
XSLT By Example

Daniele Braga Alessandro Campi Roberto Cappa Damiano Salvi
Politecnico di Milano - Dipartimento di Elettronica e Informazione

piazza Leonardo da Vinci, 32 - 20133 Milano - Italy

braga|campi@elet.polimi.it

ABSTRACT
XQBE (XQuery By Example, [1]), a visual dialect of XQuery,
uses hierarchical structures to express transformations be-
tween XML documents. XSLT, the standard transformation
language for XML, is increasingly popular among program-
mers and Web developers for separating the application and
presentation layers of Web applications. However, its syn-
tax and its rule-based execution paradigm are rather intri-
cate, and the number of XSLT experts is limited; the avail-
ability of easier “dialects” could be extremely valuable and
may contribute to the adoption of XML for developing data-
centered Web applications and services. With this motiva-
tion in mind, we adapted XQBE to serve as a visual interface
for expressing XML-to-XML transformations and generate
the XSLT code that performs such transformations.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User interfaces;
H.2.3 [Languages]: Data manipulation languages (DML),
Query languages; D.1.7 [Visual Programming]

General Terms
XML, visual query languages

Keywords
Semi-structured data, XQuery, visual query languages

1. MOTIVATION AND DESIGN ISSUES
The diffusion of XML in most applicative fields is ac-

companied by the increasing success of XSLT for generat-
ing different views of the same Web site, in order to al-
low its fruition to different users with different kinds of de-
vices. This diffusion poses a pressing need for providing a
wide spectrum of professionals with the capability to trans-
form XML data, including those with limited computer pro-
gramming skills (like many HTML designers). We describe
here a user friendly interface, based on an intuitive visual
paradigm, developed for this purpose aiming at both the
unskilled users and the experienced ones, who may want to
rapidly draft their transformations and refine them later on.
The W3C (World Wide Web Consortium) promotes two

textual languages to express XML document transforma-

Copyright is held by the author/owner.
WWW 2005, May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

tions and to query XML data, XSLT [3] and XQuery [2]
respectively. These languages, however, are far too compli-
cated for occasional or unskilled users, who might need to
specify document mappings or transformations only being
aware of the basics of the XML data model and approx-
imately familiar with the schema of the documents they
have to manage. Nevertheless, even this basic knowledge
of the task should be enough to allow such users to express
their queries and transformations with the core primitives
of a simple manipulation language; otherwise, XML will
never step up to the status of a universally and successfully
adopted data representation format.
XQBE (XQuery By Example [1]) was initially designed

with both the objectives of being intuitive (according to
the aforementioned principles) and of being directly map-
pable to XQuery, so as to work as a GUI capable of run-
ning on top of any existing XQuery engine. The XQBE
prototype implementation has now been enriched with the
capability of generating XSLT stylesheets performing XML-
to-XML transformations, including XML-to-HTML trans-
formations, as HTML can be regarded as one particular
XML language. We kept in special consideration the case of
HTML: we defined and implemented some abbreviated con-
structs that allow to compactly introduce the typical com-
ponents of HTML pages, such as lists, tables, etc.

2. XQBE AND XSLT
Query in Figure 1 reads “Build an HTML table with each

book in a different row and with a column for the title and a

column for the price”. In XSLT:
<xsl:template match="/">
<table> <xsl:for-each select="bib/book">

<tr> <td> <xsl:value-of select="title"/> </td>
<td> <xsl:value-of select="price"/> </td> </tr>

</xsl:for-each> </table>
</xsl:template>

The basic interpretation of a visual transformation is that
the XML data matching the description on the left are trans-
formed into the data described on the right. All transfor-
mations have a vertical line in the middle, that separates
the source part (on the left) from the construct part (on
the right); both parts contain labelled graphs that represent
XML fragments and express structural properties of such
fragments and conditions upon values. Tags are represented
by rectangles, attributes and PCDATA content by black
and white circles respectively. The source part describes
the XML data to be matched in order to construct the re-
sult, while the construct part specifies which parts are to be
retained in the result and (optionally) which newly gener-
ated XML items are to be inserted (represented as trapezia).

1158



Figure 1: Snapshot of the XQBE interface

The correspondences are expressed by explicit binding edges
that connect the nodes of the source part to the nodes that
will take their place in the output document.
In Figure 1 one table row is constructed for each book, ac-

cording to the interpretation of the binding edge that con-
nects the book in the source part to the tr in the construct
part. In each row two tds are inserted, each one in turn
containing an element projected from the matched books.
table and td are trapezoids as they are new w.r.t. the data
source, while title and price are dashed as they specify how
to access data but are not included in the result.

3. IMPLEMENTATION
Two snapshots of the tool at work are shown in Figure 1.

Users draw queries in windows composed of two parts, cor-
responding to the source and construct parts. Graphs are
built choosing the graphical constructs from a toolbar on the
left. The graphical constructs and the graphs themselves are
internally represented as XML data. XQBE queries can also
be saved and exported as XML data. Once the users com-
plete their queries they can compile them and execute the
corresponding XQuery or XSLT statements. The tool assists
the user during the editing process and provides syntactic
feedback in several forms, to facilitate the drawing of cor-
rect queries. Many incorrect configurations are prevented
“on line” by not allowing to connect two nodes or to draw
a component in a place where it makes no sense. The syn-
tactic feedback is not limited to “topological” errors, but

(a)

tdtd td

price

last

author

th th th

trtr

table

(b)

Title Author Price

TH

title

TD

TH

TD

price

price

TH

TD

author

last

author

book

bib

www.bn.com/bib.xml

Figure 2: A shortcut for constructing HTML tables

makes default automatic and semi-automatic corrections to
typical frequent errors, both during the editing process and
at compile time. Another interesting application of XQBE
as a language for specifying mappings is that of porting the
content of a message from one schema to another, which is
often necessary whenever different Web Services have to co-
operate exchanging XML data. This can be regarded as a
case of special interest within the general problem of porting
the content of a document from one schema to another. Our
XQBE visual editor allows to load XML Schema specifica-
tions and accordingly construct the query graphs with few
mouse clicks. Users can load a DTD or XML Schema defi-
nition for the target data, thus enabling the tool to suggest
the possible subelements of each selected item by showing
its first-level expansion.

3.1 Macros for generating HTML documents
XML-to-HTML transformations are so frequent that we

defined a set of “macros” that allow to save time (and query
space) when generating HTML code in the construct part.
These macros allow to compactly denote with one node sev-
eral recurrent HTML constructs such as headers, lists, links,
images, tables, etc., which are atomic concepts but require
many tags and attributes to be specified. A plain XQBE
transformation would force to fill the query graph with many
trapezoidal nodes that are almost irrelevant to the seman-
tics of the transformation, while the shortcuts allow to focus
on the data-centric aspects of the XML-to-HTML mapping.
These macros are expanded into regular XQBE nodes at
compile time. Figure 2(a) shows the most complex macro,
the one for generating tables. The external binding asso-
ciates the table to a node in the source part (to impose the
cardinality of rows); an arbitrary number of columns can
be defined and filled by projecting the implicit context or
importing new values by means of additional binding edges.
Figure 2(b) shows the equivalent in “plain” XQBE.

4. REFERENCES
[1] D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By

Example): a Visual Interface to the Standard XML Query
Language. ACM-TODS, June 2005, in print.

[2] W3C. XQuery. http://www.w3.org/XML/Query.
[3] W3C. XSLT. http://www.w3c.org/Style/XSL/.

1159


