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ABSTRACT
The correctness of the Z semantics of OWL is the theoretical
foundation of using software engineering techniques to verify
Web ontologies. As OWL and Z are based on different logical
systems, we use institutions to represent their underlying
logical systems and use institution morphisms to prove the
correctness of the Z semantics for OWL DL.

Categories and Subject Descriptors
F.4 [MATHEMATICAL LOGIC AND FORMAL LAN-

GUAGES]: Miscellaneous; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Rep-
resentation languages

General Terms
Languages, Theory, Verification
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1. INTRODUCTION
In our previous works [2], we proposed to use software

engineering techniques in a combined approach to verify the
correctness of Web ontologies. The validity of the combined
approach relies on the correctness of the Z semantics of the
ontology language. As OWL and Z are based on different
logical systems (description logics and first-order logic), the
proof of the correctness requires a high-level device that is
able to represent and relate different logical systems.

The notion of institutions [4] was introduced to formalize
the concept of “logical systems”. Institution morphisms [3]
captures the migration between logical systems. In this pa-
per, we prove the correctness of the Z semantics 1 for OWL
DL using institutions and institution morphisms, by repre-
senting the underlying logical systems of OWL DL and Z as
institutions and applying institution comorphisms.

2. THE OWL INSTITUTION O
We recall from [5] the definition of the institution formal-

izing the logic OWL DL. The OWL institution O is given by

1The semantics can be found at http://www.comp.nus.edu.
sg/~liyf/OWL2Z.tex
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O = (Sign(O), sen(O), Mod(O), |=O). The definition of O

follows mainly the lines described in [6]. The use of the in-
stitution theory offers several significant advantages: ability
to work with structured ontologies, use of constraints to dis-
tinguish between OWL DL and OWL Full ontologies, and a
solid foundation for tools extending, linking OWL languages
with other formalisms similar to those presented in [2].

Briefly, an OWL signature consists of a quadruple O =
(C, R, U, I), where C is the set of concept (class) names, R

and U are the sets of individual-valued and data-valued prop-
erty names, respectively, and I is the set of individual names.

Given an OWL signature, an O-structure (model) is a
tuple A = (∆A, [[ ]]

A
, ResA, resA) consisting of a set of

resources ResA, a subset ∆A ⊆ ResA called domain, a
function resA : N (O) ∪ D → ResA associating a resource
with each name in O or D, and an interpretation function
[[ ]]

A
: C ∪ R ∪ U → P(Res) ∪ P(Res) × P(Res).

The set of O-sentences is defined by:

F ::= C v C | C ≡ C | Disjoint(C, . . . , C)

| Tr(R) | R v R | R ≡ R

| U v U | U ≡ U

| o : C | (o, o′) : R | (o, v) : U | o ≡ o ′ | o 6≡ o′

where o and o′ range over individuals names, v ranges over
data values, C ranges over OWL class descriptions and re-
strictions and U and R range over datatype- and object-
properties, respectively.

The details of the satisfaction relation can be found in [5].

3. THE INSTITUTION Z
We briefly recall from [1] the institution Z, formalizing

the logic underlying the specification language Z.
A Z signature Z is a triple (G, Op, τ ) where G is the set

of the given-set names, Op is a set of the identifiers, and τ

is a function mapping the names in Op into types T (G).
Given a Z signature Z = (G, Op, τ ), a Z-structure (model)

is a pair (AG ,AOp) where AG is a functor from G, viewed
as a discrete category, to Set, and AOp is a set {(o, v) | o ∈
Op} where v ∈ AG(τ (o)). The functor AG is the standard
extension of AG to AG : T (G) → Set.

Given a Z signature Z, the set of Z-sentences P are de-
fined by:

P ::= true | false | E ∈ E | E = E | ¬ P | P ∨ P | P ∧ P

| P ⇒ P | ∀S .P | ∃ S .P

where E and S represent the sets of Z-expressions and
Z-schema-expressions, respectively.
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The details of the Z environment, the satisfaction relation
and the use of mathematical toolkit can be found in [1].

4. ENCODING O IN Z
The main idea is to associate a Z specification Φ(O,F )

with each OWL specification (O,F ) such that an (O,F )-
model can be extracted from each Φ(O, F )-model. The con-
struction of Φ(O, F ) is given in two steps: we first associate
a Z specification Φ(O) with each OWL signature O and
then we add to it the sentences F translated via a natural
transformation.

Since Φ(O,F ) can be seen as a Z semantics of (O,F ),

it includes a distinct subspecification (Z∅,P∅) defining the
main OWL concepts and the operations over sets. More
precisely, we consider (Z∅,P∅) as being the vertex of the
colimit having as base the standard library, the specification
of the data types, together with the Z specification about
OWL DL [5].

