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ABSTRACT
Automatic extraction of semantic information from text and
links in Web pages is key to improving the quality of search
results. However, the assessment of automatic semantic
measures is limited by the coverage of user studies, which
do not scale with the size, heterogeneity, and growth of the
Web. Here we propose to leverage human-generated meta-
data — namely topical directories — to measure semantic
relationships among massive numbers of pairs of Web pages
or topics. The Open Directory Project classifies millions of
URLs in a topical ontology, providing a rich source from
which semantic relationships between Web pages can be de-
rived. While semantic similarity measures based on tax-
onomies (trees) are well studied, the design of well-founded
similarity measures for objects stored in the nodes of arbi-
trary ontologies (graphs) is an open problem. This paper de-
fines an information-theoretic measure of semantic similar-
ity that exploits both the hierarchical and non-hierarchical
structure of an ontology. An experimental study shows
that this measure improves significantly on the traditional
taxonomy-based approach. This novel measure allows us to
address the general question of how text and link analyses
can be combined to derive measures of relevance that are in
good agreement with semantic similarity. Surprisingly, the
traditional use of text similarity turns out to be ineffective
for relevance ranking.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval; H.3.4 [In-
formation Storage and Retrieval]: Systems and Soft-
ware—Performance evaluation (effectiveness)
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1. INTRODUCTION
Developing Web search mechanisms depends on address-

ing two central questions: (1) how to find related Web pages,
and (2) given a set of potentially related Web pages, how
to rank them according to relevance. To evaluate the ef-
fectiveness of a Web search mechanism in finding and rank-
ing results, measures of semantic similarity are needed. In
traditional approaches users provide manual assessments of
relevance, or semantic similarity. This is difficult and ex-
pensive. More importantly, it does not scale with the size,
heterogeneity, and growth of the Web — subjects can evalu-
ate sets of queries, but cannot cover exhaustively all topics.

The Open Directory Project1 (ODP) is a large human-
edited directory of the Web, employed by hundreds of por-
tals and search sites including Google. The ODP classifies
millions of URLs in a topical ontology. Ontologies help to
make sense out of a set of objects. Once the meaning of a set
of objects is available, it can be usefully exploited to derive
semantic relationships between those objects. Therefore, the
ODP provides a rich source from which measurements of se-
mantic similarity between Web pages can be obtained.

An ontology is a special kind of network. The problem
of evaluating semantic similarity in a network has a long
history in psychological theory [22]. More recently, semantic
similarity became fundamental in knowledge representation
where special kinds of networks or ontologies are used to
describe objects and their relationships [6].

Many proposals estimate semantic similarity in a network
representation by computing distance between the nodes.
These frameworks are based on the premise that the closer
the semantic relationship of two objects, the closer they
will be in the network representation. However, as it has

1http://dmoz.org
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been discussed by a number of sources, issues arise when
attempting to apply distance-based schemes for measuring
object similarities in certain classes of networks where links
may not represent uniform distances [19].

In ontologies, certain links connect very dense and general
categories while others connect more specific ones. To ad-
dress this problem, some proposals estimate semantic sim-
ilarity in a taxonomy based on the notion of information
content [19, 12]. In these approaches, the semantic simi-
larity between two objects is related to their commonality
and to their differences. Given a set of objects in an “is-a”
taxonomy, the commonality of two objects can be estimated
by the extent to which they share information, indicated by
the most specific class in the hierarchy that subsumes both.
The meaning of the individual objects can be measured by
looking at the classes rooted at each of the topics.

Ontologies are often equated with “is-a” taxonomies, but
ontologies need not be limited to these forms. For exam-
ple, the ODP ontology is more complex than a simple tree.
Some categories have multiple criteria to classify subcate-
gories. The “Business” category, for instance, is subdivided
by types of organizations (cooperatives, small businesses,
major companies, etc.) as well as by areas (automotive,
health care, telecom, etc.). Furthermore, the ODP has vari-
ous types of cross-reference links between categories, so that
a node may have multiple parent nodes, and even cycles are
present.

While semantic similarity measures based on trees are well
studied [5], the design of well-founded similarity measures
for objects stored in the nodes of arbitrary graphs is an open
problem. A few empirical measures have been proposed, for
example based on minimum cut/maximum flow algorithms
[13], but no information-theoretic measure is known. The
central question addressed in this paper is how to estimate
semantic similarity in generalized ontologies, such as the
ODP graph, taking advantage of both their hierarchical (“is-
a” links) and non-hierarchical (cross links) components.

1.1 Contributions and Outline
In the next section we introduce a novel graph-based mea-

sure of semantic similarity. To the best of our knowledge
this is the first information-theoretic measure of similarity
that is applicable to objects stored in the nodes of arbitrary
graphs, in particular topical ontologies and Web directories
that combine hierarchical and non-hierarchical components
such as Yahoo!, ODP and their derivatives.

