
Building an Open Source Meta-Search Engine

A. Gulli
Dipartimento di Informatica, University of Pisa

gulli@di.unipi.it

A. Signorini
University of Iowa, Computer Science

alessio-signorini@uiowa.edu

ABSTRACT
In this short paper we introduce Helios, a flexible and effi-
cient open source meta-search engine. Helios currently runs
on the top of 18 search engines (in Web, Books, News, and
Academic publication domains), but additional search en-
gines can be easily plugged in. We also report some perfor-
mance mesured during its development.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval

General Terms
Design, Experimentation, Measurement

Keywords
Meta Search Engines, Open Source

1. INTRODUCTION
A recent study [8] estimated the size of publicly indexable

web at more than 11.5 billion pages. Furthermore, the index
intersection between the largest available search engines –
namely Google, Yahoo!, MSN, Ask/Teoma – is estimated to
be 28.8%. A study [1] showed that 44% of searchers regularly
use only a single search engine, 48% use just two or three
search engines, and only 7% use more than three. Another
study conducted by Jux2 [2] pointed out that Google and
Yahoo! share only 3.8 of their top 10 results, among the 500
most popular search terms. In a separate test of 91 random
searches, they also found that Google and Yahoo! share only
23% of their top 100 results. They claim that “If the search
engines are providing top results that are very different from
each other, then by using only one search engine, Internet
searchers are potentially missing relevant results”.

As a consequence, meta-search engines are useful for many
reasons. For instance, they allow (i) integration of search
results provided by different engines, (ii) comparison of rank
positions, (iii) advanced search features on top of commodity
engines (e.g. Clustering, QA and Personalized results).

There are many industrial meta-search engines: Vivisimo
and Dogpile are commercial clustering engines that group
results drawn on-the-fly from other remote search engines.
Jux2 is an industrial meta-search engine that compares, on
three search engines, the different rank positions assumed
by a set of URLs. A list of meta-search engines is in [3].

Copyright is held by the author/owner.
WWW 2005,May 10–14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

In the academic literature, there are many proposals for
meta-searching. [9] proposes to work by downloading the
individual documents, rather than working with the list of
snippets returned by search engines. This approach has ev-
ident performance problems. [10] reports a survey of tech-
niques that have been proposed to tackle several underlying
challenges in building a meta-search engine. [5] discusses
methods for improving answer relevance in meta-search en-
gines. [11, 12, 6] propose several strategies for combining
the ranked results returned from multiple search engines.

Our contribution: In this short paper we introduce Helios,
a complete meta-search engine for retrieving, parsing, merg-
ing, and reporting results provided by many search engines.
Our contributions are the followings:
(1) Helios is a full working open-source meta-search engine
available at http://www.cs.uiowa.edu/∼asignori/helios/. Dif-
ferent research groups can use the system to interact with
many engines and develop their services on the top of them
(provided that they don’t violate any licence of use). Helios
is currently used by a number of academic research projects
such as a personalized web-snippets clustering engine [7], a
rank comparison engine [4], and an experiment for measur-
ing the size of the Web [8];
(2) Helios supports a set of 18 engines on Web, News, Books,
and Academic Publications domain (A9, About, AllTheWeb,
Altavista, AOL Search, eSpotting, FindWhat, Gigablast, Google,
LookSmart, Mozdex, Msn, Overture, Ask/Teoma, Yahoo!, Google
News, Google Scholar, and Yahoo News). Moreover, it is easy
to plug-in a new engine;
(3) Helios was intensively engineered to be efficient, light-
weight, and thus usable on low cost platforms. The experi-
mental results obtained are a benchmark for the community.

2. HELIOS ARCHITECTURE
In this section we describe the architecture of Helios (Fig.

1). The Web Interface allows users to submit their queries
and to select the desired search engines among those sup-
ported by the system. This information is interpreted by
the Local Query Parser & Emitter that re-writes queries in
the appropriate format for the chosen engines. The Engines
Builder maintains all the settings necessary to communicate
with the remote search engines. The HTTP Retrievers mod-
ules handle the network communications. As soon as search
results are available, the Search Results Collector & Parser
extracts the relevant information, and returns it using XML.
This choice allowed Helios to be easily used in the heteroge-
neous set of academic projects previously described. Users

1004



can adopt the standard Merger & Ranker module for search
results or integrate their customized one.

Figure 1: Architecture of Helios.

To achieve its high-performance, Helios utilizes async
I/O [13] and parallel TCP connections, with the remote
search engines. This is useful for two reasons: (i) the system
is not overloaded with hundreds of threads; (ii) the connec-
tion cost is reduced to a few µsec, since parallel connections
allow to retrieve data from one server while starting the con-
nection to a second one, sending data to a third one, and
so on. We remark that for a given query, it is possible to
exploit both parallelism among different search engines and
within a single engine.

