Constraint SVG

Cameron McCormack
Monash University
Clayton, Vic. 3800, Australia

Kim Marriott
Monash University
Clayton, Vic. 3800, Australia

Bernd Meyer
Monash University
Clayton, Vic. 3800, Australia

_firstname.lastname
@infotech.monash.edu.au

ABSTRACT

We believe it is important for web graphic standards such
as SVG to support user interaction and diagrams that can
adapt their layout and appearance to their viewing context
so as to take into account viewing device charateristics and
the viewer’s requirements. In [1] we suggested that adding
expression-based attributes to SVG and using one-way con-
straints to evaluate these dynamically would considerably
improve SVG’s support for adaptive layout and user interac-
tion. We describe a minimal backward compatible extension
to SVG 1.1, called Constraint SVG (CSVG), that provides
such expression-based attributes and its implementation on
top of Batik. CSVG also provides another significant exten-
sion to SVG 1.1: it allows the author to define new custom
elements using XSLT.

Categories and Subject Descriptors

H.4.m [Information Systems|: Miscellaneous; D.2 [Software]:

Software Engineering; H.5.2 [Information Systems]: In-
formation Interfaces and Presentation

General Terms

Constraint-based Graphics, Document Formats

Keywords

SVG, Scalable Vector Graphics, constraints, differential scal-
ing, semantic zooming, CSVG, adaptivity, interaction

1. CONSTRAINT SVG

With the advent of a large array of different devices for
web browsing, adaptive document layout is becoming an in-
creasingly important issue. This not only applies to page
layout, but also to the layout of individual diagrams. There-
fore, as detailed in [1], an important requirement for web
graphics is that a diagram can adapt its layout and appear-
ance to its viewing context so as to take into account viewing
device charateristics and the viewer’s requirements. Another
important aspect of advanced web-based graphics is that a
diagram should be able to directly support interaction.

Unfortunately, the current vector-based graphics standard
SVG 1.1 does not explicitly support these. Instead, the doc-
ument author typically has to use scripting in combination
with SVG. In [1] we suggested that adding expression-based
Copyright is held by the author/owner(s).

WWW2004, May 17-22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

310

attributes to SVG and using one-way constraints to eval-
uate these dynamically would considerably improve SVG’s
support for adaptive layout and user interaction and remove
much of the need for scripting.

In this poster we describe a minimal backward compati-
ble extension to SVG 1.1, called Constraint SVG (CSVG),
that provides such expression-based attributes. CSVG also
provides another significant extension to SVG 1.1 and our
earlier proposals: it allows the author to define new custom
elements using XSLT. This feature of CSVG was influenced
by public documents from the SVG working group describ-
ing proposed features in SVG 1.2.

Expression-based attributes and custom elements combine
synergistically: the dynamic evaluation of expression-based
attributes allows us to specify user interaction and anima-
tion directly in terms of the custom elements. This is not
supported in the current SVG 1.2 proposal. The attributes
of the custom elements are linked to the attributes of the
base SVG elements in the shadow tree via one-way con-
straints. Efficient constraint solving allows us to propagate
attribute changes to the shadow tree elements without the
need for expensive regeneration of the shadow tree.

To illustrate the capabilities of CSVG consider the sim-
ple box-and-arrow diagram in Figure 1. We use custom ele-
ments to model box and labelled arrows. We use expressions
to compute the size of the boxes from the size of their en-
closed text, allowing the browser to appropriately adjust the
layout for different font sizes or languages, and expressions
to ensure that the arrow runs from one box to the other and
that the arrow label remains above the arrow’s mid-point.
To demonstrate animation we have added CSVG code to let
the boxes bounce.

CSVG extends SVG to allow any animatable attribute
to have an expression assigned to it rather than an actual
value. The expression is specified using a syntax similar
to that for animation. This syntax, like SMIL, provides
backwards compatability by allowing the user to give an
absolute value for a constraint attribute which can be used
by SVG browsers that do not support constraints.

plus one

Figure 1: CSVG Example when (a) $animate = false,
and (b) $animate = true

<extensionDefs namespace="http://mcc.id.au/example/charts">
<xsl:stylesheet id="chartXSL" xmlns:chart="http://mcc.id.au/example/charts" ... >
<xsl:template match="chart:node">
<c:property name="textWidth"
value="c:width(c:bbox(following-sibling: :svg:text))"/>
<c:property name="textHeight"
value="c:height(c:
<rect x="{0x}" y="{Qy}" widt!
<c:constraint attributeNam
<c:constraint attributeNam
<c:constraint attributeNam
<c:constraint attributeName=
</rect>
<text x="{@x + @width div 2}" y="{Qy + Gheight div 2}"
text-anchor="middle" font-size="20" pointer-events="none">
<xsl:value-of select="."/>

bbox (following-sibling: :svg:text))"/>

Q@uidth}" height="{@height}" onclick="{@onclick}">
value= nstance()/0x"/>

nstance()/@y"/>

:instance()/@width"/>

height" value="c:instance()/@height"/>

<c:constraint attributeName="x"
value="c:instance()/@x + c:instance()/@width div 2"/>
<c:constraint attributeName="y"
value="c:instance()/@y + c:instance()/Cheight div 2
+ $textHeight div 2"/>
</text>
</xsl:template>
<xsl:template match="chart:arrow">
<line x1="{@x1}" y1="{@y1}" x2="{@x2}" y2="{@y2}" stroke="black" stroke-width="3">
<c:constraint attributeName="x1" value="

<c:constraint attributeName="y1" value=

<c:constraint attributeNam

<c:constraint attributeName='
</line>
<text x="{(@x1 + 0x2) div 2}" y="{(@yl + @y2) div 2 - 5}"
text-anchor="middle" font-size="16">
select="."/>
attributeName="x"
value="(c:instance()/@x1 + c:instance()/@x2) div 2"/>
attributeName="y"
value="(c:instance()/@y1l + c:instance()/@y2) div 2 - 5"/>

