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1. INTRODUCTION
We study the representation of space over the Web. Web’s

spatiality is described by (hyper)links, and thus the web
space is given by a set of pages and links between them. The
complexity of this structure derives not only from the quan-
tity, but also from the extreme dynamics that it presents.
This structure is greatly influenced by its dynamics; new
documents appear together with their links and disappear,
cutting off all the corresponding arcs in the graph. We intro-
duce and study some topologies over web, providing a suit-
able formal framework to express web connectivity, density,
how the whole web space can be generated by a certain sub-
set of pages, and web separation. Following previous papers
devoted to time [1] and space [3], we develop a high-level de-
scription of spatio-temporal relations to catch the dynamics
of the Web documents and the links between them.

2. SPACE MODEL OF THE WEB
The web does not carry the notion of distance in the usual

way; a space model of the Web should not be based on the
common notion of Euclidean space.

Let us denote by W the universal set of the Web, as
the collection of all pages available on-line, referred through
their URIs. We define the binary relation called points-to,
↪→: W −→ W, by a ↪→ b if document a contains a link to
document b. We also define the inverse relation is-pointed-
by, ←↩: W −→ W, ←↩ = ↪→−1. We do not consider internal
anchors from a to a as links.

General topology defines and studies some useful prop-
erties of spaces and maps, such as connectedness, separa-
tion, compactness and continuity. The topologies provide
structures that allow to formalize these properties. A space
X with a topology τ is called a topological space, and it
is denoted by (X, τ). These spaces can be analyzed and
described by the topological notions as: neighborhood, clo-
sure, open set, closed set, connected set, etc. Over the same
space we can define more topologies, and generally we chose
the topologies corresponding to the requirements imposed
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by the modeling process. A topology on the space W is
a family τ of subsets of W such that: 1. ∅,W ∈ τ ; 2.
∀{Di}i∈I ⊂ τ , ∪i∈IDi ∈ τ ; 3. ∀D1, D2 ∈ τ , D1 ∩D2 ∈ τ .
The sets of a topology τ are called τ -open sets [5]. A set
A ⊂ W is τ -closed iff its complement W \A is τ -open.

Thinking in terms of Web navigation, we define a sailing
trip over the Web documents. Let a, b ∈ W. A sailing trip
from document a to document b is a function f : {1, ..., n} →
W, where n ≥ 2 and a = f(1) ↪→ f(2) ↪→ . . . ↪→ f(n) = b.
In this case n is called the length of the sailing trip, and it
is denoted by λ(f). The image of f is denoted by Im(f).
We can note that λ(f) ≥ card(Im(f)). Let Lab be the set
of all sailing trips from document a to document b. Then
Lab is Lab if a 6= b, and Laa is Laa ∪ {∅}. Since we do not
consider internal anchors from a to a as links, we have an
empty sailing trip ∅ in Laa (λ(∅) = 0).

Let a, b ∈ W. We say that a is connected with b if Lab 6= ∅,
and this is denoted by a  b. We say that a is biconnected
with b if a is connected with b and b is connected with a;
this is denoted by a! b.

Proposition 1. The relation  is a quasi-order on W.
The relation ! is an equivalence on W.

Let a ∈ W, and A ⊆ W. We have the following notations:
Outa = {x ∈ W | a x}, Ina = {x ∈ W | x a},
Neta = Ina ∪Outa = {x ∈ W | a x or x a},
Ra=Ina ∩Outa={x ∈ W | a! x} – the center of Neta,
OutA = ∪a∈AOuta, InA = ∪a∈AIna,
NetA = InA ∪OutA = ∪a∈ANeta, RA = ∪a∈ARa,
Oa = {(x, y) ∈ W ×W | a y ⇒ a x},
Ia = {(x, y) ∈ W ×W | y  a⇒ x a},
4={(x, x) | x ∈ W}.
Proposition 2. Let a, b ∈ W. Then we have
1. b ∈ Ina iff a ∈ Outb;
2. if b ∈ Ina, then Inb ⊆ Ina, and Outa ⊆ Outb;
3. if b ∈ Outa, then Outb ⊆ Outa, and Ina ⊆ Inb;
4. if b ∈ Ra, then Inb = Ina, Outa = Outb, Netb = Neta;
5. Ia = (W × (W\Ina)) ∪ (Ina ×W);
6. (W ×W)\Ia = (W\Ina)× Ina;
7. Oa = (W × (W\Outa)) ∪ (Outa ×W);
8. (W ×W)\Oa = (W\Outa)×Outa;
9. 4 ⊂ Oa ∩ Ia;
10. Oa and Ia are transitive relations.

