
Hybrid Semantic Tagging for Information Extraction

Ronen Feldman, Benjamin Rosenfeld, Moshe Fresko

Computer Science Department

Bar-Ilan University
Ramat Gan, ISRAEL 52900
feldman@cs.biu.ac.il

Brian D. Davison

Computer Science and Engineering

Lehigh University
Bethlehem, PA USA 18015

davison (at) cse.lehigh.edu

ABSTRACT
The semantic web is expected to have an impact at least as big
as that of the existing HTML based web, if not greater.
However, the challenge lays in creating this semantic web and in
converting existing web information into the semantic paradigm.
One of the core technologies that can help in migration process
is automatic markup, the semantic markup of content, providing
the semantic tags to describe the raw content. This paper
describes a hybrid statistical and knowledge-based information
extraction model, able to extract entities and relations at the
sentence level. The model attempts to retain and improve the
high accuracy levels of knowledge-based systems while
drastically reducing the amount of manual labor by relying on
statistics drawn from a training corpus. The implementation of
the model, called TEG (Trainable Extraction Grammar), can be
adapted to any IE domain by writing a suitable set of rules in a
SCFG (Stochastic Context Free Grammar) based extraction
language, and training them using an annotated corpus. The
experiments show that our hybrid approach outperforms both
purely statistical and purely knowledge-based systems, while
requiring orders of magnitude less manual rule writing and
smaller amount of training data. We also demonstrate the
robustness of our system under conditions of poor training data
quality. This makes the system very suitable for converting
legacy web pages to semantic web pages.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation, Languages, Theory.

Keywords
Semantic Web, Text Mining, Information Extraction, HMM,
Rules Based Systems.

1. INTRODUCTION
Knowledge engineering systems (mostly rule based)
traditionally have been the top performers in most Information

Extraction (IE) benchmarks, such as MUC [1], ACE and the
KDD CUP. Recently though, the machine learning systems
became state-of-the-art, especially for simpler tagging problems,
such as named entity recognition [2], or field extraction [3].

Still, the knowledge engineering approach retains some of its
advantages. It is focused around manually writing patterns to
extract the entities and relations. The patterns are naturally
accessible to human understanding, and can be improved in a
controllable way. In contrast, improving the results of a pure
machine learning system would require providing it with
additional training data. However, the impact of adding more
data soon becomes infinitesimal while the cost of manually
annotating the data grows linearly. We present a hybrid entities
and relations extraction system, which combines the power of
knowledge-based and statistical machine learning approaches.
The system is based upon stochastic context-free grammars. It
is called TEG, for Trainable Extraction Grammar. The rules for
the extraction grammar are written manually, while the
probabilities are trained from an annotated corpus.

2. The TEG System
2.1 SCFG formalism

Classical definition: A stochastic context-free grammar
(SCFG) is a quintuple G = (T, N, S, R, P), where T is the
alphabet of terminal symbols (tokens), N is the set of
nonterminals, S is the starting nonterminal, R is the set of rules,
and P : R → [0..1] defines their probabilities. The rules have
the form n → s1s2…sk, where n is a nonterminal and each si
either token or another nonterminal. As can be seen, SCFG is a
usual context-free grammar with the addition of the P function.
Similarly to a regular (non-stochastic) grammar, SCFG is said to
generate (or accept) a given string (sequence of tokens) if the
string can be produced starting from a sequence containing just
the starting symbol S, and one by one expanding nonterminals in
the sequence using the rules from the grammar.

How SCFG is used: usually, some of the nonterminal symbols
of a grammar correspond to meaningful language concepts, and
the rules define the allowed syntactic relations between these
concepts. For instance, in a parsing problem, the nonterminals
may include S, NP, VP, etc., and the rules would define the
syntax of the language. For example, S → NP VP. Then, when
the grammar is built, it is used for parsing new sentences. In
general, grammars are ambiguous, in the sense that a given

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

1022

string can be generated in many different ways. With non-
stochastic grammars there is no way to compare different parse
trees, so the only information we can gather for a given sentence
is whether or not it is grammatical, that is whether it can be
produced by any parse. With SCFG, different parses have
different probabilities, thus it is possible to find the best one,
resolving the ambiguity.

In practical applications of SCFGs, it is rarely the case that the
rules are truly independent. Then, the easiest way to cope with
this problem while leaving most of the formalism intact is to let
the probabilities P(r) be conditioned upon the context where the
rule is applied. If the conditioning context is chosen reasonably,
the Viterbi algorithm still works correctly even for this more
general problem.

