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ABSTRACT
Autonomics or self-reorganization becomes pertinent for web-
sites serving a large number of users with highly varying
workloads. An important component of self-adaptation is
to model the behaviour of users and adapt accordingly. This
paper proposes a learning-automata based technique for model
discovery. User access patterns are used to construct an
FSM model of user behaviour that in turn is used for pre-
diction and prefetching. The proposed technique uses a gen-
eralization algorithm to classify behaviour patterns into a
small number of generalized classes. It has been tested on
both synthetic and live data-sets and has shown a prediction
hit-rate of up to 89% on a real web-site.

Categories and Subject Descriptors: I.2.6 Comput-
ing methodologies Artificial Intelligence [Learning], I.5.1 Com-
puting methodologies Pattern Recognition [Models]

Keywords: Autonomic website, Learning automata, Gen-
eralization

1. INTRODUCTION
Large websites are faced with the problem of highly vary-

ing user loads. A similar problem occurs in a proxy server,
where documents need to be prefetched to improve perfor-
mance. Both these issues involve the problem of “user mod-
eling.” Most of the currently existing techniques have the
following issues: they either require supervision for learn-
ing user behaviour and/or ignore the history with which a
given page is reached. In our approach, a technique based
on learning automata (also known as Grammatical Infer-
ence (GI)) is proposed. The learning-automata is modeled
as a Finite State Machine (FSM) based on a set of observed
strings which can explain the general class of behaviours
exemplified by the strings.

Grammatical inference is a technique of inferring the gram-
mar of a language given a few sample strings. An important
aspect of GI is generalization. A model is much smaller (and
hence more “general”) than the unfolded set of behaviours
that it can generate. The generalization method proposed
is an extension of a method called “Shortest Run General-
ization Algorithm (SRA)” proposed in [3].
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2. EXTENDED SRA
In the extended SRA, generalization is based on the fol-

lowing rule: If a pattern r repeats in the range [p, p + k],
where p is the observed minimum number of occurrences for
the pattern and k is a configurable parameter; then gener-
alize it to the regular expression: (rp

· r∗).
When the first string is encountered, an FSM is con-

structed by embedding hypothetical states on either sides
of all symbols. The transition symbols between the states
are the symbols encountered in the string. For each edge
t, its transition probability (denoted by pt) is set to 1. For
each edge t, the count of the number of strings traversing t

(denoted by ct) is also set to 1.
For subsequent strings the FSM construction process is as

follows:

1. Begin from the start state and traverse the state ma-
chine based on the input sequence as long as there is a
path from the current state on the given alphabet. If
there is no corresponding transition, branch out of the
FSM and create new states and corresponding transi-
tions. For each transition t increment ct by 1

2. For each transition t = (sa, sb), sa, sb ∈ S calculate
transition probability as pt = ct

Σc(sa,∗)
, where (sa, ∗)

denotes the set of all edges from state sa to any other
state.

Once the new string is assimilated into the FSM by the
above steps, the FSM is either generalized immediately (called
“generalize as you go”) or the generalization is performed af-
ter all input strings have been assimilated (called “general-
ize at the end”). In either case, the generalization algorithm
that is used is the same as explained below.

Extended SRA: The process of generalization comprises
of two algorithms: a “backward sweep” followed by a “for-
ward sweep”. The backward sweep is as follows:
Algorithm: Backward sweep:

1. Combine the different accepting states generated by
the different strings into a single state f .

2. A p-tail represents a suffix of any path of length p

leading to the end state. If there are k or more p-tails
leading into f , merge all corresponding states of these
tails. Here, k is a configurable parameter called the
generalization threshold that determines when a set of
observations is “good enough” to generalize.
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3. Suppose s
a
→ s1 and s′

a
→ s′1 are two transitions in

the FSM where s is to be merged with s′ and s1 is
to be merged with s′1. In such cases, set the count of
the new transition to be the sum of the count of each
individual merged transitions. Hence c({s,s′},{s1,s′1})

=
c(s,s1) + c(s′,s′1).

4. Proceed backwards on each incoming edge and jump
to step 2 to look for any more tails to merge.

When states are merged backwards, it may introduce non-
deterministic transitions, where a single symbol may have
more than one outgoing edge from a given state. The non-
determinism in the transitions are eliminated in the forward
sweep.
Algorithm: Forward sweep:

1. Start from the start state and traverse the FSM in a
depth first fashion

2. For each state s having a non-deterministic transition
on a given input symbol a, merge all the states reach-
able by reading a in s.

3. For every merged transition t = t1 + t2, set the count
ct = ct1 + ct2

After the forward sweep is performed, probabilities of each
transition are calculated based on the new count values. The
forward sweep may sometimes introduce states having tails
crossing the generalization threshold k. These are not re-
moved immediately, but are handled whenever the FSM is
generalized the next time.
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Figure 1: Generalization with k = 3

Figure 1 shows a generalization process with a threshold
k set to 3. Generalization does not happen until at least 3
evidences are found for a given pattern. A more detailed
treatment of the SRA algorithm alongwith algorithm anal-
ysis, correctness proofs and literature survey may be found
in [2].

3. PREFETCHING AND CACHING BASED
ON LEARNING AUTOMATA

An important performance related issue in proxy servers
is to predict user behaviours and perform prefetching and
caching of web pages that the users are likely to visit. A
prefetching scheme based on the SRA algorithm has been
implemented in a proxy server.

The algorithm was tested on both synthetic and real-life
data. Performance analysis on live data was carried out
on two datasets: (a). On benchmark test logs provided by
Perkowitz et al [1], (b). On traversal logs from the proxy
server under the domain www.iiitb.ac.in.

The first data set was used as is, while the second data set
was cleaned to remove requests from robots, viruses, etc. A
detailed description of the performance experiment is avail-
able from [2]. Effectiveness of the state machine was mea-
sured by predicting the next step of user behaviour at each
step and calculating the “hit ratio” of our predictions. The
hit ratio of a user session is the ratio of number of correct
predictions and the total number of links the user traversed
in the session.

Figure 2 shows how the hit ratio changed as a function of
the number of user sessions processed for the two different
scenarios.

Figure 2: Average Hit ratio Vs Number of Strings

4. CONCLUSIONS
SRA presents a simple algorithm that can build usage

models on the fly, in polynomial time. Experiments on real-
life data sets have yielded promising results. However, ad-
equate configuration needs to be performed to the learn-
ing machine before deployment in a real-world context. As
shown by the performance results, accuracy of the generated
model over a cleaned data set can be much higher than over
an uncleaned data set.
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