
Answering Similarity Queries in Peer-to-Peer Networks

Panos Kalnis, Wee Siong Ng, Beng Chin Ooi and Kian-Lee Tan
Department of Computer Science
National University of Singapore

www.comp.nus.edu.sg/∼{kalnis, ngws, ooibc, tankl}

Categories and Subject Descriptors:H.2.4:Systems:Distributed
databases
General Terms: Design
Keywords: Peer-to-Peer, Image, Similarity

1. INTRODUCTION
Broadcast-based systems Peer-to-Peer (P2P) systems use message-

flooding to propagate queries and have been successfully employed
in practice to form large-scale ad-hoc networks. Most existing sys-
tems (e.g. Gnutella) support only keyword searching. Each file is
characterized by its metadata and queries ask for combinations of
keywords. Consider for instance a music sharing system. Users ask
for a song title, or a combination of an artist and album name. Such
queries can be unambiguously evaluated as “found” or “not found”
by searching the metadata for matching keywords.

In this paper we investigate a different problem: Users ask fuzzy
queries like “find the top-k images which are similar to a given sam-
ple”. Such queries are common in image retrieval systems. Since
there is no centralized index, each peer within the query horizon is
contacted and returnsk results (i.e., the top-k local images) to the
initiator, which, in turn, computes the global result. Unfortunately,
the extremely low selectivity of such queries floods the network
with useless messages. Alternatively we could set a threshold sim-
ilarity and accept answers only above this value. The issue in this
case is how to select the query-dependant threshold given that the
interpretation of an image depends on the user’s perception. More-
over, this method would not reduce the number of query messages
which grows exponentially with the number of hops.

Observe, however, that due to the fuzzy nature of the queries,
the answers are always approximations. As a result, if two queries
are similar, the top-k answers for the first one may contain (with
high probability) some of the answers for the second query. In
addition, in P2P networks each peer can examine the messages
that pass through it. Motivated by these observations, we devel-
opedFuzzyPeer, a generic P2P system which supports similarity
queries. In FuzzyPeer some of the queries arefrozen(i.e., they are
not propagated further) inside a set of peers. The frozen queries
are answered by the stream of results that passes through the peers,
and was initiated by the remaining running queries. By carefully
selecting the set of frozen queries, the quality of the results and the
response time remain at acceptable levels even when the system
is overloaded. Additionally, the number of messages drops con-
siderably, thus improving the scalability and the throughput of the
network. Moreover, our optimization algorithms do not pose any
overhead due to synchronization messages.

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

P1

P2

P3

P4

P5 P6

P7 P8

Figure 1: A Typical FuzzyPeer network

Although throughout this paper we focus on image retrieval, our
methods are applicable to other domains where similarity searching
is performed in P2P networks; as an example, consider the case of
text retrieval. Moreover, the network topology does not need to be
flat. For instance, given a two-level super-peer organization (e.g.,
Morpheus) we can apply the same techniques at the upper level
which contains the index of its clients, rendering the entire system
more scalable.

2. SYSTEM DESCRIPTION
Figure 1 depicts a typical FuzzyPeer network. Let the user ofP1

ask a queryq: “find the top-10 images which are similar to a given
sketch”.P1 will broadcastq toP2 andP3. The receiving nodes will
search their databases and return the ids of the top-10 most similar
images together with a similarity measure toP1. At the same time
they will broadcastq to their neighbors. For example,P2 will send
q to P3 (which will reject the duplicate message) andP4. Notice
thatP4 will return the results throughP2. Queries can propagate
for up to a maximum number of hopsd. Assuming thatd = 3,
the query cannot reachP6. P1 waits for up toMaxWaitT ime;
during this interval it receives the answers and continuously refines
the result. AfterMaxWaitT ime expires, any answer message
that reachesP1 is rejected.

Assume now that soon afterP1, P3 also submits a queryq′ which
is similar toq. In a traditional P2P systemq′ propagates throughP2

the same way asq. q′ causes messages to pass throughP2 almost
simultaneously with the messages generated byq. Therefore,P2

is overloaded and all messages are delayed. If the delay is long
enough,MaxWaitT ime expires causingq and q′ to terminate
before they receive enough useful results. Notice, however, that
we can do better: Whenq passes throughP2 it initiates an answer
streamStreamq. All the answers fromP4, P5, P7 andP8 will go
throughStreamq. Whenq′ reachesP2 the system can identify that
q andq′ are similar, so instead of been propagated,q′ will freeze
insideP2 and will be attached toStreamq. P2 will afterwards
duplicate and sent toP3 all answers that reachStreamq.

