
Efficient Structural Joins with On-The-Fly Indexing

Kun-Lung Wu, Shyh-Kwei Chen and Philip S. Yu
IBM T.J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532

{klwu, skchen, psyu}@us.ibm.com

ABSTRACT
Previous work on structural joins mostly focuses on main-
taining offline indexes on disks. Most of them also require
the elements in both sets to be sorted. In this paper, we
study an on-the-fly, in-memory indexing approach to struc-
tural joins. There is no need to sort the elements or main-
tain indexes on disks. We identify the similarity between
the structural join problem and the stabbing query prob-
lem, and extend a main memory-based indexing technique
for stabbing queries to structural joins.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval—Information Search and Retrieval

General Terms
Algorithms

Keywords
Structural Joins, Containment Queries, XML

1. INTRODUCTION
Structural joins have been identified as important oper-

ations for processing containment queries [1, 2, 3, 5]. A
structural join is a set-at-a-time operation that finds all
the ancestor-descendant relationships between two node el-
ements ’in an XML document.

To process structural joins, each node element is typically
labeled with a pair of numbers: (start, end). These two
numbers are usually integers and represent the start and end
positions of the element in the document tree [3, 7]. Namely,
the interval encodes the region of the node element. With
region-encoded intervals, a structural join can be formally
defined as follows. Given two input lists, A and D, where A
contains intervals representing ancestor node elements and
D contains intervals representing descendant node elements,
a structural join is to report all pairs (a, d), where a ∈ A
and d ∈ D, such that interval a contains interval d. Most
of the previous work on structural joins assumes (i) offline
indexes are maintained on disks for both input sets or (ii)
the elements in both input sets are sorted or (iii) both.

Copyright is held by the author/owner.
WWW 2005, May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

In this paper, we study an on-the-fly indexing approach
to structural joins. This is in contrast to prior offline in-
dexing [2, 3] and non-indexed [1] approaches to structural
joins. In order for on-the-fly indexing to be effective, the
index storage cost must be low, and the index construction
time and the index search time must be fast. Low index
storage cost makes it possible to maintain the entire index
in memory, avoiding degradation in structural join due to
index I/O cost. Fast index construction and search makes
structural joins efficient.

We extend a containment-encoded interval (CEI) indexing
to perform structural joins, referred to as CEI indexing for
structural joins, or CEI-SJ. CEI was originally proposed to
index continual range queries, represented as intervals, for
efficient stream processing [6]. It has low storage cost and
fast insertion and search performance. It efficiently solves
the stabbing query problem [4], which is to find all the inter-
vals that are stabbed by any data point. We refer the origi-
nal scheme as CEI indexing for stabbing query, or CEI-SQ.
The insertion and search algorithms of CEI-SQ are simple
and easy to implement in practice.

2. CEI INDEX FOR STABBING QUERY
The idea of CEI indexing centers around a set of pre-

defined containment-coded intervals, called CEI’s. These
CEI’s are virtual construct intervals used to decompose query
intervals and store the IDs of the query intervals that use
them in the decomposition. Data values in the stream are
then used to search the CEI index. The containment rela-
tionships embedded in the CEI’s makes insertion and search
operations efficient.

Fig. 1 shows an example of CEI-SQ. It shows the decom-
position of four query intervals: Q1, Q2, Q3 and Q4 within
a specific segment containing CEI’s of c1, · · · , c7. CEI c1
contains c2 and c3; c2 = 2 ∗ c1 and c3 = 2 ∗ c1 + 1. Q1
completely covers the segment, and its ID is inserted into
c1. Q2 lies within the segment and is decomposed into c5
and c6, the largest CEI’s that can be used. Q3 also resides
within the segment, but its right endpoint coincides with a
guiding post. As a result, we can use c3, instead of c7 and c8
for decomposition. Similarly, c2 is used to decompose Q4.
As shown in Fig. 1, query IDs are inserted into the ID lists
associated with the decomposed CEI’s.

The search algorithm is simple and efficient [6]. As an
example, to search with a data value x in Fig. 1, the local
ID of the unit-length CEI that contains it is first computed.
In this case it is c5. Then, from c5, the local IDs of all its
ancestors that contain c5 can be efficiently computed via

1028

c1

c3 Q3

Q2

Q1

c2

Search is performed via the CEIs:
1. With a simple formula, we can compute c5 from x
2. From c5, we can derive c2 and c1 via containment encoding
3. Search result is in the ID lists of c1, c2, and c5

Q2

Q3
Q4x x

x xx

x x x

Query intervals

CEIs

x

Q1 xx

c1

c2 c3

c7c6c5c4

c4

c5

c6

c7

c8

Q4

Q2

Q3

CEI-based
query index

Figure 1: Example of CEI-SQ.

containment encoding. Namely, the parent of a CEI with
local ID l can be computed by bl/2c, i.e., a logical right shift
by 1 bit of l. In this case, they are c2 and c1. As a result,
the search result is contained in the 3 ID lists associated
with c1, c2 and c5. We can verify from Fig. 1 that the result
indeed contains Q1, Q2, Q3 and Q4.