2.2 TEG - Using SCFG to perform IE

We adopted a hybrid strategy, which we coined TEG (Trainable
Extraction Grammars), which attempts to strike a balance
between the two knowledge engineer chores – writing the
extraction rules and manually tagging the documents. In TEG,
the knowledge engineer writes SCFG rules, which are then
trained on the data which is available. The powerful
disambiguating ability of the SCFG makes writing rules a much
simpler and cleaner task. Furthermore, the knowledge engineer
has the control of the generality of the rules (s)he writes, and
consequently on the amount and the quality of the manually
tagged training data the system would require.

2.3 Syntax of a TEG rulebook

A TEG rulebook consists of declarations and rules. Rules
basically follow the classical grammar rule syntax, with a special
construction for assigning concept attributes. Notation shortcuts
like “[]”, and “|” can be used for easier writing. The
nonterminals refered by the rules must be declared before usage.
Some of them can be declared as output concepts, which are the
entities, events, and facts that the system is designed to extract.
Additionally, two classes of terminal symbols also require
declaration: termlists, and ngrams. A termlist is a collection of
terms from a single semantic category, either written explicitly
or loaded from external source. Examples of termlists are
countries, cities, states, genes, proteins, people first names, and
job titles. Some linguistic concepts such as lists of prepositions
can also be defined as termlists. Theoretically, a termlist is
equivalent to a nonterminal symbol which has a rule for every
term. An ngram is a more complex construction. When used in
a rule, it can expand to any single token. But the probability of
generating a given token is not fixed in the rules, but learned
from the training dataset, and may be conditioned upon one or
more previous tokens. Thus, ngrams is one of the ways the
probabilities of TEG rules can be context-dependent. The exact
semantics of ngrams is explained in the next section.

Let us see a simple meaningful example of a TEG grammar:

output concept Acquisition(Acquirer, Acquired);
ngram AdjunctWord;
nonterminal Adjunct;

Adjunct :- AdjunctWord Adjunct | AdjunctWord;
termlist AcquireTerm = acquired bought (has acquired)
 (has bought);
Acquisition :- Company Acquirer [“,”Adjunct “,”]
 AcquireTerm
 Company Acquired;

The first line defines a target relation Acquisition, which has
two attributes, Acquirer and Acquired. Then an ngram
AdjunctWord is defined, followed by a nonterminal Adjunct,
which has two rules, separated by “|”, together defining Adjunct
as a sequence of one or more AdjunctWord-s. Then a termlist
AcquireTerm is defined, containing the main acquisition verb
phrase. Finally, the single rule for the Acquisition concept is
defined as a Company followed by optional Adjunct delimited
by commas, followed by AcquireTerm and a second Company.
The first Company is the Acquirer attribute of the output frame
and the second is the Acquired attribute. The final rule requires
the existence of a defined Company concept. The following set
of definitions defines the concept in a manner emulating the
behavior of a HMM entity extractor:

output concept Company;
ngram CompanyFirstWord;
ngram CompanyWord;
ngram CompanyLastWord;
nonterminal CompanyNext;
Company :- CompanyFirstWord CompanyNext |
 CompanyFirstWord;
CompanyNext :- CompanyWord CompanyNext |
 CompanyLastWord;

Finally, in order to produce a complete grammar, we need a
starting symbol and the special nonterminal that would match
the strings which do not belong to any of the output concepts:

start Text;
nonterminal None;
ngram NoneWord;
None :- NoneWord None | ;
Text :- None Text | Company Text | Acquisition Text ;

These twenty lines of code are able to accurately find a fair
number of Acquisitions after a very modest training. Note, that
the grammar is extremely ambiguous. An ngram can match any
token, so Company, None, and Adjunct are able to match any
string. Yet, using the learned probabilities, TEG is usually able
to find the correct interpretation.

3. REFERENCES

[1] Chinchor, N., L. Hirschman, and D. Lewis, Evaluating

Message Understanding Systems: An Analysis of the Third
Message Understanding Conference (MUC-3).
Computational Linguistics, 1994. 3(19): p. 409-449.

[2] Bikel, D.M., R. Schwartz, and R.M. Weischedel, An
Algorithm that Learns What's in a Name. Machine
Learning, 1999(34): p. 211–231.

[3] McCallum, A., D. Freitag, and F. Pereira. Maximum
Entropy Markov Models for Information Extraction and
Segmentation. In Proceedings of the 17th Int’l Conf. on
Machine Learning, 2000.

1023

