
Semantic Virtual Environments

Karsten A. Otto
Freie Universität Berlin
Institut für Informatik

Takustraße 9, 14195 Berlin, Germany

otto@inf.fu-berlin.de

ABSTRACT
Today’s Virtual Environment (VE) systems share a number
of issues with the HTML-based World Wide Web. Their
content is usually designed for presentation to humans, and
thus is not suitable for machine access. This is complicated
by the large number of different data models and network
protocols in use. Accordingly, it is difficult to develop VE
software, such as agents, services, and tools.

In this paper we adopt the Semantic Web idea to the field
of virtual environments. Using the Resource Description
Framework (RDF) we establish a machine-understandable
abstraction of existing VE systems — the Semantic Vir-
tual Environments (SVE). On this basis it is possible to
develop system-independent software, which could even op-
erate across VE system boundaries.

Categories and Subject Descriptors: I.2.4 [Artificial
Intelligence]: Knowledge Representation Formalisms and Me-
thods – semantic networks

General Terms: Design, Languages

Keywords: Semantic Web, virtual environments, integra-
tion, framework, components

1. INTRODUCTION
Virtual Environments (VE) are used today for a number

of application domains, such as education, product presen-
tation, and entertainment. Each VE has particular require-
ments regarding functionality and performance. To fulfill
these requirements in the best possible manner, VE systems
utilize a variety of data models and network protocols.

This heterogeneity makes it difficult to develop new VE
software for such an environment. Each support tool, ser-
vice, and agent must be specifically tailored to fit its under-
lying VE system. It is thus generally not possible to re-use
the software for another environment, even if it belongs to
the same application domain. The problem is that the soft-
ware needs to work on the level of environment semantics,
which is however hidden behind the VE system interface.

A similar problem exists today in the HTML-based World
Wide Web. The Resource Description Framework (RDF)
was developed to expose the hidden semantics of Web pages,
in order to facilitate access for Semantic Web software. Con-
sidering the similarity, we apply the same idea to expose the
semantics of an existing virtual environment, in the form of

Copyright is held by the author/owner.
WWW 2005, May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

Transform5
Cylinder4

Transform4
Cylinder3

Transform3
Cylinder2

Transform2
Cylinder1

World
Transform1

Box1

tabeltop

Box2
Transform6

book

legs

Figure 1: World Rendering and Scene Tree

a Semantic Virtual Environment (SVE). For this purpose,
we need to describe both the world model and communi-
cation channels of its underlying VE system in a machine-
understandable fashion.

2. WORLD MODEL
The world model represents the contents of a virtual envi-

ronment, typically with lots of detail for realistic graphical
rendering. Figure 1 shows an example. A user can easily in-
terpret the rendering via the human senses, to form a mental
model of its meaning: A book lying on a table.

In contrast, SVE software lacks the human preceptive
abilities, and will likely find it difficult to derive task-relevant
information from the pixels of a rendering. It can only work
with the scene tree itself, which states that four cylinders
and a box are spatially located relative to another box. It
is not clear that the combination of Cylinder1-4 and Box1

is supposed to represent a table, or that Box2 (the book) is
actually a separate object. We must describe all this explic-
itly in the SVE description, which plays the same role for
SVE software as the mental model does for a human user.

Within the SVE description, we model the SVE itself and
its contents as RDF resources, deriving URIs from internal
identifiers (names or numbers) of the world model if possi-
ble. Figure 2 shows the result. The environment resource
#myenv serves as starting point for describing the SVE. In
particular, its sve:channel property refers to the associated
communication channel #mychan. This in turn specifies the
address information via sve:host and sve:port, as well as
the protocol via rdf:type and an appropriate RDFS class.

The SVE resource also provides the interesting possibil-
ity of linking environments together. A link may simply be
an rdfs:seeAlso property, or a more complex relationship
describing a detailed link role and relative spatial arrange-
ment. System-independent SVE software could use such
links to navigate a web of related environments.

Finally, the SVE resource serves as starting point for en-

1036



sve:channel

sve:transform sve:transform
sve:origin

sve:origin

#mychan

#table #book

#trans1 #trans6

#myenv
sve:contains sve:contains

Figure 2: SVE Description (simplified)

vironment content discovery. It uses multiple sve:contains

properties for this purpose; each refers to an RDF resource
representing a content object. Other (derived) properties
may also indicate relationships of a more specific nature.

