
Automatically Learning Document Taxonomies for
Hierarchical Classification

Kunal Punera
Dept. of Electrical and
Computer Engineering

University of Texas at Austin

kunal@ece.utexas.edu

Suju Rajan
Dept. of Electrical and
Computer Engineering

University of Texas at Austin

suju@ece.utexas.edu

Joydeep Ghosh
Dept. of Electrical and
Computer Engineering

University of Texas at Austin

ghosh@ece.utexas.edu

ABSTRACT
While several hierarchical classification methods have been
applied to web content, such techniques invariably rely on
a pre-defined taxonomy of documents. We propose a new
technique that extracts a suitable hierarchical structure au-
tomatically from a corpus of labeled documents. We show
that our technique groups similar classes closer together in
the tree and discovers relationships among documents that
are not encoded in the class labels. The learned taxonomy
is then used along with binary SVMs for multi-class clas-
sification. We demonstrate the efficacy of our approach by
testing it on the 20-Newsgroup dataset.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Content Analysis and In-
dexing; H.3.3 [Information Systems]: Information Search
and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Automatic taxonomy learning, Hierarchical classification

1. INTRODUCTION
Hierarchical classification algorithms have been applied to

Web documents in order to alleviate the problem of main-
taining and classifying documents in topic taxonomies. Promi-
nent existing techniques [1][3] learn from a pre-defined tax-
onomy of documents. In this paper, we introduce a new
approach that extracts the hierarchical structure automati-
cally from a corpus of labeled documents. Furthermore, we
show that our algorithm caters to the multi-modal nature of
classes often found in Web data. Since such classes contain
documents on diverse topics, they simultaneously belong in
possibly very different parts of the taxonomy. Our algo-
rithm identifies these classes and splits them, placing the
subclasses in appropriate subtrees. Once the hierarchical
structure is learned, we employ a binary SVM classifier [4]
for each non-leaf node of the tree. Our technique groups
similar classes closer to each other in the binary tree, ensur-
ing that most classification errors are made among adjacent

Copyright is held by the author/owner.
WWW 2005, May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

leaf nodes. We demonstrate on the 20-Newsgroup dataset
that our algorithm learns meaningful taxonomies with no
manual intervention.

2. APPROACH
Let {Ci}n

i=1 denote the n classes in the given dataset and
let {Di}n

i=1 indicate the corresponding sets of documents.
We want to induce a binary tree T from this data such that
each node in T corresponds to a set of classes; with the
leaf nodes corresponding to single classes. Let n(j) indicate
the jth node of T , so that n(1) is the root, and n(2 ∗ j)
and n(2 ∗ j + 1) denote the left and right children of n(j)
respectively.
At the start of the algorithm we place all the classes at

the root node. The given set of classes is first split into two
sets of classes, and each such set is partitioned recursively
until it contains only one class. The partitioning of a parent
set of classes into two is described more formally below.
Initialize the root node of the tree T as n(1) = {Ci}n

i=i.
Repeat for each non-singleton node n(j):

1. Select a set of discriminant features using the Fisher
index criteria [1].

2. For each class at this node, calculate the mean docu-
ment vector. Find the two classes whose mean vectors
are farthest from each other. Initializing with these
two centroids, cluster all the documents assigned to
the node into 2 clusters using Spherical K-Means [2].

3. For all classes Ci assigned to node n(j), let DCi1 and
DCi2 be the set of documents clustered into the clus-
ters 1 and 2 respectively.

(a) If |DCi1| > (θ ∗ |Di|) then assign class Ci and all
its documents to the left child n(2 ∗ j).

(b) If |DCi2| > (θ ∗ |Di|) then assign class Ci and all
its documents to the right child n(2 ∗ j + 1).

(c) Else create new sub-classes Ci1 and Ci2 from Ci

such that Ci1 contains documents DCi1 and Ci2

contains DCi2. Assign class Ci1 to n(2 ∗ j) and
Ci2 to n(2 ∗ j + 1).

4. Learn a SVM classifier to distinguish between the doc-
uments in the left and right child of node n(j).

The process stops when all the leaf-nodes have only one
class. Hence, we can now classify and move a test document
down the tree until it reaches a leaf node. The class at the
leaf node will be the label assigned to the document.

1010

Figure 1: The tree structure generated from the 20-
Newsgroup data

We assign a class (and all its documents) to a child node
when more than a fraction (θ) of its documents go into any
one cluster. If this is not the case, we break-up the class into
two classes as described in step 3.c of the algorithm. Both
parts of the split class point to the same class label. We
allow classes to be split since we expect that some of them
would contain documents on a diverse set of topics. There
is, however, a danger of over-training since repeated parti-
tioning of a class might lead to very specialized sub-classes.
In order to prevent this we split subclasses only when they
contain more than a β fraction of the documents of the orig-
inal class they were created from. Both parameters θ and β
can be tuned by using a validation set.