Section 3 compares the graph-based semantic similarity
measure to the tree-based one, analyzing the differences be-
tween the two measurements and presenting an evaluation
against human judgments of Web page similarity. We show
that the new measure predicts human responses to a much
greater accuracy.

Having validated the proposed semantic similarity mea-
sure, in Section 4 we begin to explore the question of appli-
cations, namely how text and link analyses can be combined
to derive measures of relevance that are in good agreement
with semantic similarity. We consider various combinations
of text and link similarity and discuss how these correlate
with semantic similarity and how well they rank pages. We
find that surprisingly, classic text-based content similarity
is a very noisy feature, whose value is at best weakly corre-
lated. We discuss the potential applications of this result to
the design of semantic similarity estimates from lexical and

link similarity, and to the optimization of ranking functions
in search engines.

2. SEMANTIC SIMILARITY

2.1 Tree-Based Similarity
Lin [12] has investigated an information theoretic defini-

tion of similarity that is applicable as long as the domain
has a probabilistic model. This proposal can be used to de-
rive a measure of semantic similarity between topics in an
“is-a” taxonomy.

According to Lin’s proposal, the semantic similarity be-
tween two topics in a taxonomy is defined as a function of
the meaning shared by the topics and the meaning of each
of the individual topics. In a taxonomy, the meaning shared
by two topics can be recognized by looking at the lowest
common ancestor, which corresponds to the most specific
common classification of the two topics. Once this common
classification is identified, the meaning shared by two top-
ics can be measured by the amount of information needed
to state the commonality of the two topics. Likewise, the
meaning of each of the individual topics is measured by the
amount of information needed to fully describe each of the
two topics.

In information theory [3], the information content of a
class or topic t is measured by the negative log likelihood,
− log Pr[t]. The semantic similarity between two topics t1
and t2 in a taxonomy is then measured as the ratio between
their common meaning and their individual meanings as
follows:

σT
s (t1, t2) =

2 · log Pr[t0(t1, t2)]

log Pr[t1] + log Pr[t2]

where t0(t1, t2) is the lowest common ancestor topic for t1
and t2 in the tree, and Pr[t] represents the prior probability
that any page is classified under topic t. Given a document
d classified in a topic taxonomy, we use t(d) to refer to the
topic node containing d. Given two documents d1 and d2 in
a topic taxonomy the semantic similarity between them is
estimated as σT

s (t(d1), t(d2)). To simplify notation, we use
σT

s (d1, d2) as a shorthand for σT
s (t(d1), t(d2)). From here

on, we will refer to measure σT
s as the tree-based semantic

similarity. The tree-based semantic similarity measure for a
simple taxonomy is illustrated in Figure 1. In this example,
documents d1 and d2 are contained in topics t1 and t2 re-
spectively, while topic t0 is their lowest common ancestor.
In practice Pr[t] can be computed offline for every topic t
in the ODP by counting the fraction of pages stored in the
subtree rooted at node t (subtree(t)), out of all the pages in
the tree.

This measure of semantic similarity has several desirable
properties and a solid theoretical justification. It is a straight-
forward extension of the information-theoretic similarity mea-
sure [12], designed to compensate for the fact that the tree
can be unbalanced both in terms of its topology and of the
relative size of its nodes. For a perfectly balanced tree σT

s

corresponds to the familiar tree distance measure [10].
In prior work [14, 15, 16] we computed the σT

s measure
for all pairs of pages in a stratified sample of about 150,000
pages from across the ODP. For each of the resulting 3.8×109

pairs we also computed text and link similarity measures,
and mapped the correlations between these and semantic
similarity. An interesting result was that these correlations
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Figure 1: Illustration of tree-based semantic simi-
larity in a taxonomy.

were quite weak across all pairs, but became significantly
stronger for pages within certain top level categories such
as “news” and “reference.” However, because σT

s is defined
only in terms of the hierarchical component of the ODP,
it fails to capture many semantic relationships induced by
the ontology’s non-hierarchical components (symbolic and
related links). As a result, the tree-based semantic similar-
ity between pages in topics that belong to different top-level
categories is zero even if the topics are clearly related. This
yielded an unreliable picture when all topics were consid-
ered.

2.2 Graph-Based Similarity
Let us now generalize the semantic similarity measure to

deal with arbitrary graphs. We wish to define a graph-
based semantic similarity measure σG

s that generalizes the
tree-based similarity σT

s to exploit both the hierarchical and
non-hierarchical components of an ontology.

A topic ontology graph is a graph of nodes representing
topics. Each node contains objects representing documents
(pages). An ontology graph has a hierarchical (tree) compo-
nent made by “is-a” links, and a non-hierarchical component
made by cross links of different types.

For example, the ODP ontology is a directed graph G =
(V, E) where:

• V is a set of nodes, representing topics containing doc-
uments;

• E is a set of edges between nodes in V , partitioned
into three subsets T , S and R, such that:

– T corresponds to the hierarchical component of
the ontology,

– S corresponds to the non-hierarchical component
made of “symbolic” cross-links,

– R corresponds to the non-hierarchical component
made of “related” cross-links.

