
WCAG Formalization with W3C Standards

Vicente Luque Centeno, Carlos Delgado
Kloos

Carlos III University of Madrid

{vlc,cdk}@it.uc3m.es

Martin Gaedke, Martin Nussbaumer
University of Karlsruhe

{gaedke,nussbaumer}@tm.uni-
karlsruhe.de

ABSTRACT
Web accessibility consists on a set of checkpoints which are
rather expensive to evaluate or to spot. However, using
W3C technologies, this cost can be clearly minimized. This
article presents a W3C formalized rule-set version for au-
tomatable checkpoints from WCAG 1.0.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces; H.5.4 [Information Interfaces and Presenta-
tion]: Hypertext/Hypermedia; F.4 [Mathematical Logic
and Formal Languages]: Miscellaneous

General Terms
Algorithms, Standardization, Verification

Keywords
WAI; WCAG; XPath; XPointer; XQuery

1. Introduction
WAI (Web Accessibility Initiative)’s WCAG (Web Content
Accessibility Guidelines) 1.0 [1] is an important contribution
to Web accessibility, focusing not only on eliminating barri-
ers for disabled people, but also a major step towards device
independence, allowing Web interoperability to be indepen-
dent from devices, browsers or operating systems. WCAG
1.0 have become an important reference for Web accessibility
in the Web community. However the set of the 65 WCAG’s
checkpoints that accessible documents have to pass is a very
heterogeneous set of conditions which are difficult to evalu-
ate. WCAG 1.0 specification is written in a high abstraction
level which is frequently quite far away from the low level
technical detail of the HTML format. Many of those check-
points are also open to subjective interpretation, including
implicit conditions or, simply, containing conditions whose
detection can not be automated.

2. WCAG formalization
Rules from WCAG can be classified into the following groups:

1. Objectively automatable rules are clearly defined
and specify a condition that nobody might reject.

Copyright is held by the author/owner.
WWW 2005,May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

2. Subjectively automatable rules specify fuzzy con-
ditions that can be automated, but whose particular
non-fuzzy interpretation might be accepted or rejected
by different groups of people. For these kind of sub-
jective automatable conditions, W3C has defined a set
of heuristics [2] that might help to evaluate.

3. Semi-automated rules, which can not be evaluated
automatically, but tool’s assistance can focus user’s
interest on relevant markup.

4. Manual rules, which require human judgement. Both
semi-automated and manual rules are very expensive
to evaluate and should be kept to a minimum.

Both semi-automated and manual rules can not be evalu-
ated automatically by a program with an acceptable degree
of trust. However, both objectively or subjectively automat-
able rules may be formalized as follows.

2.1. Checkpoints guaranteed by a grammar
XHTML is not a unique language. Since its birth, it has
had several versions, starting from Transitional and Strict,
launching XHTML Basic [5] and ending by XHTML 1.1 or
even XHTML 2.0 (a draft). Those different languages have
different accessibility restrictions, some of them had been
previously declared in the 1999’s WCAG. For example, im-
ages’ alt attribute are mandatory since XHTML Transi-
tional 1.0. Deprecated elements like font or center were
removed in XHTML Strict 1.0. Besides that, rules 3.2 (Cre-
ate documents that validate to published formal grammars),
3.3 (Use style sheets to control layout and presentation) and
11.2 (Avoid deprecated features of W3C technologies) from
WCAG directly depend on XHTML validation.

2.2. Checkpoints declared in an XPath rule
Table 1 shows several examples of WCAG checkpoints that
can be formalized as XPath 1.0 [3] rules. Some of these rules
cover the following conditions.

• Textual alternatives are required for multimedia.

• Frames should have both title description as well as
a noframes alternative.

• Idiom changes should be explicit.

• Device dependant events should be used in equivalent
events by pairs.