Let U ⊂ W ×W, and x ∈ W.
We consider the projection U [x] = {y ∈ W | (x, y) ∈ U}.

Proposition 3.
1. x y ⇒ Ia [y] ⊆ Ia [x], and Oa [x] ⊆ Oa [y], ∀a ∈ W.
2. x y iff y ∈ Iy [x] iff x ∈ Ox [y].
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We denote by �i= ∩a∈WIa, and �o= ∩a∈WOa. It is easy
to prove that �i and �o are quasi-orders on W.

Using these quasi-orders we can define some topologies on
W. A topology can be defined directly by means of its open
sets, or it can be defined by means of a neighborhood op-
erator. A neighborhood operator is a function V : W →
P(P(W)) such that V(x) holds the following, for all x ∈ W:

1. if V ∈ V(x), then x ∈ V ;
2. if V1, V2 ∈ V(x), then V1 ∩ V2 ∈ V(x);
3. if V ∈ V(x) and V ⊂ U , then U ∈ V(x);
4. ∀V ∈ V(x), ∃W ∈ V(x) such that V ∈ V(y), ∀y ∈W .

If τ is a topology on W, then Vτ : W → P(P(W)) defined
by Vτ (x) = {V ⊂ W | ∃D ∈ τ such that x ∈ D ⊂ V }
is a neighborhood operator on W. If V is a neighborhood
operator on W, then τV = {D ⊂ W | D 6= ∅ and D ∈
V(x),∀x ∈ D} ∪ {∅} is a topology on W. The notions of
topology and neighborhood operator are equivalent because
τVτ = τ and VτV = V [2, 5].

Let Vi : W → P(P(W)), Vi(x) = {V ⊂ W |�i [x] ⊆ V },
and Vo :W → P(P(W)), Vo(x) = {V ⊂ W |�o [x] ⊆ V }.

Proposition 4. Vi and Vo are neighborhood operators
defining topologies over W.

Let τi = {D ⊂ W | D 6= ∅ and D ∈ Vi(x),∀x ∈ D} ∪ {∅}
be the topology generated by Vi, and τo = {D ⊂ W | D 6=
∅ and D ∈ Vo(x),∀x ∈ D} ∪ {∅} be the topology generated
by Vo. We call τi the in-topology, and τo the out-topology.

If A ⊆ W, then intiA, cliA, FriA are respectively the
interior, the closure, and the frontier of A with respect to
τi, and intoA, cloA, FroA are respectively the interior, the
closure and the frontier of A with respect to τo.

Theorem 1. Let x, y ∈ W.
1. If x y, then Vi (x) ⊆ Vi (y) and Vo (y) ⊆ Vi (x).
2. Ina = cli {a}, and Outa = clo {a}, ∀a ∈ W.
3. x y iff x �i y iff y �o x (�i and �o are dual).

Consequently, �i [x] = Outx, and �o [x] = Inx, ∀x ∈ W.
Hence �i [x] is a τo-closed set, and �o [x] is a τi-closed set.
Since cli{a} = Ina and clo{a} = Outa, ∀a ∈ W, it follows
that, ∀A ⊂ W, cliA = InA, intiA = W \ InW\A, FriA =
InA∩InW\A, and also, cloA = OutA, intoA =W\OutW\A,
FroA = OutA ∩ OutW\A. Since cliA = A ∪ FriA, we have
InA = A ∪ (InA ∩ InW\A). We have also cloA = OutA =
A ∪ (OutA ∩ OutW\A). From these remarks we obtain the
following characterizations of the closed/open sets.