The description of the content objects is an important as-
pect of the SVE description, since this enables SVE software
to find task-relevant information. We can derive part of it
from the existing world model. In particular, the transfor-
mation (position, orientation, size) of an object is of equal
importance to both rendering and SVE software. We then
use the extensibility of RDF to add more properties describ-
ing the object’s meaning. For example, we may annotate
#mybook with Dublin Core vocabulary terms. However, the
most important aspect of an object is its type. Human users
classify objects according to the details of their representa-
tion. We model this information explicitly using rdf:type

with RDFS classes of an appropriate application domain.
Note that modeling details and vocabularies may differ

among environments. We assume that established data in-
tegration techniques (inference rules, upper ontologies) will
enable SVE software to compensate for this, as long as there
is a sufficient degree of shared semantics.

3. ENVIRONMENT DYNAMICS
While the world model covers all static aspects of a virtual

environment, its channels handle the dynamic aspects. This
includes participation management, object movement, text
chatting, and other domain specific interactions. VE client
programs utilize the environment’s associated channels for
this purpose, exchanging corresponding protocol messages.

To truly participate in a virtual environment, SVE soft-
ware must handle these dynamic aspects as well. However,
processing the raw protocol messages is not an option, since
they are usually specific to a particular VE system. Instead,
the SVE software requires a channel adapter, which can ex-
tract all relevant information from the channel’s messages
and convert it into system-independent SVE events.

We model each SVE event as a small RDF graph of its
own, with a special RDF resource to denote the event itself.
We then describe the event in a similar manner as content
objects, by populating the event resource with properties
from an appropriate RDFS vocabulary. In particular, we
again use rdf:type as the primary tool to express the event’s
meaning. Modelling events in this way makes it very easy to
augment them with additional information during process-
ing, or to aggregate and convert them into new events. This
is important, since raw events derived from protocol mes-
sages are usually rather simple in nature, but occur very
frequently. SVE software likely needs to convert these sim-
ple events into fewer and more meaningful ones.

Figure 3 shows an example conversion chain for object
movement events. Initially, the channel adapter provides

of reference
in local frame

raw channel data

sampled over time

in world context

Channel Adapter

raw t=1 raw t=2 raw t=3

position t=1 position t=2 position t=3

"moving towards target"

movement (direction + speed)

Rules + Application Logic

Figure 3: Conversion Chain of SVE Events

a sequence of raw events, converted directly from protocol
messages. In this example, each specifies the position of
an object at a given time, in the environment’s native co-
ordinate system. As a first processing step, SVE software
may want to convert these positions to an internal frame of
reference, especially if it interacts with a number of linked
environments using different coordinate systems. The next
processing steps may then handle these position events inde-
pendent of their origin. Furthermore, few objects ”teleport”
to positions at random; most move in a more or less contin-
uous manner. By sampling the position events over time, it
is possible to discover such continuous movement, and de-
rive additional information about direction and speed of the
object. SVE software can thus convert a few position events
into a new movement event that describes this movement.
With the given direction and speed, SVE software can also
predict the path of the object in the environment. It may
use the prediction for collision detection with the content
objects specified in the SVE description. On this basis the
SVE software can convert the movement event into a contex-
tual event, which expresses the fact that the moving object
is headed towards a given world object. From this point on
event conversion is less mathematical and more semantical
in nature. In particular, SVE software may need a data
integration step again (see section 2), before it can finally
process the contextual event in its application logic.

4. IMPLEMENTATION
Clearly, it is much easier to develop application logic on

the basis of high-level contextual events, instead of having
to work with low-level raw events. Also, most conversion
steps are largely independent of the application logic; for
that matter, so is the channel adapter. It makes sense to
keep this functionality separate, in the form of independent
SVE software components. These components can easily be
re-used to drive other application logic, speeding up SVE
software development. They also facilitate the adaptation
of some given application logic to a new VE system.

We are currently developing the SeVEn platform, using
the Java-based OSGi framework to realize the SVE compo-
nents. To date it supports adapters for a few selected VE
systems (Cube and VOS), which were chosen for their differ-
ent application domains and associated network protocols.
In addition to these, we plan to analyze more of the exist-
ing virtual environment systems, and integrate them into
SeVEn by applying our SVE techniques.

For more information, please visit our Web site:
http://www.inf.fu-berlin.de/~otto/sve/

1037


