agent request modeled a subset of OWL-DL.

Categories and Subject Descriptors: H.3.3 [Information
Search and Retrieval]:[retrieval models,search process,
selection process];H.4.0 [Information Systems Applica-
tions]:General;H.3.5 [Online Information Services]:[web-
based services]

General Terms: Algorithms.

Keywords: semantic web services, orchestration, semantic
web, description logics.

1. INTRODUCTION
Web service composition amounts to the orchestration of

a certain number of existing web services to provide a com-
posite service that satisfies the user’s requirements, in case
a single web service is not adequate.

Semantic Web services (SWS) are services endowed of de-
scriptions expressed in a language that has well-defined, and
possibly rich, semantics [5]. The aim of such unambiguously
machine interpretable descriptions is to ease SWS discovery
on the one hand, and orchestration of composite SWS on
the other hand, when the requested task cannot be ade-
quately carried out by a single service. Here we model a
user oriented and friendly framework where a typical re-
quest is like ”I’d like to book a hotel provided with a swim-
ming pool and a fitness center” rather than only ”Effects
= HOTEL RESERVATION” and a typical service description is
like ”We book for you hotels near the sea provided with
all the facilities: swimming pool, fitness center, children
area and restaurants” rather than only ”Preconditions =
VALID CREDIT CARD; Effects = HOTEL RESERVATION”. In this
paper we propose a framework and an algorithm, fully com-
pliant with the Semantic Web vision and its related tech-
nologies, for an automated discovery and composition in a
semantic web-services orchestration scenario. To this aim

Copyright is held by the author/owner.
WWW 2005,May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

we exploit the recently proposed Concept Abduction [2] in-
ference service in Description Logic to generalize and extend
Concept Covering[3] for a subset of OWL-DL.

2. CONCEPT COVERING VIA CONCEPT
ABDUCTION

In [2] the Concept Abduction Problem (CAP) was in-
troduced and defined as a non standard inference problem
for Description Logics, to provide an explanation when sub-
sumption does not hold.

Definition 1. Let C, D, be two concepts in a Descrip-
tion Logic L, and T be a set of axioms, where both C and D
are satisfiable in T . A Concept Abduction Problem (CAP),
denoted as 〈L, C, D, T 〉, is finding a concept H such that
T 6|= C uH ≡ ⊥, and T |= C uH v D.

The solution to a CAP can be interpreted as which part of
D is not covered by C. On the basis of the latter remark
in the following we exploit concept abduction to perform a
”concept covering”. We propose an extension to the basic
definition of Concept Covering Problem, eliminating limi-
tations on the DL employed, and rewriting it in terms of
Concept Abduction.

Definition 2. Let D be a concept, R = {S1, S2, ..., Sk}
be a set of concepts, and T be a set of axioms, all in a DL
L, where D and S1, . . . , Sk are satisfiable in T . The Con-
cept Covering Problem (CCoP), V=〈L,R, D, T 〉, is finding
a pair 〈Rc, H〉 such that

1. Rc ⊆ R, and the conjunction of concepts in Rc, C =
uS∈RcS is satisfiable in T ;

2. H ∈ SOL(〈L, C, D, T 〉), and T 6|= H v D.
We call 〈Rc, H〉 a solution for V, and say that Rc (partially)
covers D. Finally, we denote SOLCCoP (V) the set of all
solutions to a CCoP V.

In [3] also the greedy algorithm GREEDYsolveCCoP is pro-
posed, in order to compute a solution for a Concept Covering
Problem.

3. SEMANTIC WEB SERVICE ORCHESTRA-
TION

The execution of a web service requires its preconditions
be satisfied, possibly using information provided by other
web services. Moreover care has to be paid in avoiding the
duplication of effects when composing services, which might

1160

be due to entailment relationships among different effects
provided by services being composed. Turning to the clas-
sical example proposed in [4], an agent booking organizing
a trip and composing two services, one able to book both a
hotel stay and a flight and another a flight and a car rental,
would not be much appreciated if its outcome is two flights
booked for the same trip, together with the hotel and the
car.

3.1 Precondition and Effects for Web Service
Orchestration

In order to deal with the execution information, we de-
fine: Request: a pair 〈D, P0〉, where D is the description
the requested service and P0 are the preconditions provided
with the request. Web Service 1 : a triple 〈WSD, P, E〉,
where WSD represents provided service description, P the
preconditions and E the effects. Hereafter we model WSD

and D as DLs concepts w.r.t. a domain/task ontology TD.
For the sake of simplicity, here P0,P and E are modeled
as conjunction of atomic concepts represented in a Pre-
condition/Effect ontology TP/E . This is a simple TBox
with no role and containing only inclusion axioms. A web
services composition based exclusively on the solution of
GREEDY solveCCoP (R, WSD, TD) [3], i.e., solving only
a Concept Covering Problem on web services description,
cannot deal with the P , E specifications of the services. To
this aim we introduce a definition of web service flow.