482

Gnutella qL qM qS

0

5

10

15

20

25

30

4 6 8 10 12 14 16

Queries per user per sec

D
el

ay
 (

se
c)

×E-3

0

10

20

30

40

50

4 6 8 10 12 14 16

Queries per user per sec

D
el

ay
 (

se
c)

×E-3

0

10

20

30

40

50

60

100 300 500 700 1000

Number of peers

D
el

ay
 (

se
c)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 6 8 10 12 14 16

Queries per user per sec

P
re

ci
si

on

×E-3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 6 8 10 12 14 16

Queries per user per sec

P
re

ci
si

on

×E-3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

100 300 500 700 1000

Number of peers

P
re

ci
si

on

(a) 100 peers, MaxWaitTime = 30sec,

Power Law Network
(b) 100 peers, MaxWaitTime = 60sec,

Power Law Network
(c) Qus = 14·10-4, MaxWaitTime =

60sec, Power Law Network

Figure 2: Adaptive Freezing Algorithm. First row: Delay until receiving the first result. Second row: Precision.

There are several benefits of this approach: (i) Thrashing is avoided.
Instead of not answering any query at all, a considerable percentage
of the queries can locate accurate answers. (ii) Excess queries are
frozen instead of aborted. Since all answers are approximations,
there is a high probability for a frozen query to receive accurate re-
sults if it attaches to a similar stream. This is different from other
systems (e.g. web search engines) where the probability of finding
a concurrent similar query is low. In such systems queries ask for
certain keywords and run in the server for a few msec, while in P2P
systems queries run for around 3 orders of magnitude more time
(i.e., 100’s of sec) (iii) Even if the results for the frozen queries are
not accurate, users can utilize them to refine their original query.

Our Adaptive Query Freezing (AQF) algorithm is described in
details in the full version of this paper [1].

3. EXPERIMENTAL EVALUATION
We employed two implementations to evaluate our methods. The

first one is a JAVA prototype based on our BestPeer platform [2];
it was used to derive the basic parameters of the system). The pa-
rameters were used in our simulator. Our dataset consisted of a
library of 10504 high resolution images. We used a vector of 48
coefficients to represent the visual features of each image.

Here, we evaluate our freezing algorithmAQF. Figure 2 presents
the results for power-law networks with varying query rateQus.
AQF uses a parameteraq to control the length of message queues
in the peers and freeze queries accordingly. We use three settings
which result to longqL, mediumqM and short queuesqS. The per-
formance is compared against a Gnutella-style broadcast based ap-
proach, without query freezing.

We use two metrics to evaluate the algorithms: (i) theDelay
until the arrival of the firstuseful result and (ii) thePrecision
of the final result set. When the query rate is low, all methods

are equivalent. However, as the query rate increases, AQF clearly
outperforms the Gnutella-style method both in terms of delay and
precision. The behavior is similar when we increase the number of
peers in the network (Figure 2.c). Clearly, our method improves the
scalability of the system in terms of nodes and query throughput.

4. CONCLUSION
In this paper we dealt with the problem of retrieving informa-

tion from large repositories built on top of ad-hoc P2P networks.
While most existing approaches are limited to exact key matching,
we developed FuzzyPeer which supports content based similarity
queries. Due to the absence of centralized indexing, such queries
are challenging; the difficultly of defining an application indepen-
dent terminating criterion in addition to their extremely low selec-
tivity, overload the system with useless messages and cause thrash-
ing. We addressed this issue by introducing the freezing technique:
some queries are paused and attached to answer streams from sim-
ilar concurrently running ones, since the answer for both queries
is expected to overlap. We proposed AQF, a simple yet efficient
distributed optimization algorithm which improves the scalability
and the throughput of the system. Numerous applications, includ-
ing full-text searching in large archives or fuzzy queries in dis-
tributed multimedia repositories, can benefit from our techniques
as we demonstrated by an image retrieval case study.

5. REFERENCES
[1] P. Kalnis, W. S. Ng, B. C. Ooi, and K. L. Tan. Answering

similarity queries in peer-to-peer networks.
http://www.comp.nus.edu.sg/-kalnis/ASQ.pdf.

[2] W. Ng, B. Ooi, and K. Tan. Bestpeer: A self-configurable
peer-to-peer system (poster). InICDE, 2002.

483

