
Hubble: An Advanced Dynamic Folder System for XML
Ning Li Joshua Hui Hui-I Hsiao Kevin Beyer

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120 USA

{ningli, jhui, hhsiao, kbeyer}@almaden.ibm.com

ABSTRACT
Organizing large document collections for finding information
easily and quickly has always been an important user
requirement. This paper describes a flexible and powerful
dynamic folder technology, called Hubble, which exploits XML
semantics to precisely categorize XML documents into categories
or folders.
Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval – Information filtering, Query formulation, Retrieval
models.

General Terms
Algorithm, Management, Performance, Design.

Keywords
XML, dynamic folder, categorization, content navigation

1. Introduction
With the fast advancement in CPU and disk technologies,
significant amount of data and files are created and stored in
computer systems nowadays. As a result, users and institutions
are facing a serious challenge in managing and organizing their
documents and files such that information can be found and
retrieved easily and quickly. There are several known
technologies for organizing and/or categorizing documents and
web pages. The most familiar ones include folder and directory
structures [1] [2] [3] for organizing files and categorization and
classification technologies for grouping web pages and
documents. Existing folder technologies place documents into
folders either manually or automatically but based only on simple
search criteria. The categorization and classification technologies
automate the placement and grouping of documents and pages,
but they are imprecise.

In the last few years, XML has become the de-facto standard for
content publishing and data exchange. The proliferation of XML
documents and data has created new challenges and opportunities
for managing document collections. Since XML documents are
self describing, it is now possible to automatically categorize
XML documents precisely, according to their content. In addition,
with the availability of the standard XML query languages, XPath
and XQuery [4], much more powerful folder technologies are now
feasible. To address this new challenge and exploit this new
opportunity, this paper proposes a new and very powerful
dynamic folder mechanism, termed Hubble. Hubble fully exploits
the rich data model and semantic information embedded in the
XML documents. It can be applied to build folder hierarchies
dynamically and to categorize XML collections precisely.

2. Hubble Dynamic Folder System
2.1 Dynamic Folder Model
In Hubble, there are two types of folders: design-time folders and
runtime folders. A design-time folder hierarchy is a tree of user
defined folder criteria. A design-time folder df is characterized by
a pair (dn, dq):
• dn is the name of the design-time folder.
• dq is the definition of the design-time folder, which is

specified in XQuery.

Two functions are supported on a design-time folder df:
• parentDf(df) returns the parent design-time folder of df.
• childDfs(df) returns the set of child design-time folders of df.

A design-time folder hierarchy represents a sketch of how a user
wants to organize a collection of XML documents so that it can
be efficiently searched and viewed.

After a design-time folder hierarchy is created, a user binds it to a
collection of XML documents. While browsing, runtime folders
are automatically created and a runtime folder hierarchy is
automatically formed, according to the design-time folder
definitions as well as the content of the XML documents. Similar
to a conventional folder, a runtime folder contains desired XML
documents in addition to child runtime folders. A runtime folder
rf is also characterized by a pair (df, rv):
• df is the design-time folder that the runtime folder

corresponds to.
• rv is the runtime value of rf that is defined in df or

dynamically generated by applying df to the documents.

Four functions are supported on a runtime folder rf:
• parentRf(rf) returns the parent runtime folder of rf.
• childRfs(rf) returns the set of child runtime folders of rf.
• childDocs(rf) returns the set of documents contained in rf.
• inRfs(doc) returns the set of runtime folders that contain the

document doc

Here is how childDocs(rf) is recursively determined, where rf is
of a pair (df, rv):
1. Assume:

a. dq is the query definition of df.
b. prf is the result of parentRf(rf).
c. docs is the result of childDocs(prf).

2. Execute dq on docs. If rv is a member or subset of the result
of dq, the document is in the result of childDocs(rf).
Otherwise it is not.

In this design, the documents in a runtime folder are a subset of
the documents in its parent runtime folder.

The following describes childRfs(rf), where rf is of a pair (df, rv):
1. Assume docs is the result of childDocs(rf).
2. For each df’ with (dn’, dq’) in childDfs(df).

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

1064

3. Execute dq’ on docs, which results in a sequence of values
vs’. Each df’ with a distinct value rv’ from vs’ forms a
child runtime folder of rf.