1146

WCAG # XPath 1.0 rule
1.1b //input[@type=”image”][not(@alt)]
1.1c //img[toolong(@alt)][not(@longdesc)]
1.1d //object[not(*)][normalize-space(text())=””]
1.1e //frameset[not(noframes)]
3.5a //h2[not(preceding::h1)]
4.3 //html[not(@xml:lang)]
5.6 //th[toolong(text())][not(@abbr)]
6.4a //*[@onmouseover != @onfocus]
6.4b //*[@onmouseout != @onblur]

7.4, 7.5 //meta[@http-equiv=”refresh”]
9.2a //*[@onmousedown != @onkeydown]
9.2b //*[@onmouseup != @onkeyup]
9.2c //*[@onclick != @onkeypress]
10.1a //*[@target=” blank” or @target=” new”]
10.4a //input[@type!=”hidden”][not(@value)]
10.4b //textarea[normalize-space(text())=””]
12.1 //frame[not(@title)]
12.2 //frame[toolong(@title)][not(@longdesc)]
12.3c //p[toolong(text())]

Table 1: XPath 1.0 rules

2.3. Checkpoints declared in a XQuery 1.0 rule
Elements breaking some complex conditions involving sev-
eral elements can be addressed by XQuery 1.0 [4] expres-
sions. For example, rule 1.5 requires alternative redundant
links for every link within a client-side image map. This
means that links defined within the map should also be de-
fined somewhere else in the document, as formalized in the
XQuery expression of figure 1.

//area[let $area:=self::area return
count(//a[@href = $area/@href]) = 0]

Fig. 1: XQuery 1.0 expression for client side maps
breaking WCAG 1.5

Figure 2 contains a XQuery 1.0 expressions for addressing
h3 elements breaking WCAG 3.5 (Use headings properly).
Similar rules can be written for h4, h5 and h6 elements.

//h3[let $h3:=self::h3 return
let $h2:=$h3/preceding::h2[last()] return
let $h1:=$h3/preceding::h1[last()] return
$h1=() or $h2=() or $h1>>$h2]

Fig. 2: XQuery 1.0 expression for h3 elements
breaking WCAG 3.5b

No abbreviation or acronym should be defined more than
once. Figure 3 shows an XQuery expression which detects
multiple-defined acronyms and abbreviations.

(//abbr | //acronym)[let $a:=self::node() return
count((//abbr | //acronym)[text() = $a/text()]) != 1]

Fig. 3: XQuery expression for abbr and acronym
elements breaking WCAG 4.2a

Tab order, if explicitly specified, should be consistently.
Figure 4 shows an XQuery expression which address ele-
ments with an improper tab order.

//*[@tabindex][let $n:=self::node()/@tabindex return

not(isnumber($n)) or count(//*[@tabindex=$n]) != 1 or
number($n)<1 or number($n)>count(//*[@tabindex])]

Fig. 4: XQuery expression for elements breaking
WCAG 9.4

Keyboard shortcuts should be used properly. This means
that every accesskey attribute should have a unique char-
acter within a document. Figure 5 addresses elements with
improperly reused accesskey attributes.

//*[@accesskey][let $c:=self::node()/@accesskey return
not(ischar($c)) or count(//*[@accesskey=$c]) != 1]

Fig. 5: XQuery expression for elements breaking
WCAG 9.5

Rule 12.4 requires that every visible form field should have
a label whose for attribute matches the form field’s id at-
tribute. This does not apply to hidden form fields or submit
buttons, as expressed in figure 6.

(//select|//textarea|//input[@type=”text” or
@type=”password” or @type=”radio”
or @type=”checkbox”])[let $ff:=self::node() return
count(//label[@for=$ff/@id]) != 1]

Fig. 6: XQuery expression for form fields break-
ing WCAG 12.4

Rule 13.1 requires that every link’s text should be mean-
ingful when read out alone. The expression within figure
7 can be used to address those links sharing the same text
(and title), but pointing to different URLs (a practice which
some readers consider confusing).

(//a | //area)[let $a:=self::node() return
(//a | //area)[@title = $a/@title and
text() = $a/text() and @href != $a/@href] != ()]

Fig. 7: XQuery expression for links breaking WCAG
13.1

3. Acknowledgements
The work reported in this paper has been partially funded
by the projects INFOFLEX TIC2003-07208 and SIEMPRE
TIC2002-03635 of the Spanish Ministry of Science and Re-
search.

1. REFERENCES
[1] W3C Web Content Accessibility Guidelines 1.0

www.w3.org/TR/WCAG10

[2] W3C Techniques For Accessibility Evaluation And
Repair Tools W3C Working Draft, 26 April 2000
www.w3.org/TR/AERT

[3] W3C XML Path Language (XPath) Version 1.0 W3C
Recommendation 16 November 1999
www.w3.org/TR/xpath

[4] W3C XQuery 1.0: An XML Query Language W3C
Working Draft 29 October 2004
www.w3.org/TR/xquery

[5] W3C XHTML Basic W3C Recommendation 19
December 2000

www.w3.org/TR/xhtml-basic

1147

