
Updating PageRank with Iterative Aggregation

Amy N. Langville
N.C. State University

Mathematics Department
Raleigh, NC 27695-8205

anlangvi@unity.ncsu.edu

Carl D. Meyer
N.C. State University

Mathematics Department
Raleigh, NC 27695-8205

meyer@math.ncsu.edu

ABSTRACT

We present an algorithm for updating the PageRank vec-
tor [1]. Due to the scale of the web, Google only updates
its famous PageRank vector on a monthly basis. However,
the Web changes much more frequently. Drastically speed-
ing the PageRank computation can lead to fresher, more
accurate rankings of the webpages retrieved by search en-
gines. It can also make the goal of real-time personalized
rankings within reach. On two small subsets of the web,
our algorithm updates PageRank using just 25% and 14%,
respectively, of the time required by the original PageRank
algorithm. Our algorithm uses iterative aggregation tech-
niques [7, 8] to focus on the slow-converging states of the
Markov chain. The most exciting feature of this algorithm
is that it can be joined with other PageRank acceleration
methods, such as the dangling node lumpability algorithm
[6], quadratic extrapolation [4], and adaptive PageRank [3],
to realize even greater speedups (potentially a factor of 60
or more speedup when all algorithms are combined).

Categories and Subject Descriptors

F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms

Algorithms, Performance

Keywords

PageRank, updating, link analysis, power method, aggrega-
tion, disaggregation, Markov chains, stationary vector

1. INTRODUCTION
We have discovered a new technique that can drastically

affect (and perhaps completely crack) one of the major bot-
tlenecks associated with web-based information retrieval sys-
tems that are driven by eigenvector ranking schemes—the
primary example is the PageRank mechanism that drives
Google. The bottleneck is the need to update importance
rankings of pages to account for the continual changes that
occur in the web’s structure when pages are added or deleted
and links are created or destroyed. At last report, Google
uses several days for this computation (because they use
brute force and start from scratch each time an update is

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, NY USA.
ACM 1-58113-912-8/04/0005.

attempted). Consequently, updating can only be afforded
every few weeks. Our solution harnesses the power of iter-
ative aggregation principles for Markov chains to allow for
much more frequent updates to the valuable ranking vectors.

2. THE UPDATING ALGORITHM
Our primary goal is to adapt the theory of exact [7] and

approximate aggregation [8] to efficiently solve the updat-
ing problem. Suppose the Markov transition matrices and
distributions at times t and t + 1 are respectively given by

Qm×m and Φ
T = (φ1, φ2, . . . , φm) at time = t

Pn×n and π
T = (π1, π2, . . . , πn) at time = t + 1.

Quantities Q, P, and Φ
T are known while π

T is unknown,
and m 6= n because states may be added or deleted. Par-
tition (and perhaps reorder) the state space S = G ∪ G for
the chain at time t + 1 so that P has the partitioned form

Pn×n =

(G G

G P11 P12

G P21 P22

)
.

All newly added states go into G along with some of the
preexisting states. The idea is to leave the g states in G
unaggregated while the n−g states in G are aggregated into
a single superstate. Let {φi}

n
i=g+1 be conformably ordered

with {πi}
n
i=g+1, and approximate (what, in the theory of

stochastic complementation [7], is known as) the censored
distribution sT

2 with

sT
2 ≈ s̃T

2 =
(φg+1, . . . , φn)∑n

i=g+1 φi

,

so the exact aggregated transition matrix (of stochastic com-
plementation) is approximated by the (g+1)×(g+1) matrix

A ≈ Ã =

(
P11 P12e

s̃T
2 P21 1 − s̃T

2 P21e

)

where e is the vector of all ones. If α̃
T

= (α̃1, . . . , α̃g, α̃g+1)

is the stationary distribution of Ã, then the aggregation the-
orem [7] yields an approximation tothe updated distribution,

π
T ≈ π̃

T
=

(
α̃1, . . . , α̃g | α̃g+1s̃

T
2

)
.

This approximation is further refined with a smoothing step
π̃

T
P = (xT |yT), where (xT |yT) is a vector partitioned ac-

cording to the G and G sets. Then the process is iterated
by restarting the procedure with

s̃T
2 ←− yT /yT e.

Interestingly, this procedure always converges to the PageR-
ank vector.

392

Successful implementation of these ideas hinges on the
ability to identify an optimal choice for the partition S =
G ∪ G, and this is a main facet of future research. Exten-
sive testing seems to be the best way to produce practical
heuristics for determining the appropriate partition for a
given dataset. In fact, on several small datasets, we have
experiments showing the numerical feasibility of the updat-
ing algorithm (see section 2.2).

