
Constructing Extensible XQuery Mappings
Gang Qian

Dept. of Computer Science and Engineering
Southeast University, Nanjing 210096, China

qiangang@seu.edu.cn

Yisheng Dong
Dept. of Computer Science and Engineering
Southeast University, Nanjing 210096, China

ysdong@seu.edu.cn

ABSTRACT
Constructing and maintaining semantic mappings are necessary
but troublesome in data sharing systems. While most current work
focuses on seeking automated techniques to solve this problem,
this paper proposes a combination model for constructing exten-
sible mappings between XML schemas. In our model, complex
global mappings are constructed by first defining simple atomic
mappings for each target schema element, and then combining
them using a few basic operators. At the same time, we provide
automated support for constructing such combined mappings.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages – Query languages;
H.2.5 [Database Management]: Heterogeneous Databases.

General Terms
Management, Languages

Keywords
XQuery, Mapping, Extensibility, Automated support.

1. INTRODUCTION
Schema mapping is one of the underlying components of data
sharing systems. As is known, constructing and maintaining such
mappings are labor-intensive and error-prone processes. We limit
our attention to the XML model and the mappings expressed in
XQuery (called XQuery mapping), though our discussion is also
applicable to other data models.

While recent research on schema matching [4], mapping
discovery [2, 3] and mapping adaptation [5] has made exciting
progress towards semi-automating these processes, the mapping
self is still represented as naive expressions, e.g., XQuery clauses
in our context, which is troublesome for the user (administrator)
to deal with. For example, in dynamic environment like the Web,
as schemas evolve, the mappings may need to be frequently
modified and maintained manually. Additionally, as complicated
large schemas become prevalent on the Web, it may be more
feasible to start with some simple local mappings, and then glue
them together to formulate complex ones. Hence we believe that a
suitable mapping model would be able to alleviate the burden on
the user, for cases out of the capabilities of the above techniques.
In fact, this is usual in practice.

We propose a combination model for constructing extensible
XQuery mappings between XML schemas. In our model, a global

mapping is composed of a set of simple atomic mappings, which
are combined by a few of basic operators. With these operators
(e.g., Nest, Join or Merge), two mappings (say M1 and M2) are
connected to a combined one, say M1, 2. Here extensibility means
that the resulting mapping M1, 2 can be combined again with
others, possibly using another combination operator, and it is also
possible to reset the operator in M1, 2, or recover M1 and M2 from
it. Consequently, the complex global schema mappings can be
incrementally constructed, starting with the simple ones, and
continuously applying the combination operators. To maintain
them, it only needs to adjust the corresponding parts, e.g., the
atomic mappings affected by schema evolving, while other parts
are reused. At the same time, based on the previous works on
schema matching and mapping discovery, we present automated
support for constructing such combined mappings.

2. MAPPING COMBINATION
Atomic mapping has the following general form, where SP is a
simple path with no branching predicates, and SP1() denotes that
SP1 must start at a schema root, while SPk($vk-1) indicates that in
the FOR clause SPk is relative to variable $vk-1.

for $v1 in SP1(), ……, $vn in SPn($vn-1)
where φ($v1, ……, $vi)
return () | SPn+1($vj) | <e></e>

We refer to $vi as the F-variable of the atomic mapping, and
$vn as its primary F-variable (PFV). In the above formulation,
the optional WHERE clause defines a filter φ, and the RETURN
clause indicates that the atomic mapping may be empty, copy, or
construct type, which respectively returns empty sequence, copies
of XML fragment or new constructed elements, e.g., instances of
e. Samples of atomic mappings are given below.

Mbook(): for $n in doc(“S1”)//novel
return <book></book>

Mtitle: for $t in doc(“S1”)//novel/title
return $t

Compared to global mapping, atomic mapping is easier to be
formulated, since each atomic mapping is defined separately, and
the context of the target schema element is ignored. Then, with
the combination operators given below, the separately defined
atomic mappings are connected and a combined one is obtained,
where the source elements are semantically related (by connection
condition), and the returned instances are structurally nested.

Let M1 and M2 be atomic mappings, and M1 be construct type.
Figure 1 shows the combination rules of the Nest, Join and Merge
operators, which respectively connect M1 and M2, and generate
the combined mapping M1, 2. Here exp corresponds to the return
expression of M2, and ψ is an expression w.r.t. the F-variables of
M1 and M2, which represents the connection condition of relating
the atomic mappings. Semantically, the Nest operator captures the
outer-join relationship between M1 and M2. For each binding tuple

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

1116

of M1, the resulting combined mapping M1, 2 will returns a new
instance of e, whether ψ holds or not. In the combination rule of
the Join operator, σ is an expression w.r.t. the variable $v. For
example, σ may be count($v)>0. In this case, the Join operator
represents a full join relationship between M1 and M2. Lastly, the
Merge operator has an analogy with the product relationship.

