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ABSTRACT
Proportional slowdown differentiation (PSD) aims to main-
tain slowdown ratios between different classes of clients ac-
cording to their pre-specified differentiation parameters. In
this paper, we design a feedback controller to allocate pro-
cessing rate on Internet servers for PSD. In this approach,
the processing rate of a class is adjusted by an integral feed-
back controller according to the difference between the tar-
get slowdown ratio and the achieved one. The initial rate
class is estimated based on predicted workload using queue-
ing theory. We implement the feedback controller in an
Apache Web server. The experimental results under vari-
ous environments demonstrate the controller’s effectiveness
and robustness.

Categories and Subject Descriptors: C.4 [Computer
Systems Organization]: Performance of Systems

General Terms: Performance.

Keywords: Feedback control, Quality of service, Slowdown

1. DESIGN OF A FEEDBACK CONTROLLER
The past decade has seen a demand for provisioning of dif-

ferent levels of quality of service (QoS) on Internet servers.
Performance metric slowdown, defined as a request’s queue-
ing delay to its service time, reflects the requirement that a
request’s queueing delay is kept proportional to its service
time. Slowdown or its variant has been taken into account in
recently designed QoS-aware systems [2, 3]. These systems
mainly focus on how to minimize the average slowdown.

Let Si(k) denote the average slowdown of class i computed
at sampling period k, and δi its differentiation parameter.
For any two classes i and j, PSD requires

Si(k)

Sj(k)
=

δi

δj
, 1 ≤ i, j ≤ N. (1)

In this paper, we design and implement a feedback con-
troller for PSD. Its basic structure is shown in Figure 1. The
feedback controller is to adjust the rate allocation accord-
ing to the difference between the target slowdown ratio and
the achieved one using integral control. Thus, it is able to
eliminate the steady-state error and to avoid over-reactions
to measurement noises. We define the error associated with
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Figure 1: The structure of the feedback controller.

class i as

ei(k) = ri(k) − yi(k) =
δi(k)

δ1(k)
− Si(k)

S1(k)
. (2)

The processing rate of class i of sampling period k + 1 then
is
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+ g
�

ei(k)dk
�
·�N

i=1 1/
�

c1
ci

+ g
�

ei(k)dk
� ,

(3)

where g is the control factor.
The initial processing rate of a class can be calculated by

the rate predictor using queueing theory. Let ci denote class
i’s allocated processing rate, λi its arrival rate, and E[X] its
mean service time. In [5], we presented a rate-allocation
strategy in which the initial rate of class i is

ci = λiE[X] +
λi/δi�N

i=1 λi/δi

(1 −
N�

i=1

λiE[X]). (4)

The first part of the initial processing rate is a baseline that
prevents the class from being overloaded so as to make the
provisioning of PSD feasible. The second part is a portion
of surplus processing rate determined by the differentiation
parameter of the class and the load conditions (i.e., its nor-
malized arrival rate) controls the quality differences between
classes.

2. IMPLEMENTATION AND RESULTS
We implemented the feedback controller on Apache web

server 1.3.31 running on Linux 2.6. Apache web server is
normally executed with multiple processes (or threads). At
the start-up, a parent server process sets up listening sockets
and creates a pool of child processes. The child processes
then listen on and accept client requests from these sockets.
Since every child process in Apache web server is identical,
in the implementation, we realize the processing-rate allo-
cation by controlling the number of child processes that a
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Figure 2: The implementation structure of the feed-
back controller.

class is allocated. The implementation structure of the feed-
back controller is presented in Figure 2. It is composed of a
classifier, a rate predictor, a feedback controller, and a rate
allocator.

The classifier determines a request’s class according to
rules defined by service providers. In our implementation,
the rules are based on the request’s header information (e.g.,
IP address and port number). After being classified, a re-
quest is stored in its corresponding waiting queue. Asso-
ciated with each waiting queue is a record of traffic infor-
mation, such as arrival rate and service time. The arrival
rate is measured directly from arrived client requests. The
service time is returned from the web server and set by the
rate allocator.

The rate predictor obtains the arrival rate and service
time from waiting queues and estimates the processing rate
that a class should be allocated according to (4).

The feedback controller inferences the achieved slowdown
ratios between different classes and calculates the processing
rate of a class according to (3) by incorporating the rate
estimation from the rate predictor. It then sets the number
of allocated processes of a class in the rate allocator.

The rate allocator realizes the processing-rate allocation
calculated by the feedback controller. In our implementa-
tion, the Apache web server is modified to accept requests
from a unix domain socket. When a child process calls ac-
cept() on the unix domain socket, a signal is sent to the rate
allocator. Upon receiving such a signal, the rate allocator
scans the waiting queues to check if there is a backlogged
class whose number of allocated processes is larger than that
it is currently occupying. If such class exists, its head-of-line
request and the class type are passed to the child process
through the unix domain socket; otherwise, a flag is set.
Whenever a new request arrives, the flag is checked first
and the waiting queues are rescanned. The rate allocator
also increases a counter that records the number of occu-
pied processes by the class. After handling a request, the
child process sends the request’s service time and class type
back to the rate allocator. The rate allocator then decreases
the corresponding counter and stores the service time in the
corresponding waiting queue.

The experimental environment consisted of four PCs run-
ning on a 100 Mbps Ethernet. Each PC was a Dell Pow-
erEdge 2450 configured with dual-processor (1 GHz Pentium
III) and 512 MB main memory. We installed one Apache
web server on one PC while a commonly used web traf-
fic generator SURGE [1] ran on other PCs. The workload
of emulated requests was controlled by adjusting the total
number of concurrent user equivalents (UEs) in SURGE.
Notice that the fixed number of UEs does not affect the rep-
resentativeness of the generated web traffic [1]. In addition,
our experimental configurations are to emulate real-world
heavy-load scenarios at a small scale.
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(a) Feedback controller with different target ratios.
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(b) Performance comparison with and without feed-
back control.

Figure 3: Effectiveness of the feedback controller.

We carried out experiments to evaluate the performance
of the feedback controller under different target slowdown
ratios, different workloads, and multiple classes. Figure 3(a)
shows the 5th, 50th, and 95th percentiles of achieved slow-
down ratios. From the figure we observe that the target
ratios (2, 4, and 8) can be achieved under different work-
load conditions. We also observe that the variance of the
achieved slowdown ratios is small in relation to the targets.

The agility of the feedback controller is affected by the
control factor g. A controller with large control factor can
respond quickly to errors. It, however, may cause large os-
cillations. We built a simulator to tune g and it was set to 1
in the experiments. The tuning process is presented in [4].

We also carried out simulations to compare the perfor-
mance with feedback control and without feedback control
under different system load conditions. Figure 3(b) depicts
the percentiles of the results where the target slowdown ratio
was set to 2, 4, or 8. From the figure we observe that vari-
ance is significantly decreased with the feedback controller.
For example, when the system load is 50% and the target
ratio is 4, the difference between the 95th and the 5th per-
centiles is 3.3 and 0.43 without and with feedback controller,
respectively. It further demonstrates the effectiveness of the
feedback controller.
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