
A Semantic Approach for Designing Business Protocols ∗

Ashok U. Mallya
aumallya@ncsu.edu

Munindar P. Singh
singh@ncsu.edu

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

ABSTRACT
Business processes involve interactions among autonomous part-
ners. We propose that these interactions be specified modularly
as protocols. Protocols can be published, enabling implementors
to independently develop components that respect published proto-
cols and yet serve diverse interests. A variety of business protocols
would be needed to capture subtle business needs. We propose that
the same kinds of conceptual abstractions be developed for proto-
cols as for information models. Specifically, we consider (1) re-
finement: a subprotocol may satisfy the requirements of a super-
protocol, but support additional properties; and (2) aggregation: a
protocol may combine existing protocols. In support of the above,
we develop a formal semantics for protocols, an operational char-
acterization of them, and an algebra for protocol composition.

Categories and Subject Descriptors: D.1.3 [Software]: [distributed
programming]; I.2.11 [Computing Methedologies]: [multiagent sys-
tems]

General Terms: Management, Design

Keywords: Business Process Composition, Web Services, Com-
mitments

1. INTRODUCTION AND MOTIVATION
Business processes involve interactions among heterogeneous

and autonomous components. For cross-enterprise processes, the
components may represent mutually competitive interests. Web
services provide a basis for realizing processes by standardizing
component interfaces, but are too low a level of abstraction for
encoding realistic business scenarios. This has led to an interest
in technologies such as coordination and process flows, business
process management, distributed transactions, and conversations.
While these approaches have some benefits, they suffer from the
major shortcoming that they do not enable the construction of com-
plex processes. They mostly take a centralized perspective, akin to
workflow technologies, viewing a process as a series of tasks to
be performed. This proves too tedious for reliable modeling and
too rigid for enactment, which is the reason workflow technologies
have been considered a failure in many practical settings.

We propose a novel framework for thinking about processes.
Simply put, a process instantiates one or more business protocols
among designated parties. We take inspiration from popular net-
working and distributed systems protocols such as IP, TCP, HTTP,

∗We thank Amit Chopra and Nirmit Desai for valuable comments.
This research was supported by the NSF under grant DST-0139037
and by a contract from DARPA.

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

and SIP. These protocols provide published specifications of the
roles of the parties interacting through them. Thus they enable im-
plementors to independently create components that, if compliant,
are guaranteed to work together. If we could specify business pro-
tocols precisely, we could enable the desired business processes in
which the autonomy of the participants is maximized (limited only
by the requirements of the protocols in effect) and their implemen-
tations are heterogeneous. Components could be plugged in or out
with ease and processes could be readily adjusted so that the partic-
ipants can handle exceptions and exploit emerging opportunities.

Whereas networking and distributed systems need only a hand-
ful of universal protocols, realistic business settings would need an
endless variety of business protocols. We want general protocols to
support flexibility, and specialized protocols to support efficiency,
security, or risk management. Ultimately, each environment may
have a set of desirable protocols. For example, we can imagine a
generic payment protocol as well as specializations of it such as
payment by cash, credit card, checks, travelers checks, bank draft,
wire transfer, in foreign currencies, via vostro and nostro accounts,
by Paypal, using hawala, and so on. Each of these would have any
number of subtleties, e.g., to pay with a check you must show a
government ID and a major credit card (which isn’t used, but its
number is noted). And these protocols could be combined in un-
usual ways, e.g., some restaurants accept credit card or travelers
checks only; some only accept cash or check. Moreover, the pro-
tocols only specify the interactions, not the local policies of the
participating entities, such as that they don’t take cash after sunset.
Protocols enable such policies to be inserted but are not directly
concerned with the policies.

Protocols would be needed for every aspect of business processes
that involves standardized interaction. Payment is just one aspect,
but there are as many aspects as business interactions. Clearly, de-
veloping sophisticated protocols would not be a trivial undertaking.
It needs abstraction support akin to information or object modeling
in traditional systems. We develop two main classes of abstrac-
tions: refinement (like the subclass-superclass hierarchy) and ag-
gregation (like the part-whole hierarchy). We develop a formal se-
mantics to support the hierarchy and propose an algebra to facilitate
reasoning about protocols.

2. DESIGN PRINCIPLES
We define a protocol as a specification of a logically related set

of interactions. Protocols are interfaces, specifying only the key de-
sired aspects of the interactive behavior and leaving the details to
implementors. If new protocols are developed by composing exist-
ing protocols, integration and configuration is simplified, because
you can put together the necessary software modules in a manner
that parallels how the protocols are put together.

308



Protocol Aggregation. The variety of protocols that realistic
business processes require should be developed without the need
for a serious integration and configuration effort every time a pro-
cess changes. Such a requirement can be met by employing well-
specified, published protocols [1] and by being able to combine
these protocols with a clear understanding of the properties of the
resulting process. In particular, we achieve aggregation via a char-
acterization of how to splice a protocol into another to yield a hy-
brid protocol.

