
����������	
��
	�������	���	
��	����	
�������������		

��	
��	���������	

�����������	
��
���
����������
�����
�����������
���
��

�����	
��	�����������������������

���� ��!"�#�$��%�����

&'!�!�!�!���'#'�

�	�	
�(
� �)����
�������

%)�������*���

���
����������
�����
�����������
���
��

�����	
��	�����������������������

���� ��!"�#�$��%�����

&'!�!�!�!��+#�!�

�	 ��(���)����
�������

�

ABSTRACT
This paper proposes a method of generating XSLT scripts, which
support the fast transformation of XML documents, given one-to-
one matching relationships between leaf nodes of XML schemas.
The proposed method enhances the transformation speed of
generated XSLT scripts through reducing template calls.
Experimental results show that the proposed method has generated
XSLT scripts that support the faster transformation of XML
documents, compared with previous works.

Categories and Subject Descriptors
I.7 [Computing Methodologies]: Document and Text Processing

General Terms: Documentation, Languages

Keywords: Document transformation, XML, XSLT

1. Introduction
To share and exchange XML documents that conform to different
schemas, finding semantic relationships between two schemas and
transforming XML documents based on the relationships are
needed. Moreover, since an XSLT script is repeatedly applied to a
large volume of XML documents, its transformation speed is im-
portant. This paper proposes a method of generating XSLT scripts,
which support the fast transformation of XML documents, given
one-to-one matching relationships [1] between leaf nodes of
source and target schemas.

2. Related Work
There has been some related works [2, 3, 4, 5] that generate XSLT
scripts to support the transformation of XML documents. Previous
works translate each matching relationship between nodes of
XML schemas into a template in an XSLT script. These scripts are
intuitive but have the defect that the transformation speed slows
down by frequent template calls. Moreover, since some previous
works [3, 5] only consider one-to-one matching relation-ships
between internal nodes of schemas, the information of non-
selected nodes may be lost. Previous works lack the appropriate
selection of XSLT commands. To support the fast transformation
of XML documents, the proposed method uses fewer templates
than previous works and selects effective XSLT commands.
3. Document Model
Since there is a hierarchical order among elements in XML docu-
ments, a proposed document model is based on an ordered tree

that has a root node. Specifically, each element constructs a node
of a tree structure. Nodes in the proposed document model are
divided into three classes: A general node that represents an ele-
ment or an attribute, a content model node that represents a se-
quence or choice content model, and a cardinality node that repre-
sents the frequency of a node. A recursive is represented as a ref-
erence from a leaf node to its corresponding ancestor node.

4. XSLT Scripts Generation Algorithm
The proposed algorithm consists of two steps : cardinality node
matching and generating XSLT scripts as shown in <Figure 1>.

Figure 1. The XSLT script generation process.

4.1 Cardinality Node Matching
The proposed method creates internal node matchings through
comparing the corresponding paths. Two paths, Path(x) and
Path(y), are called corresponding where there is a matching rela-
tionship between two leaf nodes x and y. For a leaf node x,
Path(x) is a sequence of nodes from the parent node of x to the
root node.

Cardinality and choice operators make it possible to create vir-
tually any number of XML documents with different structures. In
order to support repeating structures which is created by cardinal-
ity nodes, matching relationships between cardinality nodes have
to be computed by considering capacities of source and target
schemas. On the other hand, in case of a choice operator, appro-
priate XSLT scripts can be generated from given leaf node match-
ing relationships and structural information of a schema without
having to compute matchings between choice operators.

 For each given leaf node matching relationship, the proposed
method extracts paths from the root node to leaf nodes, and then
finds matchings between labels of the internal nodes on the two
paths. We assume that two schemas belong to the same domain

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

1098

and the root nodes are associated with each other. The lexical
similarity for label matching is computed by Equation (1).

2×∑TokenSimilarity(Nsi, Ntj)
Lexical Similarity(Ns, Nt) =

|Ns| + |Nt|
(1)

 Nsi: a token of a source label, 1≤i≤n, Ntj: a token of a target label, 1≤j≤m

Through the label matching, each path is divided into sub-pahts.
For a path, a sub-path is defined as a consecutive list of nodes that
do not have matching relationships. For each pair of sub-paths
computed after the label matching, a candidate matching set is
extracted. A candidate matching set includes only cardinality
nodes in the corresponding sub-path. Computing a candidate
matching set from the sub-path improves a precision of internal
node matching and saves the computing power.
Between nodes of the given two candidate matching sets, two
nodes that have a maximal similarity are selected and a matching
relationship between them is created based on Equation (2).

|Matchings between TAN(ns) and
TAN(nt)| Structural Similarity(ns, nt)

=
(|leaf nodes of ns + leaf nodes of nt|)/2

(2)

For an internal node n, TAN(n) is the set of associated leaf
nodes of the subtree starting from n.