Figure 2 shows a simple example of an ontology graph G.
This is defined by the sets V = {t1, t2, t3, t4, t5, t6, t7, t8},
T = {(t1, t2), (t1, t3), (t1, t4), (t3, t5), (t3, t6), (t6, t7), (t6, t8)},

t2

t1

t4t3

t5 t6

t7 t8

T

S

R

Edge Type

Figure 2: Illustration of a simple ontology.

S = {(t8, t3)}, and R = {(t6, t2)}. In addition, each node
t ∈ V contains a set of objects. We use |t| to refer to the
number of objects stored in node t (e.g, |t3| = 4).

The extension of σT
s to an ontology graph raises two ques-

tions. First, how to find the most specific common ancestor
of a pair of topics in a graph; second, how to extend the
definition of subtree rooted at a topic for the graph case.

An important distinction between taxonomies and ontolo-
gies such as the ODP graph is that edges in a taxonomy are
all of the same type (“is-a” links), while in the ODP graph
edges can have diverse types (e.g., “is-a”, “symbolic”, “re-
lated”). Different types of edges have different meanings
and should be used accordingly. One way to distinguish
the role of different edges is to assign them weights, and to
vary these weights according to the edge’s type. The weight
wij ∈ [0, 1] for an edge between topic ti and tj can be inter-
preted as an explicit measure of the degree of membership
of tj in the family of topics rooted at ti. The weight set-
ting we have adopted for the edges in the ODP graph is
as follows: wij = α for (i, j) ∈ T , wij = β for (i, j) ∈ S,
and wij = γ for (i, j) ∈ R. We set α = β = 1 because sym-
bolic links seem to be treated as first-class taxonomy (“is-a”)
links in the ODP Web interface. Since duplication of URLs
is disallowed, symbolic links are a way to represent multiple
memberships, for example the fact that the pages in topic
“Society/Issues/Fraud/Internet” also belong to topic “Com-
puters/Internet/Fraud.” On the other hand, we set γ = 0.5
because related links are treated differently in the ODP Web
interface, labeled as “see also” topics. Intuitively the seman-
tic relationship is weaker. Different weighting schemes could
be explored.

As a starting point, let wij > 0 if and only if there is
an edge of some type between topics ti and tj . However,
to estimate topic membership, transitive relations between
edges should also be considered. Let ti↓ be the family of
topics tj such that either i = j or there is a path (e1, . . . , en)
satisfying:

1. e1 = (ti, tk) for some tk ∈ V ,

2. en = (tk, tj) for some tk ∈ V ,

3. ek ∈ T ∪ S ∪R for k = 1 . . . n,

4. ek ∈ S ∪R for at most one k.
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The above conditions express that tj ∈ ti↓ if there is a di-
rected path in the graph G from ti to tj , where at most
one edge from S or R participates in the path. The mo-
tivation for disregarding multiple non-hierarchical links in
the transitive relations that determine topic membership is
both practical and conceptual. From a computational per-
spective, allowing multiple cross links is infeasible because
it leads to a dense topic membership, i.e., every topic be-
longs to almost every other topic. This is also not robust
because a few unreliable cross links make significant global
changes to the membership functions. More importantly,
considering multiple cross links in each path would make
the classification meaningless by mixing all topics together.
Considering at most one cross link in each membership path
allows us to capture the non-hierarchical components of the
ontology while preserving feasibility, robustness, and mean-
ing. We refer to ti↓ as the cone of topic ti. Because edges
may be associated with different weights, different topics tj

can have different degree of membership in ti↓.
In order to make the implicit membership relations ex-

plicit, we represent the graph structure by means of adja-
cency matrices and apply a number of operations to them.
A matrix T is used to represent the hierarchical structure of
an ontology. Matrix T codifies edges in T , augmented with
1s on the diagonal:

Tij =

8<: 1 if i = j,
α if i 6= j and (i, j) ∈ T ,
0 otherwise.

We use additional adjacency matrices to represent the
non-hierarchical components of an ontology. For the case
of the ODP graph, a matrix S is defined so that Sij = β
if (i, j) ∈ S and Sij = 0 otherwise. A matrix R is defined
analogously, as Rij = γ if (i, j) ∈ R and Rij = 0 otherwise.
Consider the operation ∨ on matrices, defined as [A∨B]ij =
max(Aij , Bij), and let G = T ∨ S ∨ R. Matrix G is the
adjacency matrix of graph G augmented with 1s on the
diagonal.

We will use the MaxProduct fuzzy composition function �
[8] defined on matrices as follows:2

[A�B]ij = max
k

(Aik ·Bkj).

Let T(0) = T and T(r+1) = T(0) � T(r). We define the
closure of T, denoted T+ as follows:

T+ = lim
r→∞

T(r).