Protocol Refinement. A protocol is refined when it is made
more specific. The most general protocols specify little, thus allow-
ing a lot of flexibility. For example, a payment protocol that only
specifies that the payer transfer funds to the payee can be refined
into a variety of payment protocols, each with different tradeoffs
of expense, speed, and convenience (for one or more of the parties
involved), as described before.

Commitments. To determine whether a refinement of a proto-
col is legitimate, we must represent not just the behaviors of the
participants but also the evolution of the contractual relationships
among the participants. These contractual relationships are natu-
rally represented through commitments, which have gained impor-
tance in the field of multiagent systems [3]. Commitments capture
the obligations of one party to another. Using contractual proper-
ties of a protocol also enables us to readily detect and accommodate
business exceptions and opportunities [4]. In principle, violations
of commitments can be detected and, with the right infrastructure,
commitments can be enforced.

3. EXAMPLE
The following example illustrates our approach. Technical de-

tails are available in an unpublished paper [2]. Consider a purchase
interaction in which a customer wants to buy a book from an on-
line bookstore. The bookstore obtains the customers’ order for a
book if the customer accepts the price quoted by the bookstore for
that book. The book is then shipped to the customer, and the book-
store is then paid for the book. The actual execution of the process,
however could involve many different scenarios such as: (1) the
customer returns the book for a refund, and (2) the customer dele-
gates the payment to its bank, and the bookstore uses a third party
shipper to have the book delivered. Figures 1 and 2 illustrate these
two processes.

ReqestQuote (c,b,g)

SendQuote (b,c,g,p)
AcceptQuote (c,b,p)

SendMoney (c,b,p)

s0 s1

s2 s3

s4 s5

BookstoreCustomer

s5

s18

ReturnGoods (c,b,g)

SendGoods (b,c,g)

SendRefund (b,c,p)s19

c = customer
b = bookstore
p = price quoted
g = book sold

Figure 1: Refined purchase, with goods returned

Protocol Semantics. Our protocol semantics are based on the
notion of similarity of contractual relationships that hold at various
states of a protocols. For example, one might consider states to be
similar if they have the same contracts regardless of which party is

ReqQuote(c,b,g)

SendQuote(b,c,g,p)

SendAccept(c,b,g,p)

s0

s1

s2

s3

s4
s5

AuthPay(x,p)

s21 SendMoney(k,x,p)

ReqQuote(b,x,[gc])

SendQuote(x,b,[gc], px)

AcceptQuote(b,x,[gc],px)

s11

s12

s13
s13

SendGoods(b,g,x)
s14

SendMoney(b,x,px) s16

SendGoods(x,c,g)

Shipper, xBookstore, bCustomer, cBank, k

Shipping

Payment

px = shipping cost
AuthPay = authorize payment
[gc] = ship g to c

Figure 2: Aggregated purchase, by splicing in shipping and
payment

actually bound to the contracts. Based on such state comparisons,
long runs subsume short ones, provided the longer run has states
similar to and in the same relative temporal order as the shorter
run. For example, scenario 1 subsumes the purchase protocol, since
it contains all the states of a purchase run, in addition to two more
states corresponding to the return of the book and the payment of
the refund. This is an example of protocol refinement. A general
protocol subsumes a more specific one, if every run of the specific
protocol subsumes some run of the general protocol.

We also define two operators over protocols, the merge and the
choice. These allow us to splice and aggregate protocols as shown
in Figure 2, where a shipping and a payment protocol are spliced
into the simple purchase protocol.

4. DISCUSSION
Protocols are conceptually like conversations. However, current

work on conversations (e.g., WSCI) merely specifies the constraints
of a given party, and does not treat them as independent specifica-
tions. This conflates a protocol with the question of who is willing
to play a role in the protocol. Further, traditional business pro-
cess automation efforts like workflow technologies specify rigid
sequences of steps to be followed, are a prone to failure in the face
of exceptional curcumstances. The use of contractual relationships
in protocol specification helps alleviate both these problems.

The algebra we have developed provides a basis for conceptual
reasoning about protocols in terms of refinement and aggregation,
which is essential if we are to engineer protocols the way other soft-
ware systems are engineered. Such composition aids both design-
time and run-time process engineering. To our knowledge, this
work is unique in formulating the problem of process design at a
conceptual level.

5. REFERENCES
[1] M. N. Huhns, L. M. Stephens, and N. Ivezic. Automating supply-chain

management. In AAMAS-2002, pages 1017–1024. ACM Press, July 2002.
[2] A. U. Mallya and M. P. Singh. A semantic approach for designing e-business

protocols, In ICWS-2004, To appear. July 2004.
[3] M. P. Singh. An ontology for commitments in multiagent systems: Toward a

unification of normative concepts. AI and Law, 7:97–113, 1999.
[4] P. Yolum and M. P. Singh. Flexible protocol specification and execution:

Applying event calculus planning using commitments. In AAMAS-2002, pages
527–534. ACM Press, July 2002.

309


