
Composite Event Queries for Reactivity on the Web

James Bailey
Dept. of Computer Science

University of Melbourne
Victoria, 3010

Australia

jbailey@cs.mu.oz.au

François Bry
Institute for Informatics
University of Munich

Oettingenstr. 67
D-80538 Munich

Germany

francois.bry@ifi.lmu.de

Paula-Lavinia Pătrânjan
Institute for Informatics
University of Munich

Oettingenstr. 67
D-80538 Munich

Germany

patranja@pms.ifi.lmu.de

ABSTRACT
Reactivity on the Web is an emerging issue. The capability
to automatically react to events (such as updates to Web
resources) is essential for both Web services and Semantic
Web systems. Such systems need to have the capability to
detect and react to complex, real life situations. This pre-
sentation gives flavours of the high-level language XChange,
for programming reactive behaviour on the Web.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages—Language
Constructs and Features

Keywords
Web, reactive languages, event-condition-action rules, com-
posite events

1. INTRODUCTION
Reactivity on the Web is gaining importance and is recog-

nised as a solution for many everyday life problems. For
example, a Web service provided by an airline could report
delays on departures or arrivals, and flight cancellations. A
Web-based personalised organiser might be conceived so as
to automatically react to (possibly combinations of) reports
which affect its owner. Such reports can be sent from differ-
ent Web services (like a weather forecast service). A delayed
arrival might cause either an email to be sent to some other
person or the cancellation of a hotel reservation. Reactive
languages formerly developed for the Web support simple
update operations on XML documents, i.e. there is no sup-
port for specifying and executing (two or more) updates in
a desired order and in an all-or-nothing manner. Moreover,
these languages have the capability to react only to single
event instances and do not provide constructs for querying
for complex combinations of event instances.

The issue of reacting to so-called complex events, i.e. (pos-
sibly time-related) combinations of event instances, has re-

0This research has been funded by the European Commis-
sion and by the Swiss Federal Office for Education and Sci-
ence within the 6th Framework Programme project REW-
ERSE number 506779 (cf. http://rewerse.net).

Copyright is held by the author/owner.
WWW 2005, May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

ceived considerable attention in the field of active databases
(cf. e.g. [3]). Thus, useful concepts can be “borrowed” from
active databases when investigating reactivity on the Web.
However, differences between (generally centralised) active
databases and the Web, where a central clock and a cen-
tral management are missing, necessitate new approaches.
In particular, complex events reflecting a user-centered (and
not a system-centered) view are needed for the Web. One
such approach is proposed by the language XChange [1] and
is introduced in this presentation. XChange builds upon the
Web query language Xcerpt [2] and provides constructs for
detecting complex (or composite) events on the Web.

2. EVENTS AND EVENT QUERIES FOR
REACTIVITY ON THE WEB

2.1 Atomic and Composite Events
Informally, an atomic event is a happening (e.g. an up-

date of a possibly remote Web resource) to which each Web
site (through a reactive program) may decide to react in a
particular way or not to react to at all. XChange distin-
guishes between two kinds of atomic events: explicit events
and implicit events. Explicit events are explicitly raised by
a user or by a (predefined) XChange program. They are
raised at a Web site and sent internally or to other Web sites
through event messages. Implicit events are local events not
expressed through event messages (e.g. local updates of data
or system clock events). Events are transmitted from one
Web site to another through event messages. Thus, an event
sent from one Web site to another is necessarily explicit.

Composite events are defined in XChange through com-
posite event queries (see Section 3) – they are answers to
composite event queries. This is a novel way of defining com-
posite events, but the authors consider it the only intuitive
one.

2.2 Event Query vs. Web Query
Volatile vs. Persistent Data. An important distinc-

tion is made between persistent data (data of Web resources)
and volatile data (events). To query persistent data, stan-
dard queries (like Xcerpt queries [2]) are used. To query
volatile data, event queries are used. Standard and event
queries can be very similar. However, event queries are more
likely to refer to time or event sequences.

Incremental Aspects. Event queries need to be eval-
uated in an incremental manner, as data (events) that are

1082



queried are received in a stream-like manner and are not
persistent.

2.3 Metaphor: Speech vs. Written Text
The metaphor of XChange for reactivity on the Web is

that of speech for volatile data and written text for persistent
data. Speech cannot be modified. If one has communicated
some information in this way one can correct, complete, or
invalidate what one has told – through further speech. In
contrast, written text can be updated in the usual sense.
Likewise, volatile data (events) is not updatable but per-
sistent data (Web content) is updatable. To inform about,
correct, or invalidate former volatile data, new event mes-
sages (see below) are communicated between Web sites

2.4 Communication of Events
Event Messages. Event messages communicate infor-

mation about events between the same or different Web
sites. An XChange event message is an XML document
containing at least information about the sender, the recip-
ient, the raising and reception times of the event message.