<xsl:value-of
<c:constraint

<c:constraint
</text>

</xsl:template>
</xsl:stylesheet>

<elementDef name="node"> <transformer xlink:href="#chartXSL" type="text/xsl"/></elementDef>
<elementDef name="arrow"><transformer xlink:href="#chartXSL" type="text/xsl"/></elementDef>

</extensionDefs>

Figure 2: XSLT Template Definitions

In order to simplify constraints and to allow factorisation
of common sub-expressions we allow the author to declare
new variables whose value is given by an expression. For
instance, in Figure 3 $w is set to the maximum length of the
text inside the boxes so as to ensure that the boxes have the
same size but are large enough to contain their text.

As custom elements can generate constraint definitions as
well as standard SVG elements, the layout of the final SVG
document is a two-phase process: First the shadow tree
elements are generated and attributes in the shadow tree
are bound to expressions instead of values where required.
This allows shadow tree element placement to be specified
in terms of other elements in the shadow tree. Thus for in-
stance in our example above, a rectangle is specified to be
large enough to contain its text. In the second phase the ac-
tual value of the attributes are automatically determined by
the constraint solver and transparently re-computed when
required, e.g. in the case of resizing or user interaction.

It is not possible to specify such layout if XSLT is sim-
ply generating standard SVG elements since this requires
all attribute values to be explicitly computed by the XSLT
processor. The XSLT processor, however, has no means to
determine implicit quantities, such as the size of text or any
transformed SVG elements. Thus using XSLT to generate
SVG alone does not support adaptive layout. We need the
semantic properties of the generated SVG elements. Al-
lowing the shadow tree elements to contain expressions for
attribute is a simple way of achieving this.

Animation can be understood as a special type of expres-
sion which gives an attribute’s value in terms of the time
since the start of the animation. The current animation ex-
pressions provided by SVG can be understood as convenient
shorthand for more common types of animation. We allow
the author to specify an animation using expressions that

311

<c:variable id="animate" name="animate" value="false()"/>

<c:variable name="w" value="c:max(c:property(id(*n1’), ’textWidth’),
c:property(id(’n2’), ’textWidth’))"/>

<c:variable name="h" value="c:max(c:property(id(*n1’), ’textHeight’),
c:property(id(’n2’), ’textHeight’))"/>

<chart:node id="n1" x="100" y="100" width="100" height="100" onclick="toggleAnimation()">
One
<c:constraint attributeName="width" value="$w + 20"/>
<c:constraint attributeName="height" value="$h + 20"/>
<c:constraint attributeName="x" value="140 - $w div 2"/>
<c:constraint attributeName="y"
value="c:if ($animate, ((c:time() mod 10) div 10) * (300 - ($h + 20)),
140 - $h div 2)"/>
</chart:node>
<chart:arrow x1="200" y1="150" x2="300" y2="150">
plus one
<c:constraint attributeName="x1" value="id(’n1’)/@x + id(’n1’)/@uwidth"/>
value="id(’n1’)/@y + id(’n1’)/Gheight div 2"/>
value="id(’n2’)/@x"/>
value="id(’n2’)/@y + id(’n2’)/Gheight div 2"/>

<c:constraint attributeName="y1"
<c:constraint attributeName="x2"
<c:constraint attributeName="y2"
</chart:arrow>
<chart:node id="n2" x="300" y="100" width="100" height="100" onclick="toggleAnimation()">
Two
<c:constraint attributeName="width" value="$w + 20"/>
<c:constraint attributeName="height" value="$h + 20"/>

<c:constraint attributeName="x" value="340 - $w div 2"/>

<c:constraint attributeName="y"

value="c:if ($animate, (1 - ((c:time() mod 10) div 10)) * (300 - ($h + 20)),
140 - $h div 2)"/>
</chart:node>

Figure 3: CSVG Example using XSLT Templates

refer to time () which yields the time since the animation of
the respective element started. As the example illustrates
we allow custom element attributes to be animated as well.

With expressions and variables it is also quite simple to
specify quite complex user interation, such as semantic zoom-
ing, i.e. zooming in which elements do not only change their
size but their shape and appearance, such as expanding or
collapsing sub-trees [1].

2. IMPLEMENTATION

Our implementation is based on Batik and utilises one-
way constraint solving algorithms developed for a variety of
applications including GUIs, spreadsheets and customisable
graphic editors, such as Visio [2]. The one-way constraint
solver is responsible for updating the value of expressions
and for analyzing the dependencies between the attributes
in order to determine an evaluation order that allows the up-
dates to be computed efficiently. As the order of expression
evaluation is independent of the order of SVG elements in
the document, the author is free to specify what they want
without worrying about how it should be computed.

Further information about CSVG and its implementation
is available at http://www.csse.monash.edu.au/"clm/csvg/
which also provides many realistic examples demonstrating
the usefulness of extending SVG with dynamic attribute
evaluation that fully supports custom elements. To cre-
ate these examples using scripting instead of CSVG, sig-
nificantly more implementation effort would have been re-
quired. The CSVG browser, which can be downloaded from
the website, proves that CSVG can efficiently be rendered
for real-time interaction and animation support.

3. REFERENCES

[1] K. Marriott, B. Meyer, and L. Tardif. Fast and efficient
client-side adaptivity for SVG. In Proc. 11th
International World Wide Web Conference, May 2002.

[2] B. Vander Zanden et al. Lessons learned about one-way,
dataflow constraints in the Garnet and Amulet
graphical toolkits. ACM Transactions on Programming
Languages and Systems, 23(6):776-796, 2001.

