
A Multimodal Interaction Manager for Device Independent
Mobile Applications

Florian Wegscheider
Telecommunications Re-

search Center Vienna
Donau-City-Str. 1

A-1220 Vienna, Austria
+43-1-5052830-62

wegscheider@ftw.at

Thomas Dangl
Siemens Österreich AG

Gudrunstr. 11
A-1100 Vienna, Austria

+43-51707-46554

thomas.t.dangl
@siemens.com

Michael Jank
Kapsch CarrierCom AG

Am Europlatz 5
A-1120 Vienna, Austria

+43-1-50811-3721

michael.jank
@kapsch.net

Rainer Simon
Telecommunications Re-

search Center Vienna
Donau-City-Str. 1

A-1220 Vienna, Austria
+43-1-5052830-47

simon@ftw.at

ABSTRACT
This poster presents an overview of the work on an interaction
manager of a platform for multimodal applications in 2.5G and
3G mobile phone networks and WLAN environments. The poster
describes the requirements for the interaction manager (IM), its
tasks and the resulting structure. We examine the W3C’s defini-
tion of an interaction manager and compare it to our implementa-
tion, which accomplishes some additional tasks.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces – Evaluation/methodology, User interface man-
agement systems (UIMS)

General Terms
Design, Experimentation, Human Factors, Languages.

Keywords
Multimodal interface, session management, interaction manager,
device independence, multi-user applications, mobile network.

1. INTRODUCTION
Today’s mobile devices increasingly support more than just one
modality. Yet there are few applications that support several mo-
dalities on mobile terminals, even though the generally small
screen and the frequent change of context means that a multi-
modal user interface would be of great benefit to the user.
There are several reasons for this: First of all, today’s mobile
networks encounter problems when transmitting data and voice
simultaneously. Second, creating a good UI is difficult due to the
multitude of devices and capabilities, and finally creating a mul-
timodal interface is harder than sticking to just one modality.
The first problem was relieved by GPRS and will be fully solved
in UMTS systems. This (and others’) work deals with the other
two problems by relieving the application from having to adapt
the user interface to specific devices and modalities.

2. Overview of the MONA Platform
The MONA (Mobile multimOdal Next generation Applications)
platform [3] is a server-based platform which makes it possible to
develop applications that combine a GUI with speech input and
output. The MONA system supports a range of devices: from
low-end WAP mobile phones to high-end Symbian-based smart-

phones and powerful (X)HTML enabled handheld computers.
Devices are connected to the platform via 2.5 and 3rd generation
mobile networks as well as wireless LANs.
Within the MONA project we develop two applications to show
the range of capabilities of the MONA platform: a multi-user
game and a single-user messaging client.

The MONA Quiz allows several users to play a quiz game
against each other. In addition to the quiz they have the opportu-
nity to chat with each other during the game. This allows for good
interaction between the users demonstrating modality independent
communication between users.

The Messaging Application is a unified messaging client It dem-
onstrates modality-independent messaging treating e-mails, SMS,
MMS and voice messages alike.

3. REQUIREMENTS
Multimodality: All issues concerning different modalities must
be resolved by the interaction manager. The applications are un-
aware of a user’s current input and output modalities.

Device independence: The application is (in general) unaware of
the specific capabilities of the client device(s).

Application independence: The interaction manager must not be
designed in way that it restricts or limits development of future
applications and use of future input or output technologies.

Multi-user capability: MONA applications are generally multi-
user applications, i.e. one or more users may concurrently be con-
nected to and make use of an application. The IM manages users
and user groups sharing an application.

Fine grained control: While the IM makes sure the application is
useable with the default translation of the generic user interface to
a specific device and modality, the application can take high de-
tail control over the user experience.

Push pages: As our interaction model is request, page and
browser based, we need some special means to push pages to the
user. We require both a request and a push interface between the
interaction manager and applications.

4. TASKS
The interaction manager, the central component of the MONA
platform between applications and the rendering system, covers:

User login and authentication.

Management of user preferences. This means the interaction
manager finds the user’s modality preferences and device charac-
teristics so the output generation can create interfaces adapted to

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

272

the user’s preferred modalities and device. It also includes meth-
ods for setting preferences.

