
Web Customization Using Behavior-Based Remote
Executing Agents

Eugene Hung
Dept. of Computer Science and Engineering

University of California, San Diego
San Diego, CA 92093

eyhung@cs.ucsd.edu

Joseph Pasquale
Dept. of Computer Science and Engineering

University of California, San Diego
San Diego, CA 92093

pasquale@cs.ucsd.edu

ABSTRACT
ReAgents are remotely executing agents that customize Web brows-
ing for non-standard resource-limited clients. A reAgent is essen-
tially a “one-shot” mobile agent that acts as an extension of a client,
dynamically launched by the client to run on its behalf at a remote,
more advantageous, location. ReAgents simplify the use of mobile
agent technology by transparently handling data migration and run-
time network communications, and provide a general interface for
programmers to more easily implement their application-specific
customizing logic. This is made possible by the availability of re-
mote behaviors, i.e., common patterns of actions that exploit the
ability to process and communicate remotely. Examples of such
behaviors are transformers, monitors, cachers, and collators. In this
paper, we identify a set of useful reAgent behaviors for interacting
with Web services via a standard browser, describe how to program
and use reAgents, and show that the overhead of using reAgents is
low and outweighed by its benefits.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architectures [Remote Agent Behav-
iors]

General Terms
Design, Experimentation, Performance, Reliability

Keywords
Web customization, dynamic deployment, remote agents

1. INTRODUCTION
The trend towards smaller, wireless Internet-access devices has

brought about a wide disparity in user demands, leading to prob-
lems with common applications such as Web browsing. Not only
do resources and connections of client devices vary greatly, but
sometimes users have radically different needs that are unaddressed
by servers. And currently, little can be done for the increasingly
common scenario of users with transient, resource-limited client
devices entering the network unexpectedly, demanding unusual ser-
vices, and finding the services unsatisfactory due to a server’s in-
ability to flexibly handle the user’s situation.

To give some concrete examples of the problems of increasing
client heterogeneity, consider the typical scenario of a user purchas-
ing merchandise on the Web. If the client device has below-average

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

computing or network resources, or the user has unusual demands,
problems can arise. A client device with limited network band-
width and display might be too slow when a server responds with
extraneous images and videos of the merchandise. Another user
with an unreliable connection to the Internet may be unable to ver-
ify that a transaction was completed, possibly causing the sending
of a duplicate transaction order due to an intervening disconnec-
tion. A third user may require a specialized service unsupported
by the server. These types of problems degrade quality of service,
and will increase in frequency as more and more users, with vastly
different needs and client devices, access the Web.

Our approach to addressing these types of problems is to support
customization of Web browser requests and (especially) responses
via dynamically deployed, remotely operating code, tailored to the
particulars of the client device. For example, a Web browser run-
ning on a client device with a small, limited display will benefit
from customizing logic operating at or near the server that trans-
forms the rich server data into a spartan text-only response. Or, on
a client device with an unreliable connection, browser performance
would be improved from customizing logic operating at the bound-
aries of the problematic portion of the connection (not necessarily
the end-points) that stabilizes it with a disconnection-aware proto-
col. Finally, for clients with unusual requests, a specialized service
could be implemented as part of the customizing logic, acting as a
higher-level service relative to the services provided by the server.

1.1 Previous Solutions

Server-based customization
The idea of customizing Web services is not new, but previous ef-
forts have been divided on how and where to provide this func-
tionality. The most common approach is to have servers adapt
to the specifics of each individual client. Server-provided CGI
scripts/forms, and the WAP protocol [1] are two examples of this
approach, where the server programmer is responsible for antici-
pating common client problems and desires, and catering to them.

While easy to deploy on an individual level, server-based ap-
proaches lack generality: some servers may support a specific client
while others may not. Also, even if one restricted communications
only to servers that catered to one’s needs, performance is unsatis-
factory if the client environment changes or new clients with dif-
ferent needs arrive.