Proposition 5. Let A ⊂ W.
1. A is τi-closed if only if InA ⊆ A.
2. A is τi-open if only if A ∩ InW\A = ∅.
3. A is τo -closed if only if OutA ⊆ A.
4. A is τo-open if only if A ∩OutW\A = ∅.

Based on these topological notions, we present some of our
results regarding the connectivity, density and separation of
the Web.

Since {a} is a τi-connected set, it results that cli {a} is a
τi-connected set. Therefore Ina is τi-connected. In a similar
way, since {a} is a τo-connected set, it results that clo {a}
is a τo-connected set, and Outa is τo-connected. Moreover,
considering A ⊂ W, if A is a τi-connected set, then InA is a
τi-connected set, and if A is a τo-connected set, then OutA

is a τo-connected set.

Theorem 2. If f is a sailing trip from a to b, then Im(f)
is a τi-connected set, and also a τo-connected set.

A web page a ∈ W is called an α-point if Ina ⊆ Outa. A
web page a ∈ W is called an ω-point if Outa ⊆ Ina. It is
obvious that a is an α-point iff Neta = Outa, and a ∈ W
is an ω-point iff Neta = Ina. We denote by Γ the set of α-
points, and by Ω the set of all ω-points. Considering a ∈ W
and B ⊆ W, we call B as an in-branch of a if there are
b ∈ Γ, and f ∈ Lba such that B = Im (f). In a similar way,
B is an out-branch of a if there are b ∈ Ω and f ∈ Lab such
that B = Im (f). Finally, B is a branch of a if B is either
an in-branch, or an out-branch of a. Every branch of a is a
τi-connected set, as well as a τo-connected set. Let Bi,a be
the set of all in-branches of a, Bo,a the set of all out-branches
of a, and Ba = Bi,a ∪ Bo,a.

Since for all a ∈ W, Ina = ∪B∈Bi,aB, Outa = ∪B∈Bo,aB,
and Neta = ∪B∈BaB, then Ina, Outa and Neta are τi, τo-
connected sets.

The following result shows that α-points, as well as the
ω-points can generate the whole web space with respect to
our topologies.

Theorem 3. W is generated by Γ or by Ω:
1. Γ is a τo-dense set, i.e. W = clo (Γ) = OutΓ.
2. Ω is a τi-dense set, i.e., W = cli (Ω) = InΩ.

According to some previous results, we have �i 6= 4 and
�o 6= 4. Therefore (W, τi) and (W, τo) are not Hausdorff
separate, i.e., they are not T2 separate (see [5]). Since gen-
erally single point subsets ofW are not τi (or τo) closed, the
spaces (W, τi) and (W, τo) are not T1 separate.
We define di (x, y) = card {a ∈ W | (x, y) /∈ Ia}, and do (x, y)
= card {a ∈ W | (x, y) /∈ Oa}. Let x ∈ W and φi,x : W →
[0, 1], defined by φi,x (y) = min {1, di (x, y)}, ∀y ∈ W. Be-
cause di is τi-uniformly continuous, φi,x is τi-continuous.
Then we have φ−1

i,x({0}) = Outx and φ−1
i,x({1}) =W \Outx.

Therefore Outx is a τi-clopen set, i.e. it is an open and
closed set simultaneously. Similar, we define the function
φo,x : W → [0, 1], defined by φo,x (y) = min {1, do (x, y)},
∀y ∈ W. Then φ−1

o,x({0}) = Inx, φ−1
o,x({1}) = W \ Inx,

and Inx is a τo-clopen set. Moreover, ∀A ⊂ W, InA is a
τo-clopen set and OutA is a τi-clopen set.

Theorem 4. Let F  W and x /∈ F .
1. If F is a τi-closed set, then F ⊆ φ−1

i,x({1}).
2. If F is a τo-closed set, then F ⊆ φ−1

o,x({1}).

Corollary 1. Let A ⊆ W.
1. If x /∈ InA, there exists b ∈ W such that x ∈ Inb, and

Inb ∩ InA = ∅.
2. If x /∈ OutA, then there exists b ∈ W such that x ∈

Outb, and Outb ∩OutA = ∅.
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