

XML Data Mediator
Integrated solution for XML Roundtrip

from XML to Relational
Nianjun Zhou

IBM
150 Kettletown Road
Southbury, CT 06488

+1-203-486-7435

jzhou@us.ibm.com

George Mihaila
IBM

T.J. Watson Research Center, PO 218
Yorktown Heights, NY 10598

+1-914-784-7803

mihaila@us.ibm.com

Dikran Meliksetian
IBM

150 Kettletown Road
Southbury, CT 06488

+1-203-486-5590

meliksd1@us.ibm.com

ABSTRACT
This paper presents a system for efficient data transformations
between XML and relational databases, called XML Data
Mediator (XDM). XDM enables the transformation by
externalizing the specification of the mapping in a script and
using an efficient run-time engine that automates the conversion
task. The runtime engine is independent from the mapping script.
A parser converts a mapping script into an internal conversion
object. For the mapping from relational to XML, we use a tagging
tree as a conversion object inside the runtime engine, and use an
SQL outer-join scheme to combine multiple SQL queries in order
to reduce the number of backend relational database accesses. For
the mapping from XML to relational, the conversion object is a
shredding tree, and we use an innovative algorithm to process the
XML as a stream in order to achieve linear complexity with
respect to the size of the XML document.

Categories and Subject Descriptors
E.2 [Data Storage Representation]

General Terms
Algorithms, Performance, Design

Keywords
XML, RDBMS, relational database, shredding, XML, XSL

1. INTRODUCTION
The XML Data Mediator (XDM) is a tool for bi-directional data
conversion between XML and structured data formats of
relational databases or LDAP. We abstract the concepts of
relational database and LDAP into a concept called data storage.
Mapping is defined at the data storage and XML schema (or
structure) level. XDM supports the transformation between XML
to multiple data storages (including databases and LDAP
repositories).

XDM externalizes the specification of the mapping, and it
replaces the programming effort by the simpler effort of writing a
script that describes the relationships between the XML constructs
and the corresponding relational constructs. XDM can be used as

a stand-alone utility, or it can be integrated as a library in other
applications, such as middleware.

The XDM runtime engine is designed to accept an input script as
a template for performing transformations. The runtime engine
parses the script only once and creates efficient run-time objects
that are cached and reused as needed. Based on the script and the
direction of the transformation (from data storage to XML or from
XML to data storage), XDM creates the appropriate tree
structures for performing the transformations. The tree structures
define both the data storage procedures to be executed as well as
the XML structure information, which is either an XML hierarchy
to be created upon retrieval or to be traversed for storage.

Included in the current implementation are two types of scripts:
Document Type Definition with Source Annotation (DTDSA) [1]
and XML Relational Transformation (XRT). The DTDSA script
is a DTD marked with mappings between elements and
rows/columns in the database. The same DTDSA script can be
used for both directions of the transformation. The XRT script is
a script loosely based on XSL which uses an SQL query-based
approach to obtain the elements. Since a given script is likely to
be used for multiple transformations within the lifetime of an
application, the run-time engine was designed with a number of
caching mechanisms. The run-time engine parses the script only
once and creates efficient run-time objects that are cached and
reused as needed.

Currently, XDM is implemented in Java, and we are using JDBC
to access relational databases and JNDI to access LDAP
repositories. Therefore, the implementation is vendor-neutral,
and can support all the relational databases and LDAP
repositories.

2. FROM RELATIONAL TO XML
Tagging trees are generated by a script parser and used to
facilitate transforming data from relational to XML. Tagging trees
represent both the XML hierarchical structure information as well
as the query information to retrieve the data from database and to
place in the hierarchical structure. A runtime environment then
processes the tagging tree by a depth first traversal. The runtime
environment is able to be configured to output a hierarchical
XML document, or pipelined to control, for example, SAX
processing.

There are multiple node types has been defined for a tagging tree
to catch the features of the transformation from relational data to

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

424

XML. Based on the behavior at runtime, the nodes can be
categorized as non-walk-able node and walk-able node. The non-
walk-able nodes include attribute data nodes, text data nodes and
binding nodes. A binding node is a special type of node, which
specifies the relationship between a data node and an execution
node. Walk-able nodes include element nodes and execution
nodes. Element nodes contain an element name and have as
children one data node, zero or more attribute nodes and zero or
more element nodes. An execution node contains a parameterized
SQL command. The output of the execution of the contained
parameterized SQL command is a dataset.