In this matrix, T+
ij = 1 if tj ∈ subtree(ti), and T+

ij = 0

otherwise. Note that the computation of the closure T+

converges in a number of steps which is bounded by the
maximum depth of the tree T, is independent of the weight
α, and does not involve the weights β and γ.

Finally, we compute the matrix W as follows:

W = T+ �G�T+.

The element Wij can be interpreted as a fuzzy membership
value of topic tj in the cone ti↓, therefore we refer to W as
the fuzzy membership matrix of G.

2With our choice of weights, MaxProduct composition is
equivalent to MaxMin composition.

As an illustration, consider the example ontology in Fig-
ure 2. In this case the matrices T, G, T+ and W are defined
as follows:

T =

0BBBBBBBBB@

t1 t2 t3 t4 t5 t6 t7 t8

t1 1 1 1 1 0 0 0 0
t2 0 1 0 0 0 0 0 0
t3 0 0 1 0 1 1 0 0
t4 0 0 0 1 0 0 0 0
t5 0 0 0 0 1 0 0 0
t6 0 0 0 0 0 1 1 1
t7 0 0 0 0 0 0 1 0
t8 0 0 0 0 0 0 0 1

1CCCCCCCCCA

G =

0BBBBBBBBB@

t1 t2 t3 t4 t5 t6 t7 t8

t1 1 1 1 1 0 0 0 0
t2 0 1 0 0 0 0 0 0
t3 0 0 1 0 1 1 0 0
t4 0 0 0 1 0 0 0 0
t5 0 0 0 0 1 0 0 0
t6 0 .5 0 0 0 1 1 1
t7 0 0 0 0 0 0 1 0
t8 0 0 1 0 0 0 0 1

1CCCCCCCCCA

T+ =

0BBBBBBBBB@

t1 t2 t3 t4 t5 t6 t7 t8

subtree(t1) 1 1 1 1 1 1 1 1
subtree(t2) 0 1 0 0 0 0 0 0
subtree(t3) 0 0 1 0 1 1 1 1
subtree(t4) 0 0 0 1 0 0 0 0
subtree(t5) 0 0 0 0 1 0 0 0
subtree(t6) 0 0 0 0 0 1 1 1
subtree(t7) 0 0 0 0 0 0 1 0
subtree(t8) 0 0 0 0 0 0 0 1

1CCCCCCCCCA

W =

0BBBBBBBBB@

t1 t2 t3 t4 t5 t6 t7 t8

t1↓ 1 1 1 1 1 1 1 1
t2↓ 0 1 0 0 0 0 0 0
t3↓ 0 .5 1 0 1 1 1 1
t4↓ 0 0 0 1 0 0 0 0
t5↓ 0 0 0 0 1 0 0 0
t6↓ 0 .5 1 0 1 1 1 1
t7↓ 0 0 0 0 0 0 1 0
t8↓ 0 0 1 0 1 1 1 1

1CCCCCCCCCA
The semantic similarity between two topics t1 and t2 in

an ontology graph can now be estimated as follows:

σG
s (t1, t2) = max

k

2 ·min (Wk1,Wk2) · log Pr[tk]

log(Pr[t1|tk]·Pr[tk]) + log(Pr[t2|tk]·Pr[tk])
.

The probability Pr[tk] represents the prior probability that
any document is classified under topic tk and is computed
as:

Pr[tk] =

P
tj∈V (Wkj · |tj |)

|U | ,

where |U | is the number of documents in the ontology. The
posterior probability Pr[ti|tk] represents the probability that
any document will be classified under topic ti given that it
is classified under tk, and is computed as follows:

Pr[ti|tk] =

P
tj∈V (min(Wij ,Wkj) · |tj |)P

tj∈V (Wkj · |tj |)
.
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The proposed definition of σG
s is a generalization of σT

s .
In the special case when G is a tree (i.e., S = R = ∅),
then ti ↓ is equal to subtree(ti), the topic subtree rooted
at ti, and all topics t ∈ subtree(ti) belong to ti ↓ with a
degree of membership equal to 1. If tk is an ancestor of
t1 and t2 in a taxonomy, then min(Wk1,Wk2) = 1 and
Pr[ti|tk] ·Pr[tk] = Pr[ti] for i = 1, 2. In addition, if there are
no cross-links in G, the topic tk whose index k maximizes
σG

s (t1, t2) corresponds to the lowest common ancestor of t1
and t2.

3. EVALUATION
The proposed graph-based semantic similarity measure

was applied to the ODP ontology. The portion of the ODP
graph we have used for our analysis consists of more than
half million topic nodes (only World and Regional categories
were discarded). Computing semantic similarity for each
pair of nodes in such a huge graph required more than 5,000
CPU hours on IU’s Analysis and Visualization of Instrument-
Driven Data (AVIDD) supercomputer facility. The com-
putational component of AVIDD consists of two clusters,
each with 208 Prestonia 2.4-GHz processors. The computed
graph-based semantic similarity measurements in compressed
format occupies more than 1 TB of IU’s Massive Data Stor-
age System. After computing the graph-based semantic sim-
ilarity, we dynamically computed the less computationally
expensive tree-based semantic similarity on the same ODP
topic pairs.