2.2 Variable Binding Mechanism
The hierarchical nature of XML data model makes it easy to
group related information. For example, when there is more than
one vehicle, the make and the model of a vehicle can be grouped
in a Vehicle element. In Hubble, we use a variable binding
mechanism to exploit the XML grouping feature. In the
definition of a design-time folder df, a user can create variable
bindings in addition to the query definition. A variable binding is
of a pair ($var, vq):
• var is the name of the variable.
• vq is an XQuery query and the variable is bound to each

value in the result sequence (same as the semantics of the
For clause in XQuery).

The variables are visible to the definition of df and its descendant
design-time folders. With this variable binding mechanism, a
design-time folder can reference the same XML element that has
been referenced in a different design-time folder definition.

Here is an example which demonstrates both design-time and
runtime folders. Figure 1 shows the design-time folder hierarchy
which categorizes the claim documents in the Claims collection
based on the make of vehicles and the damage types.

Figure 1 A design-time folder hierarchy example
Assume the Claims collection has the following document.

<Claim>
 <Status>In-process</Status>
 <Vehicle> <VID>J1100110011</VID>
 <Make>Honda</Make> <Model>Accord</Model>
 </Vehicle>
 <Vehicle> <VID>V1123144009</VID>
 <Make>Ford</Make> <Model>Focus</Model>
 </Vehicle>
 <Adjustment> <Damage>
 <DamageType>NonSevere</DamageType>
 <DamageCode>2</DamageCode>
 </Damage> </Adjustment>
</Claim>

The runtime folder hierarchy shown in Figure 2 is automatically
generated at run time when it is accessed.
By binding $veh to a Vehicle element, $veh/Make and
$veh/Model refer to the make and the model of the same vehicle.
Therefore the proper relationship among the folders is maintained.
Here is the query which locates the documents under the
/Status.In-process/Make.Ford/Model.Focus folder:
for $src in collection(“Claims”),
 $veh in $src/Claim/Vehicle
where $src/Claim/Status = “In-process”
 and $veh/Make = “Ford” and $veh/Model = “Focus”

return $src

Figure 2 A runtime folder hierarchy example

3. Advanced Operations in Hubble
Two advanced operations are supported in Hubble. The first one
enables users to navigate or browse runtime folder hierarchy
along multiple folder paths. The second one allows folder
operations to be applied to more than one document collection.

3.1 Multi-Path Navigation
Conventional navigation on a folder hierarchy allows users to
follow a single path of folders and examine documents one folder
at a time. However, users may be interested in the common subset
of documents along multiple paths. We call this type of
navigation multi-path navigation. During multi-path navigation,
users can define set operations on the multiple folders. There are
two sensible semantics for a set operation on multiple runtime
folders: the instance-based semantics, and the definition-based
semantics.

3.2 Advanced Operations on Multi-Collections
In the design so far, the runtime folders in which a document is
contained are entirely determined by the content in the document
itself. However, other documents may hold related information
that will help in categorization. Furthermore, users may want to
browse into related documents which are themselves well
categorized. To satisfy these requirements, our design also
supports folder definitions to not only reference XML documents
in other collections, but also traverse to documents in different
collections.

4. Conclusion
This paper describes a flexible and powerful dynamic folder
technology, termed Hubble, which peeks deep into the detail of
XML documents to precisely categorize or group the documents.
Besides supporting basic folder operations, Hubble also provides
a set of advanced functionalities for organizing and categorizing
documents such as multi-path navigation and folder traversal
across multiple document collections. Our preliminary experiment
shows that Hubble is both efficient and scalable. With the
advanced functionality and efficient operations, Hubble is a
viable technology for automatically categorizing XML document
collections or web pages as well as dynamically building
folder/directory hierarchies for XML documents.

5. References
[1] Biblioscape. http://www.biblioscape.com/
[2] J. Eder, A. Krumpholz, A. Biliris, E. Panagos. Self-

maintained Folder Hierarchies as Document Repositories.
Int'l Conference on Digital Libraries: Research and
Practice, Kyoto, Japan, November 2000.

[3] Lotus Notes, http://www.lotus.com/notes
[4] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J.

Robie, J. Siméon. XQuery http://www.w3.org/TR/xquery/

Status.
In-process

/

Type.
NonSevere

Code.
2

Make.
Honda

Model.
Focus

Model.
Accord

Make.
Ford

/

Statu
s

Make Type

Definition:
(Status, {($src,collection(“Claims”), $src/Claim/Status})
(Make, {($veh, $src/Claim/Vehicle), $veh/Make})
(Model, {null, $veh/Model})
(Type, {($dam, $src/Claim//Damage), $dam/DamageType})
(Code, {null, $dam/DamagaCode})

Model Code

1065