We define Φ� : Sign(O) → Sign(Z) as follows. Let O =
(C, R, U, I) be an OWL signature. Then Φ�(O) = (G, Op, τ )
is defined as follows:

G = G∅;

Op = Op∅ ∪ C ∪ R ∪ U ∪ I;

τ (C ) = Resource for each C ∈ C,

τ (R) = Resource for each R ∈ R,

τ (U ) = Resource for each U ∈ U,

τ (o) = Resource for each o ∈ I.

If ϕ : O → O′ is an OWL signature morphism and Φ�(O) =

(G∅,Op, τ ) and Φ�(O′) = (G∅,Op′, τ ′), then Φ�(ϕ) : Φ(O) →

Φ(O′) is the Z signature morphism (id : G∅ → G∅, Φ�(ϕ)op :
Op → Op′) such that Φ�(ϕ)Op is the identity over the subset

Op∅ and Φ�(ϕ)op(N ) = ϕ(N ) for each name N in O.
We extend Φ� to Φ : Sign(O) → Th(Z) by defining Φ(O) =

(Φ�(O),P), where P is P∅ together with the following sen-
tences:

{C ∈ Class) | C ∈ C} ∪

{R ∈ ObjectProperty | R ∈ R} ∪

{U ∈ DatatypeProperty | U ∈ U} ∪

{o ∈ Individual | o ∈ I}.

If O is an OWL signature, then
αO : sen(O)(O) → sen(Z)(Φ(O))

is defined by:

αO(⊥) = Nothing, αO(>) = Thing,

αO(N ) = N for each name N in O

αO(C1 u C2) = intersectionOf(αO(C1), αO(C2)),

. . .

αO(∀R.C ) = allValuesFrom(αO(R), αO(C )),

. . .

αO(E ) = {αO(e) | e ∈ E}.

Lemma 1. α = {αO | O ∈ Sign(O)} is a natural trans-
formation α : sen(O) ⇒ Φ�; sen(Z). 2

If O = (C, R, U, I) is an OWL signature and A′ = (A′
G ,A′

Op)
a Φ�(O)-model, then βO(A′) is the O-model A = (∆A, [[ ]]

A
,

ResA, resA) defined as follows:

2The details of the proofs of this and following lemmas and
theorem can be found in [5].

ResA = A′
G(Resource),

resA(N ) = v where (N , v) ∈ A′
Op for each name N∈O,

∆A = v where (Thing, v) ∈ A′
Op ,

if C ∈ C, then [[C ]]
A

= vC where (instances, v) ∈
A′

Op and (C , vC ) ∈ v ,
if R ∈ R, then [[R]]

A
= vR where (subVal, v) ∈ A′

Op

and (R, vR) ∈ v ,
if U ∈ U, then [[U ]]A = vU where (subDVal, v) ∈ A′

Op

and (U , vU ) ∈ v .

where instances and subVal are the corresponding expan-
sion functions. A is indeed an O-model. For instance, if
(instances, v) ∈ A′

Op , then v is the graph of the func-
tion defined in A′ by instances and vC is just the value
of this function for the argument C . Since τ ∅(instances) =
P(Resource×P(Resource)), it follows that vC ⊆ A′

G(Resource).

We obtain [[C ]]
A

⊆ ∆A applying the sentences in P∅. We
extend βO to a functor βO : Mod′(Φ�(O)) → Mod(O) as fol-
lows: if h : A′ → B ′ is a Φ�(O)-homomorphism, then βO(h)
is the O-homomorphism βO(h) : βO(A′) → βO(B ′) given by
βO(h) = hResource .

Lemma 2. β = {βO | O ∈ Sign(O)} is a natural trans-
formation β : Φ�op ; Mod(Z) ⇒ Mod(O).

Theorem 1. (Φ, α, β) : O → Z is a simple theoroidal
comorphism.

5. CONCLUSION
In this paper, we demonstrated the soundness of the Z se-

mantics for OWL through the use of institution morphisms.
This allows us to use Z reasoners for proving properties of
OWL ontologies. If e is a property of the OWL ontology
(O,F ) and we prove that the Z-encoding of (O,F ) satisfies
the translation of e, αO(e), then (O,F ) satisfies e by the
satisfaction condition from the definition of the comorphism.

The data type is a parameter for the OWL institution.
This allows to use the built-in Z data types for proving
properties of the OWL ontologies. The correctness of the
properties is then preserved by the institution morphism in-
duced by the translation of the data type.

The paper exhibits also a practical way to put at work the
theoretical results concerning the migration between logical
systems.
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[3] J. Goguen and G. Roşu. Institution morphisms. Formal
Aspects of Computing, 2002.

[4] J. A. Goguen and R. M. Burstall. Introducing institutions.
In Proc. Logics of Programming Workshop, number 164 in
Lect. Notes in Comput. Sci., pages 221–256. Springer-Verlag,
1984.

[5] D. Lucanu, Y. F. Li, and J. S. Dong. Web Ontology
Verification and Analysis in the Z Framework. Technical
Report TR 05-01, University “Alexandru Ioan Cuza” of Iaşi,
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