3.1 Analysis of Differences
The first question to ask of the newly proposed graph-

based semantic similarity definition is whether it produces
different measurements from the traditional tree-based simi-
larity. The two measures are moderately correlated (Pearson
coefficient rP = 0.51). To dig deeper, we map in Figure 3
the distributions of similarities. Each (σT

s , σG
s ) coordinate

encodes how many pairs of pages in the ODP have semantic
similarities falling in the corresponding bin. By definition
σT

s is a lower bound for σG
s . Significant numbers of pairs

yield σG
s > σT

s , indicating that the graph-based measure in-
deed captures semantic relationships that are missed by the
tree-based measure. The largest difference is hard to ob-
serve in the map because it occurs in the σT

s = 0 bins. Here
there are many pairs in different top-level categories of the
ODP, which are related according to non-hierarchical links.

To better quantify the differences between σT
s and σG

s ,
Figure 3 also shows the average graph-based similarity 〈σG

s 〉
as a function of σT

s . The relative difference is as large as
20% around σT

s = 0.32. The inset highlights the largest
difference, which occurs for σT

s = 0.

3.2 Validation by User Study
Knowing that tree-based and graph-based measures give

us quantitatively different estimates of semantic similarity,
we conducted a human-subjects experiment to evaluate the
proposed graph-based measure σG

s . As a baseline for com-
parison we used Lin’s tree-based measure σT

s . The goal of
this experiment was to contrast the predictions of the two
semantic similarity measures against human judgments of
Web pages relatedness.

Thirty-eight volunteer subjects were recruited for a 30
minute experiment conducted online. Subjects answered 30
questions about similarity between Web pages. For each
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Figure 3: Top: 200 × 200 bin histogram showing the
distributions of 1.26 × 1012 pairs of pages according
to tree-based vs. graph-based semantic similarity.
Colors encode numbers of pairs on a log scale. Bot-
tom: Averaging of σG

s for each σT
s bin highlights the

difference between the two similarity measurements.

question, they were presented with a target Web page and
two candidate Web pages (see Figure 4). The subjects had
to answer by selecting from the two candidate pages the one
that was more related to the target Web page or by indicat-
ing that neither of the candidate pages was related to the
target. A total of 6 target Web pages randomly selected
from the ODP directory were used for the evaluation. For
each target Web page we presented a series of 5 pairs of can-
didate Web pages. To investigate which of the two methods
was a better predictor of human assessments of Web page
similarity, the candidate pages were selected with controlled
differences in their semantic similarity to the target page.
Given a target Web page pT , each pair of candidate pages
pC
1 and pC

2 used in our study satisfied the following two con-
ditions:

Condition 1: σT
s (pC

1 , pT ) ≥ σT
s (pC

2 , pT )
Condition 2: σG

s (pC
1 , pT ) < σG

s (pC
2 , pT )
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Figure 4: A snapshot of the experiment setup for
our user study. The pages displayed are those of
Table 1.

The use of the above conditions guarantees that for each
question the two models disagreed on their prediction of
which of the two candidate pages is more related to the tar-
get page. The pages in the 30 triplets were chosen at random
among all the cases satisfying the above conditions. To en-
sure that the participants made their choice independently
of the questions already answered, we randomized the order
of the options. Table 1 shows an example of a triplet of
pages used in our study, corresponding to the question in
the snapshot of Figure 4. The users were presented with the
target and candidate pages only — no information related
to the topics of the pages was shown to the users.

The semantic similarity between the target page and each
of the candidate pages in our example, according to the two
measurements is as follows:

σT
s (pC

1 , pT ) = 0.24 σT
s (pC

2 , pT ) = 0.50
σG

s (pC
1 , pT ) = 0.91 σG

s (pC
2 , pT ) = 0.70

For this triplet of pages, the tree-based method predicts that
pC
2 is more similar to the target than pC

1 (σT
s (pC

2 , pT ) >
σT

s (pC
1 , pT )). On the other hand, according to the prediction

made by the graph-based method pC
1 should be preferred

over pC
2 (σG

s (pC
1 , pT ) > σG

s (pC
2 , pT )).

To test which of the two methods was a better predictor
of subjects’ judgments of Web page similarity we considered
the selections made by each of the human-subjects and com-
puted the percentage of correct predictions made by the two
methods. Table 2 summarizes the statistical results. This
comparison table shows that the graph-based semantic sim-
ilarity measure results in statistically significant improve-
ments over the tree-based one.3

3This made it unnecessary to recruit a larger subject pool.