User session management (not including application state). This
includes the management of several users sharing an application
and broadcasts to all users in the shared session. Broadcasting
requires adapting the UIs as not all users get the same interfaces.

Splitting the user interface if it should be rendered on several
devices of the same user (collaborative browsing).

5. INTERFACES
The interaction manager as we see it has three interfaces:

Input from User. Mobile devices access our IM via a 3rd party
platform [4] which sends http requests for web pages. Any user
input reaches us in the form of a page request with parameters.

Input from Application. The application sends generic user in-
terface descriptions to the interaction manager. We chose the User
Interface Markup Language (UIML [1], [2]), an abstract for an
XML representation of any user interface, and defined a vocabu-
lary for our task.

Output to Rendering System. The output generation component
receives basically the same user interface as the interaction man-
ager, minus the broadcast information, plus user preferences and
device information. We use UIML here as well.

6. IMPLEMENTATION
As emphasised in [5] the W3C’s interaction manager is a logical
component. So is ours, as this chapter will show.
We decided to use an XML publishing framework for transform-
ing the application’s UIML input to the required target language
(XHTML+Voice Profile, X+V [6]).
A page request triggers two pipelines. The first delegates logic to
the interaction manager and application calls receiving UIML, the
second queries the database for user preferences and client capa-
bilities. Both results are aggregated to a single XML file which is
rendered via an appropriate style sheet to X+V output for the
underlying platform [4] (Figure 1).
Our architecture relies on the HTTP request/response model and
does not support pushing pages. Our solution to this is a small
plug-in for the client browser through which the IM can tell the
browser to load a new page. This workaround avoids frequent
page reloads not feasible in our low-bandwidth environment. We
need this plug-in for PDA and Symbian clients only, on WAP
phones we use the WAP push mechanism.

7. CONCLUSION
We have shown requirements, tasks and the implementation of an
interaction manager in a multimodal platform.
While we generally stick to the task distribution the W3C sug-
gests for the components of their framework, we did make a few
changes: We integrated broadcast functionality into our system
and we added some aspects of the session management and the
output generation to the interaction manager. Most importantly,
we seek to keep the IM independent from the applications and
moved the application state back into the application.
Our IM concentrates on modality management and device inde-
pendence which it efficiently achieves for our applications.

H T T P

S O A P

D
a
t
a
b
a
s
e

L
a
y
e
r

HTTP Request

noUsername in
HTTP Session

Get Connection
IDs for Username

Get HTTP Session

yes

in a ses-
sion with an
application?

get Application
URL from session

table

yes

no

Target URL =
Mona Logout

no

Build SOAP
Request

Receive SOAP
Response

Broadcast

Get all users
where Session ID
= my App Session

For all users do
following

Get terminal
capabilities for

user agent

Get user
preferences for

username

no

yes

Merge XML data

Get stylesheet for
user agent

Transform to
output format

HTTP Response

Application

Logoutyes

get URL for
Mona portal
application

get XML for
Login

D
a
t
a
b
a
s
e

L
a
y
e
r

Cocoon
sitemap

Java
Logic

Figure 1. MONA’s Rendering Pipeline Including the Interac-

tion Manager’s Functions

8. ACKNOWLEDGEMENTS
The MONA project is funded by Kapsch CarrierCom AG, Mo-
bilkom Austria AG and Siemens Österreich AG together with the
Austrian competence centre programme Kplus. Special thanks go
to Kirusa, Inc. for their multimodal platform.

9. REFERENCES
[1] Abrams, M. et al. UIML: An Appliance-Independent XML

User Interface Language. In Proceedings of The Eighth In-
ternational WWW Conference, Elsevier 1999

[2] Draft specification for UIML 3.0. 2002-02-12. http://www.
uiml.org/specs/docs/uiml30-revised-02-12-02.pdf

[3] Ftw’s project MONA web page. http://www.ftw.at

[4] Kirusa, Inc. website: http://www.kirusa.com/

[5] Larson, J.A., Raman, T.V., Raggett, D. W3C Multimodal
Interaction Framework, W3C Note, 6 May 2003.
http://www. w3.org/TR/2003/NOTE-mmi-framework-
20030506/

[6] XHTML+Voice Profile 1.0. W3C Note, 21 December 2001.
http://www.w3.org/TR/2001/NOTE-xhtml+voice-20011221/

273