3. CEI INDEX FOR STRUCTURAL JOINS
With each node element encoded with a pair of integers,

(start, end), the structural relationship between two ele-
ments can be easily determined [1, 2, 3, 7]. For any two
distinct elements u and v in a tree-structured document,
the following holds [3]: (1) The region of u is either com-
pletely before or completely after that of v; or (2) the region
of u either contains that of v or is contained by the region of
v. In other words, if there is any overlap between two inter-
vals, the overlap is complete containment. In other words,
two intervals never partially overlap with each other.

With this complete containment property between any
two node elements, the problem of structural joins of two
sets of intervals can be transformed into one that searches
the CEI index of the ancestor intervals with the start, or end,
points of the descendant intervals. In this transformation,
we treat the ancestor elements as interval queries and the
start, or end, points of all the descendant intervals as the
data points as described in Section 2. At runtime, a CEI
index is constructed on-demand for the ancestor intervals.
Then, the start points of all the descendant intervals are
used to search the CEI index. There is no need to sort the
elements or maintain any indexes on disks.

Fig. 2 shows an example of structural joins viewed as stab-
bing the ancestor intervals with descendant start points. We
draw each element interval as a horizontal line segment.
Let Ad be the set of interval IDs stabbed by the vertical
line at the start point of a descendant interval d. Because
there is no partial overlapping between any two elements,
each a ∈ Ad must completely contain d. Since the result of
searching the CEI index with the start point of a descendant
interval d contains all the ancestor intervals that cover the
point, such a search operation generates all the join output
pairs involving d. Similar arguments can be made regarding
the end point of a descendant interval.

Ancestors

Descendants1d 4d

3d
2d

5d

1a

2a
3a

4a
5a

7a

)},(),,(),,(),,(),,(),,(),,{(

output join structural

57565545323121 dadadadadadada

=

6a

Figure 2: Structural joins viewed as stabbing ances-

tor intervals with descendant start points.

CEI-SJ can be further optimized. Because node elements
are encoded with a pair of integers, representing the start
and end positions of the element in the document, no two el-
ements can share the same endpoint and the minimal length
of an interval is 1. As a result, the start point of a descen-
dant element would never stab at the portion of an ancestor
element that corresponds to a unit-length CEI. Hence, unit-
length CEI’s can be eliminated.

4. SUMMARY
CEI-SJ is an on-the-fly, main memory-based indexing ap-

proach. Centering around a set of predefined virtual con-
struct intervals whose IDs are encoded with containment re-
lationships, CEI indexing has very fast insertion and search
performance. Taking advantage of these desirable proper-
ties, our approach constructs on-the-fly a single in-memory
CEI index on the ancestor set. Structural joins are efficiently
carried out by searching the CEI index with the start (or
end) points of the descendant elements. Simulations show
that CEI-SJ substantially outperforms prior approaches.

5. REFERENCES
[1] S. Al-Khlifa, H. V. Jagadish, N. Koudas, J. M. Patel,

D. Srivastava, and Y. Wu. Structural joins: A primitive
for efficient XML query pattern matching. In Proc. of

IEEE ICDE, 2002.

[2] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and
C. Zaniolo. Efficient structural joins on indexed XML
documents. In Proc. of VLDB, 2002.

[3] H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree:
Indexing XML data for efficient structural joins. In
Proc. of IEEE ICDE, 2003.

[4] H. Samet. Design and Analysis of Spatial Data

Structures. Addison-Wesley, 1990.

[5] W. Wang, H. Jiang, H. Lu, and J. X. Yu. PBiTree
coding and efficient processing of containment joins. In
Proc. of IEEE ICDE, 2003.

[6] K.-L. Wu, S.-K. Chen, and P. S. Yu. Interval query
indexing for efficient stream processing. In Proc. of

ACM CIKM, Nov. 2004.

[7] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman. On supporting containment queries in
Relational database management systems. In Proc. of

ACM SIGMOD, 2001.

1029

