Verify Feature Models using Prot

Hai Wang
The University of Manchester, UK

hwang@cs.man.ac.uk

Jing Sun
The University of Auckland, New Zealand

j.sun@cs.auckland.ac.nz

ABSTRACT

Feature models are widely used in domain engineering to
capture common and variant features among systems in a
particular domain. However, the lack of a widely-adopted
means of precisely representing and formally verifying fea-
ture models has hindered the development of this area. This
paper presents an approach to modeling and verifying fea-
ture diagrams using Semantic Web ontologies.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering; 1.2.4 [Artificial Intelligence|: Knowl-
edge Representation Formalisms and Methods— Represen-
tation languages

General Terms

Languages, Verification

Keywords
Semantic Web, OWL, Ontologies, Feature Modeling

INTRODUCTION

Domain engineering, which forms a basis for software prod-
uct line practices, is a software reuse approach that focuses
on a particular application domain. Feature modeling, as
“the greatest contribution of domain engineering to software
engineering” [1], plays an important role in domain engineer-
ing. Quite a number of feature-based reuse approaches have
been proposed. However, there is lack of methods and tools
that can support automated analysis over a feature model.
Such methods and tools should help us check the correctness
of a particular feature configuration based on the constraints
specified in the feature model.

Semantic Web has emerged as the next generation of the
Web since the past few years. We can see that there is a
strong similarity between Semantic Web ontology analysis
and feature modeling - both of which represent concepts
in a particular domain and define how various properties
relate them. Hence, we believe that Semantic Web can play
important roles in domain engineering.

1.

Copyright is held by the author/owner.
WM 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

1038

egée-OWL

Yuan Fang Li
National University of Singapore

liyf@comp.nus.edu.sg

Hongyu Zhang
RMIT University, Australia

hongyu@cs.rmit.edu.au

In this paper, we explore the synergy of domain engineer-
ing and Semantic Web. We propose using Semantic Web
language and tools to verify feature models in a domain en-
gineering context.

2. OVERVIEW

2.1 Feature modeling

A feature a distinguishable characteristic of a concept that
is relevant to some stakeholders [2]. Conceptual relation-
ships among features can be expressed by a feature model
as proposed by Kang et al. [4]. A feature model consists of
a feature diagram and other associated information (such as
rationale, constraints and dependency rules). A feature dia-
gram provides a graphical tree-like notation that shows the
hierarchical organization of features. The root of the tree
represents a concept node. All other nodes represent dif-
ferent types of features. In a feature model, there are four
commonly found feature types — ‘mandatory’, ‘optional’, ‘al-
ternative and ‘or’. A domain can be modeled as a concept.

Feature diagrams sometimes cannot capture all the con-
straints among the features. We have identified two addi-
tional relations among features: ‘requires’, which means that
the presence of some features in a configuration requires the
presence of some other features; and ‘excludes’, which means
that the presence of some feature excludes the presence of
some other features.

3. FEATURE MODELING USING OWL

In this Section, we describe how to model various feature
relations using OWL language constructs. Our presentation
of the OWL encoding will be divided into two parts — fea-
ture type modeling and feature configuration modeling. The
feature modeling in OWL are given in a syntax similar to
the “DL syntax” given in [3].

3.1 Conceptual Modeling

Before we model the different feature relations in a fea-
ture diagram, we need to build the OWL ontology for the
various nodes and edges in the diagram. It was constructed
as follows. Each node (concept or feature) in the feature di-
agram is modeled as an OWL class. And for each of the
nodes, we create a Rule class. This Rule class has two
kinds of conditions: Firstly, a necessary and sufficient (NS,
EquivalentClass) condition, using an existential restriction

to bind the Rule node to the corresponding feature node in
the diagram; and Secondly, a number of (possibly 0) nec-
essary (N, subClass0f) constraints, serving two purposes —
to specify how each of its child features are related to this
node, capturing the various relations between features and
to specify how this feature node is constrained by other fea-
tures. Lastly, the root concept and features in a feature
diagram are inter-related by various feature relations, rep-
resented by different edge types in the diagram. In our OWL
model, for each of these edges, we create an object-property.
We assert that the range of the property is the respective
feature class.

For a parent feature G and its child features Fi,..., Fy,
the initial modeling above produces the following ontology.
Note that the symbol ran denotes the range of a property.

G C Thing
GRule C Thing

hasG C ObjectProperty
ran hasG = G

GRule = hasG G

F1 C Thing

F1 Rule C Thing hasF1 C ObjectProperty
ran hasFy = Fy

F1 Rule = hasF, Fi
G#F;,for1<i<mn

Fi #Fj,for1<i,j<nAi#j

Now we are ready to model the feature relations using
the ontology. We use the ‘Mandatory’ feature type as the
example in this paper.