Once a matching relation ship with the maximal similarity is se-
lected, the candidate matching set is divided into two candidate
matching sets and the procedure is applied recursively.

4.2 XSLT Script Generation
In this step, XSLT scripts are generated from the cardinality node
matching relationships, which were computed in the previous step.

 First, the proposed method generates a template for the root
node of a source DTD tree, and a target DTD tree is traversed in
depth-first order and the corresponding part of an XSLT script for
each node type is generated. Nodes are divided into four types: A
choice operator node, a cardinality node and a leaf node.

In case of a choice operator node, only one of its child nodes
can appear in a document. For a child node nt, if a source leaf
node, which is associated with any element of TAN(nt), appears in
a source document, node nt can appear in a target document.
These conditions are represented in an XSLT script by using the
‘xsl:choose’ and ‘xsl:when’.

Cardinality nodes are divided into two types: the ? node and
others. In case of a ? node, its child nodes can appear in a target
document if a source document contains at least one child node of
a cardinality node that is associated with the ? node. This condi-
tion is represented in an XSLT script by using the ‘xsl:if’. For
other types of cardinality nodes, the proposed method uses the
'xsl:for-each' element of XSLT. If a target cardinality node is as-
sociated with more than one source cardinality node, the proposed
method generate XSLT script code which select the node with
more repeating child node in a source document. Through this
code, all children of the matched source cardinality nodes are
copied into a target document as many as the repeating count of
chosen node. In this process, implicit information loss which may
occur in previous works can be reduced.

In case of a leaf node, text data of each leaf node is copied by
the ‘xsl:value-of’.

5. Experimental Results
To evaluate the proposed method, we experimented with two
DTDs which were used in the work of Su et al. (test data 1) and
Kuikka et al. (test data 2). The transformation speed of the XSLT
scripts generated by the proposed method and the previous meth-

ods are measured while varying the size of XML documents. Par-
ticularly, experiments have been performed by using three repre-
sentative XSLT processors, Xalan-Java 2.6.0, Saxon-B 8.1.1, and
XSLTCommand. Experimental results with test data 1 on XSLT-
Command is shown in <Figure 2>.

In the experimental results for test data 1 and 2, the XSLT script
generated by the proposed method shows the fastest transforma-
tion speed. Average improvement rate of transformation speed was
20% over previous works.

Also, in additional experiments for effectiveness of XSLT
commands, it is found that using a descendant axis in an XPTH,
‘<xsl:copy-of>’, or <xsl:element> slows down overall transforma-
tion speed of generated XSLT scripts. In the proposed method, the
improvement rate of transformation speed by using effective
XSLT commands was about 8%.

Figure 2. Result for test data 1 on XSLTCommand.

This paper proposed the method of generating XSLT script,
which supports the fast transformation of XML documents. How-
ever, the proposed method assumes that one-to-one matching rela-
tionships between leaf nodes. In general, many-to-one or one-to-
many relationships that need more complex operations such as
merge or split can exist. In the future, we study a method that sup-
ports those matching relationships.

6. Acknowledgments
This work was supported by the Korea Research Foundation Grant
(KRF-2004-041-D00613).

7. References
[1] Jun-Seung Lee and Kyong-Ho Lee, "XML Schema Matching

Based on Incremental Ontology Update," Lecture Notes in
Computer Scien-ce, Vol. 3306, pp. 608-618, 2004.

[2] Tadeusz Pankowski, "A high-level Language for Specifying
XML Data Transformations," Conf. Advances in Databases
and information Systems, pp. 22-25, 2004.

[3] Eila Kuikka, Paula Leinonen, and Martti Penttonen, "To-
wards Automating of Document Structure Transformations,"
Proc. ACM Symposium Document Engineering, pp. 103-
110. 2002.

[4] Xuerong Tang and Frank Wm. Tompa, "Specifying Trans-
formations for Structured Documents," Proc. Int'l Workshop
the Web and Databases, pp. 67-72, 2001.

[5] Hong Su, Harumi Kuno, and Elke A Rundensteiner, “Auto-
mating The Translation of XML Documents, “Proc. Int’l
Workshop Web Information and Data Management, pp. 68-
75, 2001.

1099