3. CASE STUDY WITH 20-NEWSGROUPS
DATA

To demonstrate our approach, we evaluated it on the 20-
Newsgroup dataset [5]. The dataset has 20 classes of roughly
1000 documents each. The data was preprocessed to remove
headers, stop words, and words that occur less than 5 times
leaving us with a vocabulary of 50736 words. 700 documents
from each class were used for learning the tree. The valida-
tion set and the test set consisted of 100 and 200 documents
respectively. For Spherical K-Means we reduced the dimen-
sionality using the Fisher Index criterion and normalized the
features by the IDF. Using the validation set we optimized
over different numbers of features. The taxonomy in Fig-
ure 1 was obtained by setting θ = 0.7, β = 0.5, Number of
features=2000. Variations in parameter values caused only
minor differences in tree structure and classification accu-
racy.
In Figure 1, leaf nodes are labeled with the correspond-

ing classes. As can be seen in the figure, Sci.Electronics,
Alt.Atheism, and Talk.Religion.Misc split up into two sub-
classes each (marked with asterisk). Table 1 lists the words
that best discriminate between these subclasses. The docu-
ments in the Talk.Religion.Misc class have two major themes:
Politics and Religion. Our algorithm splits this class into
two parts placing one each under subtree X and Y in Fig-

Class-name Split Salient words
Sci.Electronics 35% Police, Radar, Battery, Car
*Sci.Electronics 65% Email, Software, Chip, Data
Talk.Religion 40% FBI, Government, Values, Pay
*Talk.Religion 60% God, Jesus, Faith, Bible
Alt.Atheism 40% Objective, Morality, Moral
*Alt.Atheism 60% God, Religion, Faith, Bible

Table 1: Words with high fisher index for the split
classes

ure 1. Subtree X contains the classes talk.polictics.*, while
Subtree Y contains classes relating to Religion. TheAlt.Atheism
class also splits up along similar lines. The Sci.Electronics
class is bimodal too, and splits up at the root level of the
tree. One part containing documents on Computers and
the Internet falls under subtree P, which also holds all the
Comp.* classes. Similarly, the other part of Sci.Electronics
class contains documents on Automobiles and falls under
subtree Q. This validates our idea that splitting broad classes
would lead to better placement of documents in the hierar-
chy.
The SVMLight package [4] was used to train SVMs with

linear kernels for the binary problems induced at each node
of the hierarchy. The ‘C parameter’ was set as 0.1 by tun-
ing using the validation dataset. SVMs were trained on the
term frequencies of the documents. Feature selection was
not performed since it did not result in any improvement in
classification accuracy for this dataset. Previous experimen-
tal studies [5] have also shown similar findings in the context
of the One-vs-All algorithm. Our approach’s performance in
terms of F measure over the test dataset was 0.76. We also
tested a simpler version of our approach which built the hi-
erarchy without splitting classes. This gave us a F measure
of 0.73 over the test dataset.

4. CONCLUSION AND FUTURE WORK
We showed that the hierarchy reveals interesting relation-

ships between the classes. We plan to investigate how this
information can be used to obtain lower classification er-
rors between related classes. Since hierarchical classification
methods scale well with increases in data, we also intend to
experiment with larger Web datasets.

Acknowledgments: This work was supported by
NSF (Grants IIS-0307792 and IIS-0312471).

5. REFERENCES
[1] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan.
Scalable feature selection, classification and signature
generation for organizing large text databases into
hierarchical topic taxonomies. VLDB Journal: Very
Large Data Bases, 7(3):163–178, 1998.

[2] I. Dhillon, J. Fan, and Y. Guan. Efficient clustering of
very large document collections. In R. Grossman,
G. Kamath, and R. Naburu, editors, Data Mining for
Scientific and Engineering Applications. Kluwer
Academic Publishers, 2001.

[3] S. Dumais and H. Chen. Hierarchical classification of
web content. In SIGIR ’00, pages 256–263. 2000.

[4] T. Joachims. Making large-scale support vector
machine learning practical. In Advances in Kernel
Methods: Support Vector Learning, pages 169–184,
1999.

[5] J. Rennie and R. Rifkin. Improving multiclass text
classification with the support vector machine. In MIT.
AI Memo AIM-2001-026, 2001.

1011