Intermediaries
A more scalable solution is to have the customizing logic operate
as a user-level intermediary on a machine between the client and
server [2]. Such an intermediary would act as a standard client

694



as viewed by the server by communicating with it using the pre-
established client/server protocol. The intermediary would also act
as a specialized server for the client, with the ability to, for exam-
ple, transform data received from the server into a more suitable
form for the client.

A popular type of intermediary, for which there is much research
and experience, is a proxy that provides a static service, usually pre-
installed by an administrator, to which a client sends its requests
for processing before it gets passed on to the server. Proxies are a
good solution for customizing large groups of clients with similar
demands. For example, all clients connecting via low-bandwidth
links to a higher-speed network might use a filtering proxy that op-
erates beyond these links. However, proxies are limited in scope
and typically inflexible in where they can be located. If a client
needs special customizing logic that operates optimally at a specific
location (such as at or near the base station for a wireless client),
it may be difficult to install such a special proxy at that location.
Furthermore, proxies installed by parties other than the client suf-
fer from similar scalability problems that arise from server-based
customization.

At the other extreme of types of intermediaries is the mobile
agent [3]. By a mobile agent, we simply mean code that is capable
of migrating from the client to a remote site, acting on behalf of the
client. The most general forms of mobile agents, which allow sus-
pension during execution and consequent migration, are extremely
flexible and powerful in their support for customization. And un-
like server-based solutions, they scale well with increasing client
heterogeneity as each different client can use its own type of agent
to alleviate its problems. However, mobile agents typically require
complex underlying middleware systems to handle the semantics
and security problems that are a byproduct of code migration. They
are also not easy to program, as programmers are generally not fa-
miliar with the mobile code programming paradigm.

1.2 Our Solution: reAgents
Given these extremes, we seek a middle-ground solution, with

the following goals:

• provide the user a better way to handle its needs and limita-
tions

• be transparent to servers (i.e., do not require modifications to
servers)

• be easy to program and use

To meet these goals, we propose a customization mechanism
that is, simply put, more flexible than proxies but less complicated
than fully-general mobile agents. We achieve this compromise by,
first, adopting a form of “one-shot” mobile agents, which we call
a reAgent (for “remotely executing agent”). Unlike a general mo-
bile agent, which can move to multiple machines during its com-
putation and retain its state and identity, a reAgent moves once,
and does so before it begins execution. This is based on the ex-
tended client/server model in [2] and similar to the remote evalua-
tion model in [4].

A reAgent is customized and launched by the user to operate at
a remote location that is superior in, for example, available com-
puting or network resources. This location is known as the reAgent
host (Fig. 1). The reAgent is then connected to the browser through
a front-end proxy interface that intercepts browser requests and for-
wards them to the reAgent for handling. The reAgent then acts as
a customized proxy for that particular user, and returns the server
response to the front-end proxy, which forwards the response to

the browser. This extends the capabilities of the browser in a cus-
tomized fashion.

By moving its own provided code to a better location, the client
gains extra power to better deal with its limitations and needs. And,
the client can represent itself to the server as a standard client via
its reAgent, thereby keeping the server code unchanged.

Several advantages arise from limiting movement to one hop. By
avoiding some of the security issues introduced by code that can
roam from site to site, infrastructural support is simplified. Also,
with a stationary remote agent acting on its behalf, the browser
gains the benefits from remote execution without adjusting its client/
server architecture: the reAgent acts as a server by taking requests
and returning responses. Finally, technical problems associated
with maintaining and updating program state during migration are
avoided, without losing much functionality [5].

A novel aspect of our approach is that reAgent code is strictly
derived from a template library of behaviors. Behaviors are useful
patterns of processing and communication that are the result of re-
stricting and simplifying the form of movement of reAgents. Not
only do behaviors capture common useful forms of client/agent/
server interactions, but importantly, can be specialized for particu-
lar application needs via code parameters. As perhaps the simplest
and most common example, the “transformer” behavior, which in
general processes a response from a server before passing it on to
the client, can be specialized in terms of how the server data will
be transformed. A client device with a limited-color display would
benefit from a data transformation that reduces the color depth of
image files, while another client device with a small display would
benefit from a data transformation that shrinks images.

