
TJFast: Effective Processing of XML Twig Pattern Matching

Jiaheng Lu, Ting Chen and Tok Wang Ling
School of Computing National University of Singapore

3 Science Drive 2, Singapore 117543
{lujiahen,chent,lingtw}@comp.nus.edu.sg

ABSTRACT
Finding all the occurrences of a twig pattern in an XML
database is a core operation for efficient evaluation of XML
queries. A number of algorithms have been proposed to
process a twig query based on region encoding. In this pa-
per, based on a novel labeling scheme: extended Dewey, we
propose a novel and efficient holistic twig join algorithm,
namely TJFast. Compared to previous work, our algorithm
only needs to access the labels of leaf query nodes. We re-
port our experimental results to show that our algorithms
are superior to previous approaches in terms of the number
of elements scanned and query performance.

Categories and Subject Descriptors
H.2.4 [Database Management]: [Systems-query process-
ing]

General Terms
Algorithm, Performance

Keywords
labeling scheme, holistic twig join

1. INTRODUCTION
With the rapidly increasing popularity of XML for data

representation, there is a lot of interest in query processing
over data that conforms to a tree-structured data model.
Since the data objects in a variety of languages(e.g. XPath,
XQuery) are typically trees, twig (i.e. a small tree) pattern
matching is the central issue.

In this paper, motivated by the existing Dewey ID [4],
we propose a new powerful labeling scheme, called extended
Dewey ID (for short, extended Dewey). The unique feature
of this scheme is that, from the label of an element alone, we
can derive the names of all elements in the path from the root
to this element. For example, Figure 1 shows an XML docu-
ment with extended Dewey labels. Given the label “1.9.2.2”
of element text alone, we can derive that the path from the
root to text is “/bib/book/chapter/section/text”. An imme-
diate benefit of this feature is that, to evaluate a twig pat-
tern, we only need to access the labels of elements that satisfy

Copyright is held by the author/owner.
WWW 2005,May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

bib

"P.Buneman"
"D. Suciu" "Data"

"Intro"

"Audience"

book
1

book
2

author
1.1 1.4 1.7 1.8 1.9

author author title chapter

1.1.0

"S.Abiteboul"
1.4.0 1.7.0 1.8.0 1.9.1

title

1.9.1.0

section
1.9.2

1.9.2.1 1.9.2.2
title

1.9.2.1.0

text

1.9.2.2.2
keyword

author chaptertitle
2.32.22.1

2.1.0
"..."

2.2.0
"..."

2.3.1

title section
2.3.2

title section
2.3.2.32.3.2.1

title text
2.3.2.3.1 2.3.2.3.2

Figure 1: An XML tree with extended Dewey labels

the leaf node predicate in the query. Further, this feature en-
ables us to easily match a simple path pattern by string
matching. Take element “1.9.2.2” as an example again.
Since we see its path is “/bib/book/chapter/section/text”,
it is quite straightforward to determine whether this path
matches a path pattern (e.g. “//book/chapter”). As a re-
sult, the extended Dewey labeling scheme provides us an
extraordinary chance to develop a new efficient algorithm to
match a twig pattern.

Based on the extended Dewey, we present a new efficient
algorithm, namely TJFast(i.e. a Fast Twig Join algorithm).
Unlike previous algorithms TwigStack[1] and TwigStackList[2],
in order to answer a twig query. TJFast only access the la-
bels of query leaf nodes. Thus, TJFast significantly reduce
I/O cost compared to previous work.

2. EXTENDED DEWEY AND FST
The intuition of extended Dewey is to use module func-

tion to create a mapping from an integer to an element
name, such that given a sequence of integers, we can con-
vert it into the sequence of element names. In the extended
Dewey, we need to know a little additional schema infor-
mation, which we call a schema clue. In particular, given
any tag t in a document, the schema clue is all possible
(distinct) names of children of elements with name t. This
clue is easily derived from DTD, XML schema or statistic
data on the document. Let us use CT (t) = {t1, t2, · · · , tn}
to denote the schema clue of tag t. Suppose there is an
ordering for tags in CT (t), where the particular ordering
is not important. For example, consider the DTD in Fig-
ure 2; the tags of all possible children of book are author,
title and chapter. So CT (book) = {author, title, chapter}.
Using schema clue, we may easily create a mapping from
an integer to an element name (i.e. element tag). Suppose
CT (t) = {t1, t2, · · · , tn} , for any element ei with name ti,

1118

<!ELEMENT bib (book*)>

<!ELEMENT book (author+, title, chapter*)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT chapter (title, section*)>

<!ELEMENT section (title, (text |section) *)>

<!ELEMENT text (#PCDATA | bold | keyword | emph)*>

<!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>

<!ELEMENT emph (#PCDATA | bold | keyword | emph)*>

Figure 2: DTD for XML document in Fig 1

if ti 6= tn. we assign an integer xi to ei such that xi mod
n = i, otherwise, xi mod n = 0. Thus, according to the
value of xi, it is easy to derive its element name. For ex-
ample, CT (book) = {author, title, chapter}. Suppose ei is a
child element of book and xi = 8, then we see that the name
of ei is title, because xi mod 3 = 2.