Peer-to-Peer. For communicating data between Web
sites XChange uses the peer-to-peer communication model,
that is all parties have the same capabilities and every party
can initiate a communication session.

Push Strategy. For propagating events on the Web, two
strategies are possible: the push strategy, where a Web site
informs possibly interested Web sites about events, and the
pull strategy, where interested Web sites query periodically
persistent data found at other Web sites in order to deter-
mine changes. Both strategies are useful. As the pull strat-
egy is supported by languages that query persistent data,
XChange offers the push strategy.

2.5 Local Control of Event Memorisation
An essential aspect of XChange is that each Web site con-

trols its own event memory usage. In particular, the size of
the event history kept in memory depends only on the event
queries posed at this Web site. The time period for which
an atomic event is kept in memory at a Web site is au-
tomatically detected from the event queries locally posed.
By design, XChange composite event queries are such that
no data on any event need to be kept for ever in memory.
If this is necessary for some applications, events should be
explicitly stored as persistent data.

3. COMPOSITE EVENT QUERIES
An XChange event query may be atomic or composite.

An atomic event query refers to one single event, it repre-
sents a pattern for the single incoming event that is of in-
terest. Composite event queries are offered by XChange for
detecting composite events, a novel language ability. Two
dimensions are distinguished for composite event queries:
temporal range and event composition.

Temporal Range. A time interval can be specified for
event queries, restricting relevant event query instances to
those occuring in the given time interval. Such a time inter-
val always has a lower bound (the time point of event query
definition, if not explicitly given) and an upper bound (the
time interval is finite). These bounds make it possible to
release each event at each Web site after a finite time. Time
intervals can also be specified in XChange as relative to oc-
currences of other events, by means of durations.

Event Composition. Real application scenarios have
determined the introduction into the language of a set of
constructs along the event composition dimension. For ex-
ample, constructs are offered for detecting temporally or-
dered conjunctions of events (e.g. flight cancellations fol-
lowed by a notification saying that no accommodation is
granted by the airline), all events that have occurred be-
tween occurrences of other events, disjunctions of events,
exclusion (negation) of events, or quantified occurrences of
events (e.g. detecting every second email from my secretary).

Processing of Event Queries. XChange assumes no
central processing of event queries as such an approach is
not suitable on the Web. Instead, event queries are pro-
cessed locally at each XChange-aware Web site by means of
an event manager with ability to also release event query
instances after a finite time.

4. TRANSACTIONS AND REACTIVE
RULES IN XCHANGE

Complex Updates. An elementary update is a change
(insert, delete, replace) to a persistent data item (XML or
RDF document). Complex updates expressing ordered or
unordered conjunctions, or disjunctions of updates are also
offered by XChange. Since it is sometimes necessary to exe-
cute such complex updates in an all-or-nothing manner (e.g.
when booking a trip, a hotel reservation without a flight
reservation is useless), XChange has a concept of transac-
tions.

Transactions. An XChange transaction specification is
a group of update specifications and/or explicit event speci-
fications (expressing events that are constructed, raised, and
sent as event messages) that are to be executed in an all-
or-nothing manner. An XChange update specification is a
(possibly incomplete) pattern for the data to be updated,
augmented with the desired update operations.

(Re)active Rules. An XChange program is located at
one Web site and consists of one or more (re)active rules of
the form Event query – Standard query – Transaction/Raised
events. Every occurrence of an event is queried using the
event query. If an answer is found and the standard query
(i.e. Xcerpt query) also has an answer, then the action is ex-
ecuted (i.e. a transaction is executed or explicit events are
raised and sent to one or more Web sites).

5. CONCLUSION
This presentation has introduced the language XChange

for reactivity on the Web focussing on the ability of the
language to detect composite events on the Web. A more
detailed discussion on XChange’s constructs can be found in
[1] and on the query language XChange is integrating, the
Xcerpt language, in [2] .

6. REFERENCES
[1] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms

and Applications of the Language XChange. In 20th Annual
ACM Symposium on Applied Computing (SAC’2005). ACM
Press, 2005.

[2] S. Schaffert and F. Bry. Querying the Web Reconsidered: A
Practical Introduction to Xcerpt. In Int. Conf. Extreme
Markup Languages, 2004.

[3] J. Widom and S. Ceri. Active Database Systems: Triggers and
Rules for Advanced Database Processing. Morgan Kaufmann,
1996.

1083


