
An XPath-based Discourse Analysis Module
for Spoken Dialogue Systems

Giuseppe Di Fabbrizio
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932 – USA

pino@research.att.com

Charles Lewis
AT&T Labs- Research

180 Park Avenue
Florham Park, NJ 07932 – USA

clewis@research.att.com

ABSTRACT
This paper describes an XPath-based discourse analysis module for
Spoken Dialogue Systems that allows the dialogue author to easily
manipulate and query both the user input’s semantic representation
and the dialogue context using a simple and compact formalism. We
show that, in managing the human-machine interaction, the discourse
context and the dialogue history are effectively represented as
Document Object Model (DOM) structures. DOM defines interfaces
that dialogue scripts can use to dynamically access and update the
content, the structure and the style of the documents. In general, this
approach applies also to richer multimedia and multimodal
interactions where the interpretation of the user input depends on a
combination of input modalities.

Categories & Subject Descriptors: I.2.1 [Application
and Expert Systems]: Natural Language Interfaces - I.2.7
[Application and Expert Systems]: Speech Recognition and Synthesis

General Terms: Design, Experimentation.

Keywords: Spoken Dialogue Systems, Discourse Analysis, XPath.

1. INTRODUCTION
Dialogue management systems are useful to simulate the process of
dialogue between two or more agents (either humans, machines or a
mix of both) exchanging information to achieve a specific goal.
Accordingly to [1], a general dialogue system consists of three
fundamental pattern recognition components: 1) a semantic parser,
which includes an automatic speech recognition (ASR) module to
convert the user’s utterances into text and a sentence interpretation
module that parses the sentences into semantic representation; 2) a
discourse analysis module which derives the new dialogue context
based on the previously executed states; and 3) a dialogue manager
that iterates the possible responses based on a predefined dialogue
strategy. The framework in [1] is formalized as a maximum a
posteriori (MAP) [5] decision problem where the goal is to minimize
the cost of reaching the final state or agents’ objective. The clear
separation of the previously defined modules 2) and 3) is missing in
many existing architectures where the two are merged together as an
interactive manager [4] or a generic dialogue manager module. We
will show that maintaining this distinction improves the overall
flexibility of the system.
In this paper we focus on the discourse analysis (DA) module. DA
maps the semantic input representation for the specific dialogue
domain to changes in the appropriate context variables. This provides
the DM with the information it needs to decide the next step in its
strategy for fulfilling the goals of the dialogue.

In a Natural Language Spoken Dialogue Systems, the DM provides
the means for human-machine interaction. The DM helps the user to
achieve the task that the dialogue is designed to support. It keeps
track of the discourse context, and, generally, adapts the level of
initiative to the user’s skills. The sentence interpretation is provided
by a spoken language understanding (SLU) module that extracts
predefined call-types from the user input. The SLU also parses out
information on common named entities such as phone numbers,
dates, zip codes and others. The discourse analysis module merges
the sentence interpretation into the discourse context, resolves ellipsis
and anaphora references, and detects inconsistencies, ambiguities,
and partial information based on dialogue history. In our system,
these complex tasks are performed by evaluating the local and global
contexts where state variables and dialogue execution trees are stored
in a DOM document. An XPath [6] based interpreter models the
DOM document as a tree of nodes and operates on the string-values
to update or extract the needed values. In the next sections we will
describe in detail the system architecture, show how the model drives
the dialogue flow and illustrate this process with examples of
disambiguation and reference resolution.

2. SYSTEM ARCHITECTURE
Figure 1 depicts the high level system architecture. The converted
spoken speech into text is the input to the sentence interpretation
module (SLU) that classifies the input and translates it to an XML
semantic representation. Either the Natural Language Semantic
Markup Language [7] (NLSML) or the Extensible MultiModal
Annotation [8] (EMMA) are suitable formats. These markup
languages are intended for use by systems that provide semantic
interpretations for a variety of inputs, including, but not necessarily
limited to, speech and natural language text input. We adopted a
simplified version of NLSML where the classified call-types are
enumerated with confidence scores in the tag <class> and the
named entities are reported directly in the <instance> tag instead of
the optional XForm data model. To achieve the classification task, we
use an extended version of a boosting-style classification algorithm
[2] trained on an application dependent corpus and combined with
context-free grammars (CFGs) [3] for named entity extraction.

Discourse
Analysis

Local & Global
Context,

Dialogue History

Dialogue
Manager

Session

INPUT

OUTPUT

Sentence
Interpretation

NLSML / EMMA

Dialogue
Strategy
Scripts

Figure 1. System Architecture

We assume that the sentence interpretation module attempts to extract
the semantic interpretation of the utterance without considering the
current context of the dialogue execution. The generated NLSML

Copyright is held by the author/owner(s).
WWW 2004, May 17-22, 2004, New York, NY, USA.
ACM 1-58113-912-8/04/0005.

408

document is fed to the discourse analysis module which updates the
local context and the dialogue history DOM structures with the new
input. Logical predicates, described by XPath expressions, allow the
DA to rank classes and assign a contextual interpretation to the input
based on the current context content. The local context stores the state
variables and keeps track of the history for dialogue backtracking and
repairs. The DM algorithm uses Augmented Transition Networks [9]
(ATNs) to represent the dialogue flow. The ATN operates on the
current input and the local context to control the interaction flow.
State transitions are triggered by XPath expressions and generate the
output actions when traversed. Finally, the session component
enables session persistence, replication and failover support in a
distributed environment.