Given the extended Dewey label of any element, we may
use a finite state transducer (FST) to convert this label into
the sequence of element names which reveals the whole path
from the root to this element.

Definition 1. (Finite State Transducer) Given schema
clues and an extended Dewey label, we can use a finite state
transducer (FST) to translate the label into a sequence of
element names. FST is a 5-tuple (I, S, i, δ, o), where
(i) the input set I = N ∪ {0}; (ii) the set of states S =
Σ∪{PCDATA}, where PCDATA is a state to denote text
value of an element; (iii) the initial state i is the tag of the
root in the document; (iv) the state transition function δ is
defined as follows. For ∀t ∈ Σ, if x = 0, δ(t, x) = PCDATA,
otherwise δ(t, x) = F (t, x). No other transition is accepted.
(v) the output value o is the current state name.

3. TWIG PATTERN MATCHING
It is straightforward to evaluate a query path pattern in

our approach. We only need to scan the elements whose
tags appear in leaf nodes of query. For each visited element,
we first use FST to convert its label into element names
along the path from the root to it, and then perform string-
matching against it. If the path from the root to this element
matches the desired path pattern, then we directly output
the matching answers. As a result, we evaluate the path
pattern efficiently by scanning the input list once and ensure
that each output solution is our desired final answer.

To answer a twig pattern,we propose a holistic twig join
algorithm, called TJFast. The main idea of TJFast is to first
output some solutions to individual root-leaf path patterns
and then merge them to compute the answers to the whole
query pattern. We call TJFast as a holistic approach. This
is because when we output solutions for one root-leaf path in
the first phase, the nodes in other paths are also taken into
account. Holistic twig join algorithms can effectively control
the size of intermediate results. The detail of the TJFast
algorithm has to be omitted here due to space limitation
but can be found in [3].

Theorem 3.1. Consider an XML database D and a twig
query q with only ancestor-descendant relationships in branch-
ing edges. The worst case I/O complexity of TJFast is linear
to the sum of the sizes of input and output lists.

4. EXPERIMENTAL EVALUATION
We implemented three XML twig join algorithms:TJFast,

TwigStack[1], TwigStackList[2] in JDK 1.4 using the file sys-
tem as a simple storage engine. All experiments were run on
a 1.7G Pentium IV processor with 768MB of main memory
and 2GB quota of disk space, running windows XP system.
We use the random data sets (with 3 millions nodes) con-
sisting of five labels, namely a,b,...,e. The node labels in the
data were uniformly distributed. We issue four twig queries:
a[.//b]//c, a[./b]/c, a[./b/c]/d/e, a[.//b/c]//d/e, which have
different structures and the combinations of parent-child
and ancestor -descendant relationships.

Figure 3(a) shows the number of elements scanned by
three algorithms and Figure 3(b) shows the execution time.
Our first conclusion is that TJFast scan much less elements
than TwigStack and TwigStackList. For example, in query
Q3,Q4, TwigStack/TwigStackList read 3 millions elements,
but TJFast/TwigStackList only read 1.2 millions elements.
Our second conclusion is that TJFast outperforms TwigStack
and TwigStackList for all ten queries. TwigStack/TwigStackList
is comparable to TJFast only when the number of elements
for internal nodes is very small.

0

0.5

1

1.5

2

2.5

3

3.5

Q1 Q2 Q3 Q4

N
u
m
b
e
r

o
f

e
l
e
m
e
n
t
s

r
e
a
d
(
m
i
n
l
l
i
o
n
)

TwigStack. TwigStackList..TJFast

0

5

10

15

20

25

30

35

Q1 Q2 Q3 Q4

E
x
e
c
u
t
i
o
n

t
i
m
e
(
s
e
c
o
n
d
)

TwigStack. TwigStackList..TJFast

(a) number of elements read (b) Execution time

Figure 3: Performance measurements for TJ-
Fast,TwigStack and TwigStackList

5. CONCLUSION AND FUTURE WORK
XML twig pattern matching is a key issue for XML query

processing. In this paper, we have proposed TJFast as an
efficient algorithm to address this problem based on a novel
labeling scheme: extended Dewey. Through this, not only
do we reduce the disk access by only reading the labels of
leaf nodes in query pattern, but we also improve the per-
formance of twig pattern matching. We are currently re-
searching how to use B trees, along with TJFast, to achieve
sub-linear performance when the selective of query is high.

6. REFERENCES
[1] N. Bruno, D. Srivastava, and N. Koudas. Holistic twig

joins: optimal XML pattern matching. In SIGMOD
Conference, pages 310–321, 2002.

[2] J. Lu, T. Chen, and T. W. Ling. Efficient processing of
xml twig patterns with parent child edges: a
look-ahead approach. In CIKM, pages 533–542, 2004.

[3] J. Lu, T. Chen, and T. W. Ling. TJFast: Efficient
processing of XML twig pattern matching. Technical
report, National university of Singapore, 2004.

[4] I. Tatarinov et al. Storing and querying ordered XML
using a relational database system. In SIGMOD, pages
204–215, 2002.

1119

