Efficient PageRank Approximation via Graph Aggregation

. *
Andrei Z. Broder
IBM T.J. Watson Research Center
Hawthorne, NY, USA

abroder@us.ibm.com

Farzin Maghoul
Yahoo! Inc.

farzin.maghoul@overture.com

ABSTRACT

We present a framework for approximating random-walk based prob-
ability distributions over Web pages using graph aggregation. We
(1) partition the Web’s graph into classes of quasi-equivalent ver-
tices, (2) project the page-based random walk to be approximated
onto those classes, and (3) compute the stationary probability dis-
tribution of the resulting class-based random walk. From this dis-
tribution we can quickly reconstruct a distribution on pages. In
particular, our framework can approximate the well-known PageR-
ank distribution by setting the classes according to the set of pages
on each Web host. We experimented on a Web-graph containing
over 1.4 billion pages, and were able to produce a ranking that has
Spearman rank-order correlation of 0.95 with respect to PageRank.
A simplistic implementation of our method required less than half
the running time of a highly optimized implementation of PageR-
ank, implying that larger speedup factors are probably possible.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Performance, Experimentation, Measurements

Keywords

Link analysis, search engines, Web information retrieval

1. INTRODUCTION

Since the late nineties, Web search engines have started to rely
more and more on off-page, Web-specific data such as link analysis,
anchor-text, and click-through data. One particular form of link-
based ranking factors are static scores, which are query-independent
importance scores that are assigned to all Web pages. The most fa-
mous algorithm for producing such scores is PageRank, devised
by Brin and Page while developing the ranking module for the
prototype of the search engine Google (Wwww. googl e. conj[1].
PageRank can be described as the stationary probability distribu-
tion of a certain random walk on the Web graph - the graph whose

*Significant portions of the work presented here were done while
these authors were employed by the AltaVista corporation.

Copyright is held by the author/owner(s).
VWWW2004, May 17-22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

484

%
Ronny Lempel
IBM Haifa Research Labs, Haifa, Israel

rlempel@il.ibm.com

Jan Pedersen
Yahoo! Inc.

jan.pedersen@overture.com

nodes are the Web pages, and whose directed edges are the hyper-
links between pages. However, modern search engines index bil-
lions of pages, interconnected by tens of billions of links. Comput-
ing PageRank on this scale requires considerable resources, both
in terms of CPU cycles and in terms of random-access memory.
Clock-wall times for PageRank computations on large graphs can
reach many hours. Furthermore, topic-induced and personalized
PageRank flavors [3, 4] require PageRank computations to be per-
formed multiple times. Thus, speedy implementations of PageRank
become critical. Indeed, many research efforts have investigated
accelerations of PageRank-like computations, e.g. [2, 5].

To some extent, our work follows in this vein. We introduce a
framework for computing PageRank-like probability distributions
for Web pages based on graph aggregation. The basic idea is to
partition the graph into classes of quasi-equivalent vertices, and
to compute the stationary probability distribution of a biased ran-
dom walk on classes. From this distribution we can reconstruct a
distribution on pages. In the context of this paper, the classes used
were the sets of pages on a given host. Our host-aggregated random
walk is not equivalent to PageRank. Rather, it closely approximates
PageRank. On a Web-graph containing over 1.4 billion pages and
6.6 billion links, it produced a ranking that has Spearman rank-
order correlation of 0.95 with respect to PageRank. Furthermore, a
simplistic implementation of our method required less than half the
running time of a highly optimized implementation of PageRank.

2. PAGERANK

PageRank quantifies the importance of Web pages. The PageR-
ank of a page p is the probability of visiting p in a random walk of
the entire Web, where the set of states of the random walk is the set
of Web pages, and each random step is of one of the following two
types: (1) Choose a Web page uniformly at random, and jump to it,
or (2) From the given state/page ¢, choose at random an outgoing
link of g, and follow that link to the destination page *.

PageRank chooses a parameter d, 0 < d < 1; each state transi-
tion is of the first transition type with probability 1 — d, and of the
second type with probability d. Naturally, this random walk can
be represented by a stochastic matrix, whose principal eigenvector
corresponds to the stationary distribution of the walk. Thus, PageR-
ank scores are typically computed by applying the Power method
for eigenvector approximation, which involves repeated multipli-
cations of an arbitrary initial vector by the matrix in question, until
the iterations converge to a fixed vector.

pages that have no outgoing links are treated as if they link to all
other Web pages in many PageRank-related papers.



3. THEGRAPHAGGREGATIONMETHOD

Let T" be a random walk on a graph with n nodes. T will denote
both the random walk and the stochastic matrix which governs it.
Let the n nodes be partitioned into m classes Hi, ..., Hy,. We
concentrate on the case where T' denotes PageRank and the par-
titioning of Web pages is according to their host. Hence, a class
H, contains all the nodes (pages) on a certain host. We develop an
alternative random walk 7", derived from 7", whose stationary dis-
tribution can be computed more efficiently. In 7", a state transition
departing from a node « € H; is the following two-stage process:

e Move to some node y € H; according to a distribution 7#, .
Note that 7, depends only on the class of z.

e From y, perform a transition according to 7.
Thealgorithm for calculating the stationary distribution of T

1. Define an m x m stochastic matrix 7' = [; ;] as follows:

in,Hj = Z T, (q) - Z tap -

q€EH; PEH;

2. Calculate the principal eigenvector of 7' Compute an m-
dimensional probability distribution & satisfying aT = a.

3. Compute an n-dimensional probability distribution ~, where
for each node p, v(p) = &n(p) - Ta(p) (p) (h(p) denotes the
class to which p belongs).