Table 2: Mean, standard deviation, and standard er-
ror of the percentage of correct predictions by tree-
based vs. graph-based semantic similarity, as deter-
mined from the assessments by the N subjects. The
fact that the confidence intervals do not overlap is
equivalent to using a t-test to determine that the
difference in average accuracy is statistically signif-
icant at the 95% confidence level.

N MEAN STDEV SE 95% C.I.

σT
s 38 5.70% 4.71% 0.76% (4.2%, 7.2%)

σG
s 38 84.65% 11.19% 1.82% (81.1%, 88.2%)

4. APPLICATIONS
Having validated our semantic similarity measure σG

s , let
us now begin to explore its applications to performance eval-
uation. Using σG

s as a surrogate for user assessments of
semantic similarity, we can address the general question of
how text and link analyses can be combined to derive mea-
sures of relevance that are in good agreement with semantic
similarity. An analogous approach has been used in the past
to evaluate similarity search, but relying on only the hierar-
chical ODP structure as a proxy for semantic similarity [7,
16].

Let us start by introducing two representative similarity
measures σc and σ` based on textual content and hyperlinks,
respectively. Each is based on the TF-IDF vector represen-
tation and “cosine similarity” function traditionally used in
information retrieval [20]. For content similarity we use:

σc(p1, p2) =
~p c
1 · ~p c

2

‖~p c
1 ‖ · ‖~p c

2 ‖

where (p1, p2) is a pair of Web pages and ~p c
i is the TF-IDF

vector representation of pi, based on the terms in the page.
Noise words are eliminated [4] and other words are conflated
using the standard Porter stemmer [18].

For link similarity measure we define:

σ`(p1, p2) =
~p `
1 · ~p `

2

‖~p `
1 ‖ · ‖~p `

2 ‖

where ~p `
i is the link frequency–inverse document frequency

(LF-IDF) vector representation of page pi. LF-IDF is anal-
ogous to TF-IDF, except that hyperlinks (URLs) are used
in place of words (terms). A page link vector is composed of
its outlinks, inlinks, and the pages’s own URL. Link similar-
ity is a measure of the local undirected clustering coefficient
between two pages. A high value of σ` indicates that the
two pages belong to a clique of pages. Related measures are
often used in link analysis to identify a community around
a topic. This measure generalizes co-citation [21] and bib-
liographic coupling [9], but also considers directed paths of
length L ≤ 2 links between pages. Such directed paths are
important because they could be navigated by a user or
crawler. Outlinks were obtained from the pages themselves,
while inlinks were obtained from a search engine.4

One could of course explore alternative content and link
similarity measures, however our preliminary experiments
indicate that other commonly used measures such as TF-

4We used the Google Web API (www.google.com/apis/)
with special permission.
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Table 1: Example of a triplet used in the evaluation
Page URL Topic

pT http://www.muppetsonline.com/ Arts
Performing Arts
Puppetry
Muppets

pC
1 http://www.theentertainmentbusiness.com/sesame.htm Arts

Television
Programs
Children’s
Sesame Street
Characters

pC
2 http://www.yale.edu/yags/ Arts

Performing Arts
Circus
Juggling
Clubs and Organizations
College Juggling Clubs

based cosine similarity and the Jaccard coefficient do not
qualitatively alter the observations that follow.

Once text and links were extracted from the 1.12 × 106

Web pages of the ODP ontology, σc ∈ [0, 1] and σ` ∈ [0, 1]
were computed for each of 1.26 × 1012 pairs of pages. Se-
mantic similarities σT

s and σG
s were measured as well. Two

200×200×200 histograms with coordinates (σc, σ`, σ
T
s ) and

(σc, σ`, σ
G
s ) were generated to analyze the relationships be-

tween the various similarity measures. We focus on the lat-
ter, graph-based semantic similarity in the following anal-
ysis. The computation of these histograms (and the one
for (σT

s , σG
s ), cf. Section 3.1) required approximately 4,000

additional CPU hours on the AVIDD facility.

4.1 Combining Content and Link Similarity
The massive data thus collected allows us to study how

well different automatic similarity measures based on ob-
servable features (content and links) approximate seman-
tic similarity. We considered a number of simple functions
f(σc, σ`) including:

• various linear combinations f = λσc + (1 − λ)σ` for
0 ≤ λ ≤ 1, of which we report the cases λ = 0 (f = σ`),
λ = 0.2, λ = 0.8, and λ = 1 (f = σc);

• the product f = σcσ`;

• the step-linear function f = σcH(σ`), where H(σ`) =
1 for σ` > 0 and 0 otherwise;

and other functions omitted for space considerations. Fig-
ure 5 plots the Pearson and Spearman correlations between
σG

s and these functions, versus a threshold on σc.
The Pearson correlation coefficient rP tells us the de-

gree to which the values of each function f(σc, σ`) agree
with σG

s . We can see that the correlations are rather weak,
0 < rP < 0.2, for all f in the plot when we consider all
page pairs. If we restrict the analysis to pairs that have
content similarity σc above a minimum threshold, the cor-
relations can become much stronger. It is meaningful to use
a σc threshold because in applications such as search en-
gines, the pages to be ranked are those that are retrieved
from an index based on a match, typically between pages

and a user query or some other model page. It is interesting
to observe that the functions that rely heavily on content
similarity (f = λσc + (1 − λ)σ` for high λ) perform par-
ticularly poorly at predicting semantic similarity. They are
at best weakly correlated with σG

s unless one applies a very
high σc threshold. This is rather surprising because prior
to the introduction of link based importance measures such
as PageRank [1] content was the sole source of evidence for
ranking pages, and content similarity is still widely seen as
a central component of any ranking algorithm.