The integration of a new engine is simple: a configura-
tion file is used to specify the engine parameters (e.g. query
re-writing rules, ip address, parsing rules and so on), and
a parser script provides the parser engine the necessary in-
formation to extract the relevant data. We defined a simple
but efficient parsing language which allows to search strings,
maintain a cursor over a string, extract substring, delete or
rewrite them. The language also provides some constructs
such as if, until, and jump. The language processes the
search results in a fast and efficient way (see Fig. 4).

3. EXPERIMENTAL RESULTS
Experiments were conducted on a dual PIV 2.60Ghz, 1.5Gb

of RAM memory and a 100Mbps internet connection. In all
our experiments the resources usage was negligible. Due to
space constraints, we report only a subset of our results.
Parallel searches on multiple engines: We used Al-
tavista, Gigablast, Google, Looksmart, Ask/Teoma and Yahoo!
as test bed engines. Downloading sequentially the top 100
results from each search engine – a total of 600 search re-
sults – took 12.4 seconds. This test was done using wget, a
common http retriever tool. Helios can retrieve and parse
in parallel the same results in 4.6 seconds (see Fig 2). This
time was largely dominated by Ask/Teoma, which displays a
maximum of 15 results per page, obligating Helios to request
7 subsequent pages to obtain the desired top 100 results. To
overcome this limitation, Helios can be configured to exploit
both parallelism among engines and within a single engine.

Figure 2: Helios vs wget. Query “madonna”.

Parallel searches on single engine: Exploiting paral-
lelism within a single engine can reduce the downloading
time. Downloading from Ask/Teoma 7 search results pages
required about 5.7 seconds. Exploiting parallel requests re-
duced this time to less than 1 second (see Fig. 3).
Parsing time: Helios parsed a total of 300 results from
Altavista, Google and Yahoo! in less than 16 milliseconds
(see Fig. 4).

Figure 3: 7 pages from Ask/Teoma. Query “car”.

Overall performances: Helios required less than 20 sec-
onds to retrieve and parse 3000 results - 10 pages of 100
results from Altavista, Google and Yahoo!- (See Fig. 5).

Figure 4: Parsing times per engine. Query “god”.

Retrieving and parsing the top 200 results from Altavista,
Google and Yahoo! – a total of 600 results – required only
2.21 secs, using 6 parallel connections. In comparison, Google
required 2.39 secs to return its top 600 results using 6 par-
allel connections (see Fig. 6).

Figure 5: Retrieving and parsing times for 3000
URLs. Query “flowers”.

Processing in parallel the first 100-results pages from A9,
About, AllTheWeb, Altavista, AOL Search, eSpotting, Find-
What, Gigablast, Google, LookSmart, Mozdex, Msn, Overture,
Ask/Teoma, Yahoo! – a total of 1355 results – required less
than 9 seconds and a 3% of average CPU usage. The query
was “madonna”.

Figure 6: Retrieving time for Google and Helios. Time
in secs. The query was “banana”.

The experimental results show that Helios is an highly en-
gineered open-source parallel meta-search engine. We can
safely state that Helios can be used in industrial environ-
ments.

4. REFERENCES
[1] http://www.pewinternet.org/pdfs/PIP Searchengine users.pdf

[2] http://www.jux2.com/stats.php

[3] http://searchenginewatch.com/links/article.php/2156241

[4] http://rankcomparison.di.unipi.it/

[5] Chidlovskii. System and method for improving answer
relevance in meta-search engines. U.S. Pat. 6829599, 2004.

[6] R.Fagin, R.Kumar, M.Mahdian, D.Sivakumar, and E.Vee.
Comparing and aggregating rankings with ties. PODS, 2004.

[7] P. Ferragina and A. Gulli. A personalized search engine
based on web-snippet hierarchical clustering. www14, 2005.

[8] A. Gulli and A. Signorini. The indexable web is more than
11.5 billion pages. In www14, 2005.

[9] S. Lawrence and C. L. Giles. Inquirus, the NECI meta
search engine. In WWW7, 1998.

[10] W. Meng, C. Yu, and K. Liu. Building efficient and effective
metasearch engines. In ACM Computing Surveys, 2002.

[11] M. E. Renda and U. Straccia. Web metasearch: Rank vs.
score based rank aggregation methods. In SAC, 2003.

[12] F. Gibb S. Wu, F. Crestani. New methods of results
merging for distributed information retrieval. In Distributed
Multimedia Information Retrieval, 2003.

[13] R. Stevens. UNIX Network Programming II, Prentice Hall.

1005