The runtime execution itself has two steps: 1) Information from
the database is retrieved using the SQL queries in the execution
nodes, thereby creating an array of intermediate data sets; and 2)
The data from the intermediate data sets is transformed into the
required final output XML format using format specified by the
tagging tree.
One of the factors affecting the performance of the operations is
the number of backend database accesses. The problem becomes
worse if the backend database resides on a remote machine. In
order to reduce the number of database accesses, we developed a
scheme to combine multiple queries together using the SQL outer-
union construct. Our outer-union operation in query combination
differs from the conventional SQL union operation in some
respects. The conventional SQL union operation is only defined
for relations having the same number and types of columns. Each
query optimization combines a set of queries where each query
corresponds to an execution node in the query tree. The first
execution node that contains queries to be merged into an outer-
union query will be replaced with an outer-union execution node,
which contains the generated outer union query, and with an
associated virtual execution node. Virtual execution nodes replace
the other execution nodes on the selected path of nodes specifying
the merged queries. The output columns of each virtual node are
connected to the corresponding columns of the output of the
outer-union execution node.

3. FROM XML TO RELATIONAL
In the opposite shredding or storage process, XDM creates a
shredding tree, which defines the appropriate XPath expressions
used to select the proper elements from the XML input, and the
data storage procedures, in order to place them in the defined data
storage locations. The data storage operation could be an SQL
update statement (INSERT, UPDATE, or DELETE) or complex
data manipulation.

A shredding tree has two types of nodes: cursor nodes and data
nodes. All of the nodes of the shredding tree are labeled with
hierarchical locators. A hierarchical locator is a path expression
obtained by concatenating the labels of the group nodes from the
root to a node in a schema tree. Each shredding tree has a local
lookup table, which maps a node locator to its corresponding
shredding node. A node locator can either correspond to a cursor
node or data node, but not both.

At run time, we maintain multiple virtual tables in memory to
hold the data from XML document. The runtime engine will

 Figure 1. Shredding Time

maintain certain counters for each virtual table, recording the
number of columns for which values are still expected. As soon
as all the counters become zero, all the columns of the current
record of virtual record are filled in and ready for shredding.
This shredding method is a linear-time algorithm for shredding of
XML into relations. The main advantage of our algorithm is the
fact it processes the input XML document in a streaming fashion
(by using a SAX parser) and therefore does not need to
materialize the entire XML tree in main memory. As a direct
implication, it scales nicely to arbitrarily large document as shown
in Figure 1.

4. CONCLUSION AND FUTURE WORK
We have presented an integrated, vendor-independent solution of
mapping between XML and relational databases and LDAP. The
XDM system can be used in a variety of applications, including
Web Content Management systems, Knowledge Management
systems, and Business-to-Business transactions. Wherever there is
the need to extract selected XML elements and to store them in a
data sink, or to compose an XML object from various data
sources, XDM can improve the efficiency and the scalability of
any application.

Some open issues involve how to shred recursive XML
documents into relational database. These are practical problems
encountered in catalog business and life science areas. Besides,
how to use the statistical data usage of a database to provide
optimization guideline for query combination is still an open
question.

5. ACKNOWLEDGMENTS
Many thanks to Sriram Padmanabhan, Colleen Viehrig, Arun
Pradeep, Jessica Wu Ramirez for their contributions to XDM
development.

6. REFERENCES
[1] Ming-Ling Lo, Shyh-Kwei Chen, Sriram Padmanabhan, Jen-

Yao Chung: XAS: A System for Accessing Componentized,
Virtual XML Documents. ICSE 2001: 493-502

0.
5K

25
4K

50
9K

76
4K 1M 2M

2.
5M 3M 4M 5M 8M

XML document size

0
2

4

6

8
10

12

14

16

18
20

22

24

26

28

Sh
re

dd
in

g
tim

e
(s

ec
)

425