Definition 3. A web service flow with respect to some
initial preconditions P0 is a finite sequence of web services
WSF(P0) = (ws1, ws2, ...wsi, ..., wsn) with i = 1..n, where
for each web service wsi ∈ WSF(P0) all the following con-
ditions hold:

1. for ws1, P0 v P1.
2. for wsi, with i > 1, P0 u E1 u E2 u ... u Ei−1 v Pi.
3. for wsi, with i > 1, for each concept name A occurring

in Ei, P0 u E1 u E2 u ... u Ei−1 6v A.
We indicate with DWSF , the set of web service descriptions
in WSF(P0). DWSF = {WSDi|wsi ∈ WSF(P0)}.
Based on the definition of web service flow, here it possi-
ble to define a composite web service with respect to a
request.

Definition 4. Let R = {〈WSDi, Pi, Ei〉}, with i=1..k,
be a set of web services wsi, and 〈D, P0〉 be a request, such
that both D and WSDi are modeled as concept descriptions
in a DL w.r.t. an ontology T , and P0, Pi and Ei modeled
using a Horn clauses based language. A composite web
service for 〈D, P0〉 with respect to R, CWS(〈D, P0,R〉), is
a web service flow such that for each wsj in the execution
flow, DCWS(〈D,P0,R〉) = {WSDj |wsj ∈ CWS(〈D, P0,R〉)},
covers D.

3.2 Computing a Composite Web Service
We now adapt the basic algorithm proposed in [3] for Con-

cept Covering, to cope with web service preconditions and
effects in order to automatically compute a composite web
service.For such purpose we need to define an executable web
service and an executable set.
1
A web service implemented by combining other web services is re-

ferred to as composite ”[...] to distinguish it form the ones imple-
mented through conventional programming languages and invoking
conventional services which are called basic”[1].Since a service being
basic or composite is transparent to the client, in the following we
address them as web service for simplicity.

Definition 5. Given a web service flow WSF(P0) =
(ws1, ..., wsn), we say that a web service is an executable
web service wsex for WSF(P0) if and only if

1. wsex 6∈ WSF(P0).
2. WSF ′(P0) = (ws1, ..., wsn, wsex) is a web service flow.

An executable web service wsex for WSF(P0) is a web
service which can be invoked after the execution ofWSF(P0).

Definition 6. Given a web service flow WSF(P0) and
a set of web services R = {wsi} we call executable set for
WSF(P0), the set of all the wsi ∈ R s.t. wsi is an exe-
cutable service for WSF(P0)}.
EXWSF(P0) = {wsex

i |wsex
i is an executable service forWSF(P0)}

The executable set is hence the set of all the services that
can be invoked after the execution of a web service flow.

Algorithm serviceComposer(R, 〈D, P0〉, T)
input a set of services R = {wsi = 〈WSDi, Pi, Ei〉}, a
request 〈D, P0〉, where D and WSDi are satisfiable in T
output 〈CWS, H〉
begin algorithm
CWS(〈D, P0,R〉) = ∅;
Duncovered = D;
Hmin = D;
do
compute EX CWS(〈D,P0,R〉);
WSDmin = >;
for each wsi ∈ EX CWS(〈D,P0,R〉)
if DCWS(〈D,P0,R〉) ∪ {WSDi} covers Duncovered then
H = solveCAP (〈L, WSDi, Duncovered, T 〉);
if H ≺ Hmin then
WSDmin = WSDi;
Hmin = H;
end if
end if

end for each
if WSDmin 6≡ > then
R = R\{wsi};
CWS(〈D, P0,R〉) = (CWS(〈D, P0,R〉), wsi);
Duncovered = Hmin;
end if

while(WSDmin 6≡ >);
return 〈CWS(〈D, P0,R〉), Duncovered〉;

end algorithm

The algorithm returns CWS(〈D, P0,R〉), the composite web
service and the uncovered part, Duncovered, of the request
description D.

4. REFERENCES
[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay

Machiraju. Web services: Concepts, Architectures and
Applications. Springer Verlag, 2003.

[2] T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello.
Abductive matchmaking using description logics. In
Proceedings of IJCAI 2003, pages 337–342, 2003.

[3] T. Di Noia, E. Di Sciascio, and F.M. Donini. Extending and
Computing the Concept Covering for the Semantic Web.
Technical report, Tech-Rep n. 21/04/S, http://www-
ictserv.poliba.it/PDF/TECH-REP-21-04-2.pdf,2004.

[4] M. Frauenfelder. A Smarter Web. MIT Technology Rev.,
104(9):52–58, 2001.

[5] Sycara Katia, Paolucci Massimo, Ankolekar Anupriya, and
Naveen Srinivasan. Automated Discovery, Interaction and
Composition of Semantic Web Services. Journal of Web
Semantics, 1, December 2003.

1161