The Pearson correlation assumes normally distributed val-
ues. Since the similarity functions defined above have mostly
exponential distributions, it is worth to validate the above
results using the Spearman rank order correlation coefficient
rS , which is high if two functions agree on the rankings they
produce irrespective of the actual values. This is reasonable
in our setting because from a search engine user perspec-
tive, what matters is the order of the hit pages and not the
values used by the ranking function. The Spearman correla-
tion data in Figure 5 confirms the above observations, with
even more striking evidence of the noisy nature of content
similarity. One can see a clear separation between the poor
rankings produced by functions that depend linearly on σc

and the relatively good rankings produced by functions that
either do not consider σc or that scale σc by σ`.

The above analysis highlights an extremely low discrim-
ination power of lexical similarity. This might suggest a
filtering role for lexical similarity, in which all pages below
a small threshold would not be considered while above the
threshold only link-based measures would be used for the
sake of ranking. While such a bold strategy must be scru-
tinized carefully, it could lead to a significant simplification
of ranking algorithms.

4.2 Evaluating Ranking Functions
Let us finally illustrate how the proposed semantic simi-

larity function can be used to automatically evaluate alter-
native ranking functions. This makes it possible to mine
through a large number of alternative functions automati-
cally and cheaply, reserving user studies for the most promis-
ing candidates. We want to compare the quality of a ranking
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Figure 5: Pearson (top) and Spearman (bottom)
correlations between graph-based semantic similar-
ity σG

s and different functional combinations of con-
tent and link similarity, applying increasing thresh-
olds on content similarity.

function to the baseline ranking obtained by the use of se-
mantic similarity. The sliding ratio score [17, 11] compares
two rankings when graded quality assessments are avail-
able.5 This measure is defined as the ratio between the
cumulative quality scores of the top-ranked pages according
to two ranking functions. We can generalize the sliding ratio
in the following ways:

• use a page as a target rather than an arbitrary query,
as is done in “query by example” systems;

• use σG
s as a reference ranking function;

• sum over all pages in an ontology such as the ODP,
each used in turn as a target, thus covering the en-
tire topical space and eliminating the dependence on
a single target.

5In the common case when just binary relevance assessments
are available, one resorts to precision and recall; the sliding
ratio score is a more sophisticated measure enabled by more
refined semantic similarity data.
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Figure 6: Generalized sliding ratio score plots for
different functional combinations of content and link
similarity. We omit the region N < 105 where GSR
is constant for all f up to the resolution of our his-
togram bins.

Let us thus define a generalized sliding ratio score as follows:

GSR(f, N) =

NX
(i,j):rankf (i,j)=1

σG
s (i, j)

NX
(i,j):rank

σG
s

(i,j)=1

σG
s (i, j)

where (i, j) is a pair of pages, f is a ranking function to be
tested, and N is the number of top-ranked pairs considered.
Note that for any f , GSR(f, N) → 1 as N tends to the total
number of pairs. The ideal ranking function is one such
that GSR(f, N) ≈ 1 for low N as well. In simplistic terms,
GSR(f, N) tells us how well a function f ranks the top N
pairs of pages.

The generalized sliding ratio score can be readily mea-
sured on our ODP data for any f(σc, σ`). Only pairs with
σc > 0 are considered, since typically in a search engine only
pages matching the query are retrieved. In Figure 6 we plot
GSR(f, N) versus N for the simple combination functions
f(σc, σ`) introduced in Section 4.1. Consistently with the
correlation results, the functions that depend heavily on con-
tent similarity rank poorly. Again this is only an illustration
of how the σG

s measure can be applied to the evaluation of
arbitrary ranking functions.

5. DISCUSSION
In this paper we introduced a novel measure of semantic

similarity for Web pages that generalizes the well-founded
information-theoretic tree-based semantic similarity measure
to the general case in which pages are classified in the nodes
of an arbitrary graph ontology with both hierarchical and
non-hierarchical components. This measure can be readily
applied to mine semantic data from topical ontologies and
Web directories such as Yahoo!, the ODP and their deriva-
tives.

Similarity is commonly viewed as an example of relation
satisfying the following three conditions:
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• Maximality: σ(a, b) ≤ σ(a, a) = 1.

• Symmetry: σ(a, b) = σ(b, a).