4. The stationary distribution of 7" is the vector 3 2 ~T.

Computational demands: the standard power-iteration computa-
tion of PageRank converges in a few dozen iterations. Each itera-
tion requires one pass over the complete list of links for the entire
Web graph. In contrast, our algorithm needs only two passes over
the entire set of links (steps 1,4). Each power iteration required
by our algorithm (in step 2) is linear in the number of links of the
host-graph, which is typically much smaller (maybe by a factor
of 20), than the number of links in the page-graph. This has im-
plications also on the memory demands of our algorithm: search
engines compute connectivity-based measures over tens of billions
of links. This scale of data exceeds the RAM capabilities of most
single-machine platforms. However, our algorithm performs most
of its computations on the much smaller host graph, which may fit
in the RAM of a single machine.

This algorithm is related to the BlockRank algorithm [5]. Block-
Rank accelerates PageRank by deriving a distribution vector v, from
which (empirically) fewer Power iterations are required until con-
vergence. The vector v is closely related to the vector v produced
by step 3 above, when each distribution 7z is chosen as the intra-
host PageRank vector of H. Since BlockRank multiplies v by T'
several times (until convergence) while we only multiply ~ by T
once (step 4), our approach is speedier than BlockRank.

Experiments: we conducted experiments on a \Web-graph contain-
ing over 1446 million pages with almost 6650 million links, from
a crawl of the Web conducted by AltaVista in September 2003.
The number of unique hosts in this graph was about 31 million,
with 241 million host-to-host edges. We set all intra-host distribu-
tions 7 to be uniform; hence, we called the resulting random walk
flavor the “U-model”. Computing PageRank on an Alpha server
with four 667 MHz CPUs required 12.5 hours, while computing
the U-model scores took 5.8 hours (a speedup factor of about 2.1).

485

The PageRank computations used a robust and optimized infras-
tructure, whereas our modified algorithm was written in an ad-hoc,
non-optimized manner. We predict that by optimizing our imple-
mentation, speedup factors can approach the full potential indicated
by the ratio of the number links in the Web graph and the corre-
sponding figure in the host-graph.

We measured the correlation between PageRank and the U-model
using a sample of 1298 pages. The sample was not a uniform
random sample since, by virtue of the power-law distribution of
PageRank, the bulk of Web pages have few or no inlinks. Such
pages would be ranked similarly by practically any static score al-
gorithm. Instead, we sorted pages according to their PageRank,
and sampled as follows: each of the top 1000 pages was chosen
with probability 0.2. Then, for j = 3,...,8, the pages in places
1+ 10%,...,10°T" were sampled w.p. 0.2 - 1077, Thus, the
sample covered the full range of PageRank values, and included
many more pages with high PageRank values than a uniform ran-
dom sample would have produced. In this sample, U-model had
Pearson correlation 0.81 with PageRank. Furthermore, we com-
pared the rankings that are induced by the two score flavors. The
Spearman rank-order correlation between U-model and PageRank
was quite high, at 0.95. This suggests that U-model can be used
as an effective approximation of PageRank in relevance ranking.
Whether the (small) differences between U-model and PageRank
would imply better or worse search quality is currently unknown.

4. CONCLUSIONS

This paper introduced a new framework for calculating random-
walk based static ranks of pages on the Web. The framework ap-
proximates the behavior of a given random walk on the Web’s graph
in a scalable manner, by performing most of its calculations on a
more compact representation of the graph - a representation that
follows from aggregating multiple pages onto a single node.

We experimented with a model of random Web browsing that
decouples intra-host and inter-host steps. Departing from a page
in our model consists of a random transition to another page of
the same host, followed by a PageRank-like step from that page.
Whereas PageRank requires repeated scans of the Web-graph’s links,
most of the computations required by our approach involve scan-
ning the edges of the Web’s host-graph.

Future research should experiment with different aggregates of
the Web’s graph, and with different stochastic behaviors within
those aggregates. Each such flavor should be evaluated in terms
of the speedup factors it achieves, and in terms of the search qual-
ity that it induces when used in the ranking core of search engines.

5. REFERENCES

[1] S.Brinand L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proc. 7th International
\WWW Conference, pages 107-117, 1998.

[2] T. H. Haveliwala. Efficient computation of pagerank.
Technical Report Technical Report, Stanford University,
October 1999.

[3] T. H. Haveliwala. Topic-sensitive pagerank. In Proc. 11th

International WMAW Conference (WMAWW2002), 2002.

G. Jeh and J. Widom. Scaling personalized web search. In

Proc. 12th International WMAWV Conference (WMAW2003),

Budapest, Hungary, pages 271-279, 2003.

S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.

Golub. Exploiting the block structure of the web for

computating pagerank. Technical Report Technical Report,

Stanford University, March 2003.

(4]

(5]



