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ABSTRACT 
The semantic web is expected to have an impact at least as big 
as that of the existing HTML based web, if not greater. 
However, the challenge lays in creating this semantic web and in 
converting existing web information into the semantic paradigm.  
One of the core technologies that can help in migration process 
is automatic markup, the semantic markup of content, providing 
the semantic tags to describe the raw content. This paper 
describes a hybrid statistical and knowledge-based information 
extraction model, able to extract entities and relations at the 
sentence level.  The model attempts to retain and improve the 
high accuracy levels of knowledge-based systems while 
drastically reducing the amount of manual labor by relying on 
statistics drawn from a training corpus. The implementation of 
the model, called TEG (Trainable Extraction Grammar), can be 
adapted to any IE domain by writing a suitable set of rules in a 
SCFG (Stochastic Context Free Grammar) based extraction 
language, and training them using an annotated corpus. The 
experiments show that our hybrid approach outperforms both 
purely statistical and purely knowledge-based systems, while 
requiring orders of magnitude less manual rule writing and 
smaller amount of training data.  We also demonstrate the 
robustness of our system under conditions of poor training data 
quality. This makes the system very suitable for converting 
legacy web pages to semantic web pages. 

 
Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing; I.2.6  [Artificial Intelligence]: Learning 
 
General Terms 
Algorithms, Performance, Experimentation, Languages, Theory. 
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1. INTRODUCTION 
Knowledge engineering systems (mostly rule based) 
traditionally have been the top performers in most Information 

Extraction (IE) benchmarks, such as MUC [1], ACE  and the 
KDD CUP. Recently though, the machine learning systems 
became state-of-the-art, especially for simpler tagging problems, 
such as named entity recognition [2], or field extraction [3]. 
 
Still, the knowledge engineering approach retains some of its 
advantages.  It is focused around manually writing patterns to 
extract the entities and relations.  The patterns are naturally 
accessible to human understanding, and can be improved in a 
controllable way.  In contrast, improving the results of a pure 
machine learning system would require providing it with 
additional training data.  However, the impact of adding more 
data soon becomes infinitesimal while the cost of manually 
annotating the data grows linearly. We present a hybrid entities 
and relations extraction system, which combines the power of 
knowledge-based and statistical machine learning approaches. 
The system is based upon stochastic context-free grammars.  It 
is called TEG, for Trainable Extraction Grammar.  The rules for 
the extraction grammar are written manually, while the 
probabilities are trained from an annotated corpus.  
 

2. The TEG System 
2.1 SCFG formalism 
 
Classical definition:  A stochastic context-free grammar 
(SCFG) is a quintuple G = (T, N, S, R, P), where T is the 
alphabet of terminal symbols (tokens), N is the set of 
nonterminals, S is the starting nonterminal, R is the set of rules, 
and P : R → [0..1] defines their probabilities.  The rules have 
the form  n → s1s2…sk,  where n is a nonterminal and each si 
either token or another nonterminal.  As can be seen, SCFG is a 
usual context-free grammar with the addition of the P function. 
Similarly to a regular (non-stochastic) grammar, SCFG is said to 
generate (or accept)  a given string (sequence of tokens) if the 
string can be produced starting from a sequence containing just 
the starting symbol S, and one by one expanding nonterminals in 
the sequence using the rules from the grammar. 
 
How SCFG is used:  usually, some of the nonterminal symbols 
of a grammar correspond to meaningful language concepts, and 
the rules define the allowed syntactic relations between these 
concepts.  For instance, in a parsing problem, the nonterminals 
may include S, NP, VP, etc., and the rules would define the 
syntax of the language.  For example,  S → NP VP.  Then, when 
the grammar is built, it is used for parsing new sentences.  In 
general, grammars are ambiguous, in the sense that a given 
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string can be generated in many different ways.  With non-
stochastic grammars there is no way to compare different parse 
trees, so the only information we can gather for a given sentence 
is whether or not it is grammatical, that is whether it can be 
produced by any parse.  With SCFG, different parses have 
different probabilities, thus it is possible to find the best one, 
resolving the ambiguity. 
 
In practical applications of SCFGs, it is rarely the case that the 
rules are truly independent.  Then, the easiest way to cope with 
this problem while leaving most of the formalism intact is to let 
the probabilities P(r) be conditioned upon the context where the 
rule is applied.  If the conditioning context is chosen reasonably, 
the Viterbi algorithm still works correctly even for this more 
general problem. 
 