3. Interaction with DOM and XPath
The dialogue context and the history are stored in a DOM tree where
nodes contain variables or NLSMS sub-trees. Figure 2 shows a

s
c
a
s
e
>
1
$
o
s

of the node /local/threshold where the current value is set by the
dialogue strategy script: <var name=”threshold”
value=”0.7”/>. The DM will trigger the transition if this condition
evaluates to true and will then engage a subsequent question to
disambiguate the user’s request, for example: do you want your
account status or the account features?
Figure 3 is a simplified snapshot of the dialogue history where three
turns are stored within the tag <turns>. In the last turn, the user is
asking the system to repeat the repairs department phone number
announced in the first turn, but the information to repeat is not
explicitly stated (anaphora reference). The DA has to go back in the
history of the dialogue and find the turn that the user is referring to.
This translates to the following XPath expression: <set
name=”repeat” expr=”//turn[last() and @type =
'concrete']//class [@score>0.7]/@name”/>. The attribute
type specifies the category of the call-type in terms of user’s
intentions. Typically call-types can be categorized as concrete, when
they covey information that contribute to the user request, as opposite
to discourse or command types where the contribution is irrelevant to
focus of the dialogue. Going back to the first concrete call-type
request allows the DA to extract the reference correctly and assign the
Req(Number) call type to the repeat context variable.

4. SUMMARY
The XPath standard has proven to be a powerful tool for the
discourse analysis layer. This module must provide a level of
processing distinct from the parsing-oriented SLU layer and the logic-
<result>
 <interpretation>
 <input>I'm trying to find out what you have as far
as our account goes how does it stand </input>
 <instance>I’m trying to find out what you have as
far as our account goes how does it stand</instance>
 <classes>
 <class name="Tell(Account_Status)" score="0.96"/>
 <class name="Tell(Account_Features)" score="0.90"/>
 </classes>
 </interpretation>
</result>

Figure 2. Ambiguous Input

implified NLSML tree for an ambiguous user utterance. The
lassification returns two confusable call-types, Tell(Account_Status)
nd Tell(Account_Features), with high confidence (>0.7) and close
cores (<0.2). This condition is easily captured by the XPath
xpression expr1: <cond expr1 =”(count(//class[@score
 $threshold]) = 2) and ((//class [position() =
]/@score - //class [position() = 2] /@score <
closeScore))” expr2=”true”/>. Notice that we used the
perator $ as compact way to dereference string-values of variables
tored in the DOM nodes. $threshold, for example, is the string-value

oriented DM layer. The discourse analysis layer must act as a bridge
between these two layers of processing, and speak both of their
languages. In the system that we have described, XPath was able to
analyze the output of the SLU to any degree of specificity required,
and to communicate results into the variables used by the DM for
decision making. Also, and as importantly, the XPath-based
Discourse Analysis module was able to interact with both other layers
without taxing its expressive power. XPath is a natural choice for this
role.

5. REFERENCES
[1] X. Huang, A. Acero and H-W. Hon, Spoken Language Processing: A

Guide to Theory, Algorithm and System Development, Prentice Hall
PTR, NJ, 2001, pages 853-855.

[2] R. E. Schapire. The boosting approach to machine learning: An
overview. In Proceedings of the MSRI Workshop on Nonlinear
Estimation and Classification, Berkeley, CA, March, 2001.

[3] J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory,
Languages and Computation. Addison-Wesley (1979).

[4] W3C Multimodal Interaction Framework, W3C NOTE 06 May 2003,
http://www.w3.org/TR/mmi-framework.

[5] L.Bahl, J.Jelinek, J.Raviv, and F.Raviv, Optimal Decoding of Linear
Codes for minimising symbol error rate, IEEE Trans on Information
Theory, vol. IT-20, pp.284-287, Mar 1974.

[6] XML Path Language (XPath), Version 1.0, W3C Recommendation 16
Nov 1999, http://www.w3.org/TR/xpath

[7] Natural Language Semantics Markup Language for the Speech Interface
Framework, W3C Working Draft 20 Nov 2000,
http://www.w3.org/TR/2000/WD-nl-spec-20001120

[8] EMMA: Extensible MultiModal Annotation markup language, W3C
Working Draft 18 December 2003, http://www.w3.org/TR/ 2003/ WD-
emma-20031218.

[9] D. Bobrow and B. Fraser. An augmented state transition network
analysis procedure. In Proceedings of the IJCAI, pages 557-
567,Washington, D.C, May, 1969.

<

n

p

<

history>
<turns>
 <turn type="concrete">
 <result>
 <interpretation>
 <input>could you tell me the repair department phone
umber</input>
 <instance>could you tell me the <dept>REPAIR</dept>
hone number</instance>
 <classes>
 <class name="Req(Number)" score="0.94"/>
 </classes>
 </interpretation>
 </result>
 </turn>

 <turn type="discourse">
 <result> ...
 <instance>hello</instance> ...
 </turn>

 <turn type="command">
 <result>
 <interpretation>
 <input>could you repeat please</input>
 <instance>could you repeat that please</instance>
 <classes>
 <class name="Repeat" score="0.98"/>
 </classes>
 </interpretation>
 </result>
 </turn>
 </turns>
/history>

Figure 3. Dialogue history with anaphoric reference
409