Note that for the Nest and the Join operator, the PFV of M1
forms the PFV of M1, 2, while for the Merge operator, the PFVs of
M1, 2 are the union of the ones of M1 and M2. Recursively, the
combined mapping M1, 2 may be combined with other mappings
(atomic or combined). We omit the details from the paper and
simply give the following example for illustration.
for in doc(“S1”)//novel $n
return <book>

for n1 in doc(“S1”)//novel, $t in $n1/title $
where $n=$n1
return $t
for $a in doc(“S1”)//authors/author
where $n/aid=$a/id
return <author></author>
</book>

The above combined mapping is generated by applying twice
the Nest operator, first combining Mbook() and Mtitle with the
connection condition $n=$n1, second combining the resulting
mapping of the first step with Mauthor(), another atomic mapping
as highlighted above.

3. CONSTRUCTION
Based on the works on schema matching and mapping discovery,
we also provide automated support for constructing the combined
mapping. Let e(e1, …, en) be a target schema element e nesting ei
(1 i n). Our task is to generate the combined mapping for
e(e1, …, en), which is reduced to build the atomic mappings Me
and Mei, choose the combination operator of and discover the
conditions of connecting Me and Mei.

≤ ≤

Atomic mapping may be built in terms of the results of schema
matching, which produces semantic correspondences (matches)
between elements of schemas. For example, the atomic mapping
Mbook() in Section 2 may be derived from the match between the
elements book and novel. For our mapping model, we need not
to require that the produced matches should be desired, since the
combined mapping is extensible and maintainable.

The combination operator may be determined by the
cardinality constraints of ei. For example, if ei is optional and

multiple, the Nest operator may be applicable; if ei is mandatory
and unique, then the Merge operator may be applicable. Generally,
the feasible operators are determined also by factors such as the
F-variables of Mei, and the connection condition ψ.

for $v1, 1 in SP1, 1(), ……, $v1, n in SP1, n($v1, n-1)
where φ1
return <e>

for $v2, 1 in SP2, 1(), ……, $v2, m in SP2, m($v2, m-1)
where φ2 and ψ
return exp </e> Connection condition ψ can be heuristically discovered from

the semantic relationships between the source schema elements.
As presented in [2, 3, 5], such relationships are captured by the
structural, user and logical associations, which respectively
describe a set of associated schema elements. Let a be the source
schema element specifying the PFV of Me, and ai be the element
specifying the PFV of Mei. If a and ai are in a structural
association, then ψ may be formulated in terms of the common
path of the elements a and ai. Otherwise, if they are in a user
association, then ψ may be formulated with the path assigned by
the user. Lastly, if they are neither in a structural nor in a user, but
in a logical association, then ψ may be formulated in terms of the
referential path between the schema elements a and ai. For
example, the condition, $n/aid=$a/id, of connecting Mbook()
and Mauthor() is derived from the logical relationship between the
elements novel and author (see Section 2). Note that the
discovered conditions may be multiple, and the user is expected to
make right decision in the process.

for $v1, 1 in SP1, 1(), ……, $v1, n in SP1, n($v1, n-1)
let $v:= for $v2, 1 in SP2, 1(), ……, $v2, m in SP2, m($v2, m-1)

where φ2 and ψ
return exp

where φ1 and σ
return <e>{$v}</e>
for $v1, 1 in SP1, 1(), ……, $v1, n in SP1, n($v1, n-1)
for $v2, 1 in SP2, 1(), ……, $v2, m in SP2, m($v2, m-1)
where φ1 and φ2 and ψ
return <e> exp </e>

Figure 1. The Nest, Join and Merge operators

4. RELATED WORK
Schemas and semantic relationships between schema elements are
mainly focused on by current work on schema matching [4] and
mapping discovery [2, 3], and which mappings are affected by
schema evolution is the interest of mapping adaptation [5]. In
contrast, our work gives more attention to mapping self and its
constitution. We consider mappings as first class of citizens, and
provide combination operators to connect them. The same idea is
also proposed in [1] to solve the problem of management of meta
data. Yet the subjects there are matches between schemas. What
we dealt with in this paper are mappings, which are semantically
richer and have more complex formulation.

5. CONCLUSION
In this paper, we have presented the combination model for
constructing extensible mappings between XML schemas. From
the simple atomic mappings, a complex global mapping is easy to
be constructed step by step by applying the combination operators.
Additionally, the constructed combined mappings are maintain-
able and adapt well to dynamic environment like the Web.

6. REFERENCES
[1] P. A. Bernstein. Applying Model Management to Classical

Meta Data Problems. In Proc. of CIDR, Pages 209-220, 2003.
[2] R. Miller, L. Haas, and M. Hernández. Schema Mapping as

Query Discovery. In Proc. of VLDB, Pages 77–88, 2000.
[3] L. Popa, Y. Velegrakis, R Miller, M. A. Hernandez, and R.

Fagin. Translating Web Data. In Proc. of VLDB, Pages 598–
609, 2002.

[4] E. Rahm and P.A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, 10(4): 334–
350, 2001.

[5] Y. Velegrakis, R. J. Miller, and L. Popa. Preserving mapping
consistency under schema changes. The VLDB Journal,
13(3): 274-293, 2004

1117

	INTRODUCTION
	MAPPING COMBINATION
	CONSTRUCTION
	RELATED WORK
	CONCLUSION
	REFERENCES