• Triangular Inequality: σ(a, b) · σ(b, c) ≤ σ(a, c).

These conditions are adaptations of the minimality, symme-
try and triangle inequality axioms of metric distance func-
tions. The definition of σG

s proposed in this paper satisfies
maximality and symmetry but not the triangular inequal-
ity condition. With sufficient computational resources, a
new measure of semantic similarity satisfying the triangular
inequality principle can be computed by applying an adap-
tation of Dijkstra’s shortest path algorithm [2] to σG

s :

σ(0)(i, j) = σG
s (i, j)

σ(r+1)(i, j) = max (σ(r)(i, j), max
k

(σ(0)(i, k) · σ(r)(k, j)))

σ(i, j) = lim
r→∞

σ(r)(i, j)

While in many cases the lower limit imposed by the trian-
gular inequality appears to be intuitive, many authors have
argued against it. Tversky [22] illustrates this position with
an example about the similarity between countries: “Ja-
maica is similar to Cuba (because of geographical proximity);
Cuba is similar to Russia (because of their political affinity);
but Jamaica and Russia are not similar at all.” This exam-
ple fits the case of Web pages and their topics, suggesting
that the triangular inequality should not be accepted as a
cornerstone of similarity models.

Computing the graph-based semantic similarity measure
is a computationally expensive task, both in terms of space
and time. While matrices T, G, T+ and W are sparse and
easy to store, codifying the graph-based semantic similarity
measure σG

s for the ODP topics required the use of 5,712
dense matrices, each one of size 571, 148 × 100. The time
complexity for computing the semantic similarity for n top-
ics is O(n3) in the worst case; the actual complexity depends
on the density of the W matrix. Some of the techniques
adopted to deal with the time complexity of the problem in-
clude indexing the sparse structure of the matrices for fast
access and using a software vector register to compute the
MaxProduct fuzzy composition function efficiently. Our ap-
proach may not scale easily to ontologies much larger than
the ODP graph as it is today. However, approximations
of σG

s may be computed in reasonable time if appropriate
heuristics are applied (e.g., via use of thresholds).

We have shown that the proposed semantic similarity mea-
sure predicts human judgments of relatedness with signifi-
cantly greater accuracy than the tree-based measure. Fi-
nally we have undertaken a massive data mining effort on
ODP data in order to begin to explore how text and link
analyses can be combined to derive measures of relevance in
agreement with semantic similarity.

The methodology described here to evaluate ranking algo-
rithms based on semantic similarity can be applied to arbi-
trary combinations of ranking functions stemming from text
analysis (e.g. LSA, query expansion, tag weighting, etc.),
link analysis (e.g. authority, PageRank, SiteRank, etc.), and
any other features available to a search engine (e.g. fresh-
ness, click-through rate, etc.). Yet the applications of the
proposed semantic similarity measure are broader than just
Web search. Classification, clustering and resource discov-
ery also rely on semantic mining of features that can be
extracted automatically.

The main, surprising result of our initial analysis with the
graph-based semantic similarity is that the classic text-based
TF-IDF cosine similarity is an extremely noisy feature, un-
fit for ranking Web pages. While it seems helpful to filter
out pages with very low lexical similarity (σ` < 0.05), text-
based measures do not seem to help in ranking the remaining
pages. On the contrary they are very poorly correlated with
semantic similarity, possibly reflecting the extent to which
ambiguous terms mislead the search process. While this re-
sult helps to explain why early search engines did so poorly
and validates the use of link-based measures such as PageR-
ank, the seemingly unredeemed quality of content similarity
is unexpected. The implication must be a revisitation of the
role of content similarity in ranking Web results.

We are currently exploring alternative ways to approxi-
mate semantic similarity by integrating (rather than com-
bining) content and link similarity. The correlation plots in
Figure 5 suggest that content may play a positive role in
filtering hits, if not in ranking them.

In future work the semantic similarity measure must be
further validated through user studies. The study presented
here focuses on cases where σG

s and σT
s disagree, and thus it

tells us that σG
s is more accurate than σT

s but is too biased
to satisfactorily answer the broader question of how well
σG

s predicts assessments of semantic similarity by human
subjects in general. It is possible that alternative weighting
schemes for the different types of links in the ODP ontology
may lead to measures with improved accuracy.

The evaluations outlined here have focused on purely local
text and link analysis. For example, we have not looked at
the role of more global link and text analysis techniques such
as PageRank and latent semantic analysis (LSA) in improv-
ing the quality of ranking by favoring authoritative pages or
improving content similarity. These are also directions for
future work.

Due to the growing number of emerging Web search tech-
niques and the scale of the Web, automatic evaluation mech-
anisms are crucial. In the light of the availability of rich se-
mantic information sources, like the ODP ontology, we have
proposed a reliable method for the algorithmic detection
of semantic similarity between Web pages. The proposed
approach will provide insight for better understanding the
limitations of existing search techniques and inspire the de-
velopment of new and more powerful Web search tools.
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