A mandatory feature is included if its parent feature is in-
cluded For each of the mandatory features Fi, ..., F;, of a par-
ent feature GG, we use one N constraints in GRule to model
it. It is a someValuesFrom restriction on hasF;, stating that
each instance of the rule class must have some instance of
F; class for hasF;. The following ontology fragment shows
the modeling of mandatory feature set and parent feature

G.

GRule C hasFy, F1 GRule C hasF, F,

Other feature types can be modeled in a similar way.

3.2 \Verifying Feature Configuration in OWL

A feature configuration is a set of features that an in-
stance of a concept may hold. We model the concept node
in the configuration as a subclass of the rule class for the
root in a feature diagram and use an existential restriction
for each feature included in the configuration. For each fea-
ture present in a feature diagram but not in its configura-
tion, we use a “cardinality = 0” restriction to prevent the
reasoning engine from inferring the existence of this feature
in the configuration. This is necessary because of the Open
World Assumption adopted by OWL. We make the concept
class to be equivalent (NS condition) to the conjunction of
the above constraints.

For a concept instance C derived from a feature diagram
with root concept G and a set of features F'1,..., F,, if as-

suming that Fi, ..., F; appear in the configuration of C' and
Fit1,..., F, do not, a feature configuration can be modeled
as follows.

C C GRule

C =[] (FhasF; F;, for 1 <j <) n
[1 (hasF, =0, for i <k <mn)

1039

The feature configuration is constructed as a separate on-
tology and the reasoning engine is invoked to check its con-
sistency. The configuration is valid if the ontology is checked
to be consistent with respect to the feature diagram ontol-
ogy. Fig. 1 shows that we use Protégé-OWL and RACER
to successfully detect the inconsistence in a ‘Graph Product
Line’ (GPL) feature configuration.

[RlceL_Probe protégé 3.0 beta (fils:\D:\Acad

File Edi Project OWL Wizards Co
3@ B

(5 OWLClasses |

FOR PROJECT: @ GPL Pro...

ASSERTED HIERARCHY:Z Jg

D owiThing

Computing inconsistent conce pts: Updating Protege-OWL

D epLagortims
(G
©opLers

RDFS:COMMENT:

E |
Reasoner log
L reasoner

= » Time 1o tiear knowledgebase = 0.016 seconds
Asserted |[Inferred |

ASSERTED CONDITIONS:

(©)6PL ConnectedRule
DepLoye
(© GPLCycleRule
©epLoFE
(©)GPLOFSRule
(D) PLDirected
© GPLDiretedRuIE
©epLoPL

@ (©GPLGPLRUE

@€

©epLGraptTye

) GPL GraptTypeRule

* Time for DIG comversion = 0.047 seconds
* Time 1o update reasoner = 0.594 seconds
* Time to synchronize = 0.672 seconds
@ # Check concept consistency
* Time to build query = 0.015 seconds
* Time 1o send and receive from reasoner = 0.157 seconds
9 # Inconsistent concepts
* Time fo update Protege-OWL = 0.031 seconds
* Total time: 0.953 seconds

33 GPLhasAlgaritims GRLAIgarit
{33 6PLhasBFS OPLEFS

33 GPLhasConnected GPLConne
=) GPLhasCycle = 0

=) GPLhasDFS=0
(=) GPLhasDirerted =0
3)3 6PLnasGraphType GPLGrapt
=) OPLhasMST=0

|33 GRLhasNumber GRLNumber
5)3 GPLhassearch GPL:Search

=) GPLhasghottest=0
33 GPLhasStronghyGonn

& B

ted 6P

R

Figure 1: RACER detects an inconsistency.

4. CONCLUSION

In this paper, we propose a Semantic Web approach for
feature modeling and verification. Feature model and con-
figuration verification is an important task in domain engi-
neering. With the growth of the number of features in a
feature model, manual checking of validity is very laborious
and error-prone. As OWL has a formal and rigorous seman-
tical basis and the decidability of OWL DL, fully automated
analysis is achievable. Also as OWL DL reasoning engines
are designed to handle large-scale knowledge bases, efficient
and effective analysis of large feature models are possible.

5. REFERENCES

[1] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, MA., 2000.

M. Simos et al. Software technology for adaptable
reliable system (STARS) organization domain
modeling (ODM) guidebook version 2.0. Technical
Report STARS-VC-A025/001/00, Lockheed Martin
Tactical Defense Systems, Manassas, VA, 1996.

I. Horrocks, P. F. Patel-Schneider, and F. van
Harmelen. From SHZQ and RDF to OWL: The
making of a web ontology language. J. of Web
Semantics, 1(1):7-26, 2003.

K. C. Kang, S. Cohen, J. Hess, W. Nowak, and

S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90TR-21, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA,
November 1990.

2]