2.2 TEG - Using SCFG to perform IE 
 
We adopted a hybrid strategy, which we coined TEG (Trainable 
Extraction Grammars), which attempts to strike a balance 
between the two knowledge engineer chores – writing the 
extraction rules and manually tagging the documents.  In TEG, 
the knowledge engineer writes SCFG rules, which are then 
trained on the data which is available.  The powerful 
disambiguating ability of the SCFG makes writing rules a much 
simpler and cleaner task.  Furthermore, the knowledge engineer 
has the control of the generality of the rules (s)he writes, and 
consequently on the amount and the quality of the manually 
tagged training data the system would require. 
 

2.3 Syntax of a TEG rulebook 
 
A TEG rulebook consists of declarations and rules. Rules 
basically follow the classical grammar rule syntax, with a special 
construction for assigning concept attributes.  Notation shortcuts 
like “[]”, and “|” can be used for easier writing.  The 
nonterminals refered by the rules must be declared before usage.  
Some of them can be declared as output concepts, which are the 
entities, events, and facts that the system is designed to extract.  
Additionally, two classes of terminal symbols also require 
declaration:  termlists, and ngrams.  A termlist is a collection of 
terms from a single semantic category, either written explicitly 
or loaded from external source. Examples of termlists are 
countries, cities, states, genes, proteins, people first names, and 
job titles. Some linguistic concepts such as lists of prepositions 
can also be defined as termlists. Theoretically, a termlist is 
equivalent to a nonterminal symbol which has a rule for every 
term. An ngram is a more complex construction.  When used in 
a rule, it can expand to any single token.  But the probability of 
generating a given token is not fixed in the rules, but learned 
from the training dataset, and may be conditioned upon one or 
more previous tokens.  Thus, ngrams is one of the ways the 
probabilities of TEG rules can be context-dependent. The exact 
semantics of ngrams is explained in the next section. 
 
Let us see a simple meaningful example of a TEG grammar: 
 

output concept Acquisition(Acquirer, Acquired); 
ngram AdjunctWord; 
nonterminal Adjunct; 

Adjunct  :-  AdjunctWord  Adjunct  |  AdjunctWord; 
termlist AcquireTerm = acquired bought (has acquired) 
                                    (has bought); 
Acquisition  :-  Company Acquirer   [ “,”Adjunct “,” ] 
                       AcquireTerm  
                       Company Acquired; 
 

The first line defines a target relation Acquisition, which has 
two attributes, Acquirer and Acquired. Then an ngram 
AdjunctWord is defined, followed by a nonterminal Adjunct, 
which has two rules, separated by “|”, together defining Adjunct 
as a sequence of one or more AdjunctWord-s. Then a termlist 
AcquireTerm is defined, containing the main acquisition verb 
phrase. Finally, the single rule for the Acquisition concept is 
defined as a Company followed by optional Adjunct delimited 
by commas, followed by AcquireTerm and a second Company. 
The first Company is the Acquirer attribute of the output frame 
and the second is the Acquired attribute.  The final rule requires 
the existence of a defined Company concept.  The following set 
of definitions defines the concept in a manner emulating the 
behavior of a HMM entity extractor: 
 

output concept Company; 
ngram CompanyFirstWord; 
ngram CompanyWord; 
ngram CompanyLastWord; 
nonterminal CompanyNext; 
Company :- CompanyFirstWord CompanyNext | 
                  CompanyFirstWord; 
CompanyNext :- CompanyWord CompanyNext | 
                          CompanyLastWord; 

 
Finally, in order to produce a complete grammar, we need a 
starting symbol and the special nonterminal that would match 
the strings which do not belong to any of the output concepts: 
 

start Text; 
nonterminal None; 
ngram NoneWord; 
None :- NoneWord None | ; 
Text :- None Text | Company Text | Acquisition Text  ; 

 
These twenty lines of code are able to accurately find a fair 
number of Acquisitions after a very modest training.  Note, that 
the grammar is extremely ambiguous.  An ngram can match any 
token, so Company, None, and Adjunct are able to match any 
string.  Yet, using the learned probabilities, TEG is usually able 
to find the correct interpretation. 
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