2.1 Convergence
References [2, 5] prove that (1) this updating algorithm

converges to the PageRank vector for all partitions S =
G∪G, and (2) there always exists a partition such that the
convergence rate of the updating algorithm is strictly less
than the convergence rate of the Google’s power method.

3. RESULTS
We have experimented with a variety of datasets that were

extracted as subsets of the Web. However, we describe just
two case studies with typical characteristics and outcomes.
NCstate.dat contains 10,000 pages obtained from a crawl
that started with the NCSU homepage. This small web has
n = 10, 000 pages and l = 101, 118 links. California.dat

is a topical net of n = 9664 pages pertaining to the query
topic of “California.” It has l = 16, 150 links.

Tables 1 and 2 compare the aggregation updating algo-
rithm with Google’s current method for updating PageRank,
which is called full recomputation since the power method
is started from scratch. We report the number of iterations
and the total computation time required by each method.

Table 1: Comparison of updating methods on
NCstate.dat (n = 10, 000, l = 101, 118)

Iterative Aggregation Full Recomputation
|G| Iterations Time Iterations Time

500 160 16.64
1000 51 6.47
1500 33 4.57
2000 21 3.64
2500 16 3.19 162 13.17

3000 13 3.26
5000 7 3.62

Table 2: Comparison of updating methods on
California.dat (n = 9, 664, l = 16, 150)

Iterative Aggregation Full Recomputation
|G| Iterations Time Iterations Time

500 38 1.82
1000 28 2.47
1250 28 2.61
1500 14 1.42 176 9.63

2000 13 1.57
5000 10 1.65

These tables show the speedups (as much as a factor of
10, on some other datasets) that are obtainable with this
updating method. In effect, most of the work done by the
updating algorithm is done on the very small aggregation
matrix of size |G| + 1. For example, for California.dat

with |G| = 1500, the aggregation algorithm converges in
just 14 iterations and 1.42 seconds compared to the 176 it-
erations and 9.63 seconds required by the power method be-
cause most of the work was done on a 1, 501×1, 501 matrix,
rather than a 9, 664×9, 664 matrix. Tables 1 and 2 also show
the crucial role that |G| plays in the speedups achieved, and

0 20 40 60 80 100 120
 12

 10

 8

 6

 4

 2

0

iteration

lo
g

1
0
 r

e
s
id

u
a

l

residual for iterative aggregation algorithm
residual for power method

0 20 40 60 80 100 120
 12

 10

 8

 6

 4

 2

0

iteration

lo
g

1
0
 r

e
s
id

u
a

l

residual for iterative aggregation algorithm
residual for power method

Figure 1: Norm of residual vector for abortion.dat

for |G| = 50 (upper) and |G| = 5 (lower)

thus, choosing |G| becomes an issue. Examine Figure 1. The
upper pane shows the norm of the residual vector for the up-
dating algorithm applied to another dataset abortion.dat

with |G| = 50, which creates a good choice for G and pro-
vides a factor of 6 speedup. The lower pane shows the norm
of the residual vector for the same dataset with |G| = 5,
which creates a bad partition and causes the updating algo-
rithm to take nearly as much time as the notoriously slow
power method. The slippery problem of choosing a good
partition of the chain’s states is an active area of research.

4. FUTURE WORK
By the WWW 2004 conference, we hope to have: (1)

tested this updating algorithm on larger datasets, such as
those used in [3, 4, 6], (2) made progress toward under-
standing and determining the partitioning of states into G
and G, and (3) created code that incorporates this updating
algorithm with the other PageRank acceleration techniques.

5. REFERENCES
[1] S. Brin, L. Page, R. Motwami, and T. Winograd. The PageRank

citation ranking: bringing order to the web. Technical report,
Computer Science Department, Stanford University, 1998.

[2] I. C. F. Ipsen and S. Kirkland. Convergence analysis of an
improved PageRank algorithm. December 2003.

[3] S. D. Kamvar, T. H. Haveliwala, and G. H. Golub. Adaptive
methods for the computation of pagerank. Technical report,
Stanford University, 2003.

[4] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.
Golub. Extrapolation methods for accelerating pagerank
computations. Twelfth International World Wide Web
Conference, 2003.

[5] A. N. Langville and C. D. Meyer. Updating the stationary vector
of an irreducible Markov chain. Technical Report crsc02-tr33, N.
C. State, Mathematics Dept., CRSC, 2002.

[6] C. P.-C. Lee, G. H. Golub, and S. A. Zenios. Partial state space
aggregation based on lumpability and its application to
pagerank. Technical report, Stanford University, 2003.

[7] C. D. Meyer. Stochastic complementation, uncoupling Markov
chains, and the theory of nearly reducible systems. SIAM
Review, 31(2):240–272, 1989.

[8] W. J. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1994.

393