Some of the useful behaviors we have identified are the follow-
ing:

• transforming, by changing the form of a server response be-
fore it is communicated to the client, as in filtering the re-
sponse before sending over low-bandwidth links to reduce
bandwidth and latency, or to reduce client storage and pro-
cessing;

• monitoring, to improve application reaction times to critical
changes in state at the server by observing and triggering ac-
tions closer to the server;

• caching, by saving commonly-accessed data at a location
near the client to improve responsiveness when there is high
network latency between client and server and the client does
not have sufficient system resources to efficiently operate a
local cache;

• collating, by moving the distribution point of a request, copies
of which are to be forwarded to numerous servers, to a more
efficient operating point where the responses can then be
fused into a single result.

These behaviors can be used not only in isolation, but also in
combination. Thus, a single reAgent is composed of one or more
behaviors (each of which is specialized for its originating client).

CL

Proxy

Front-End

Client

HTTP

Protocol

Client

ReAgent Host Web Server

MiddlewareBrowser

HTTP

launch

Figure 1: Client-ReAgent-Server Model and Environment

695



By identifying the characteristic behaviors of reAgents and using
them as the building blocks for development, we provide a simple,
structured way of building and deploying reAgents that efficiently
customize server data in a client-specific, scalable fashion.

The rest of this paper is organized as follows:
In Section 2, we detail the concepts behind reAgents and their

composing behaviors. We also catalog the behaviors we have iden-
tified. In Section 3, we describe the programming interface for the
external components of the reAgent system. In Section 4, we give
an example of an application that uses the reAgent system to cre-
ate a powerful customized stock trader. In Section 5, we present
experimental results that show that the implementation overhead of
this approach is tolerable and outweighed by its benefits. In Sec-
tion 6, we review previous work in the area of Internet application
customization. Finally, in Section 7, we present conclusions.

2. REAGENTS AND BEHAVIORS

2.1 ReAgent Environment
ReAgents operate in an environment with somewhat inflexible

(i.e., difficult to change) Web servers and browsers. Both server
and browser must be linked to the reAgent, which is interposed in
their communications. The reAgent communicates with a server
as a traditional client: it sends the server a request and receives a
response. From the server’s point of view, the reAgent is just an-
other standard client. However, the reAgent needs to intercept the
browser request to the server without changing the internal browser
code. This is done simply by using a proxy service (the front-end
proxy) that runs on or near the client device. The browser’s output
is redirected to the front-end proxy’s input, and then the front-end
proxy forwards the output to the reAgent. It can do this because
it is responsible for launching the reAgent to the reAgent host (us-
ing the reAgent API). Once the reAgent is launched, avenues of
communication can be set up between the front-end proxy and the
reAgent, as well as between the front-end proxy and browser (the
browser’s output is redirected to the front-end proxy’s input). Then,
the proxy acts as a client to the reAgent by sending requests (from
the browser) to the reAgent, and acts a server to the browser by
passing responses from the reAgent to the browser. In this manner,
the implementation of the browser and server remains unchanged.

For the reAgent code to migrate to and run on the reAgent host,
some form of middleware system that supports remote execution
must be available. The internal implementation of reAgents is not
tied down to a specific format of remote execution, which would
limit its scope. Instead, it leverages existing work in mobile code
by translating the launch command into the appropriate movement
methods for each system. This translation occurs at run-time when
the agent is launched, with the type of middleware on the target
reAgent host specified in a configuration file.

2.2 Model of Operation
A reAgent (Fig. 2) is composed of specialized behaviors, which

in turn are instantiations of a general behavior. Behaviors are pat-
terns of remote action and communication (with a server). As a pro-
gramming object, a behavior begins in the form of a template, con-
sisting of core logic that captures the general actions of the behav-
ior, and an API that allows it to be specialized with programmer-
provided customizing logic and to be controlled by the user during
run-time (control methods).

A behavior operates as follows. As part of the reAgent, it waits
until it receives a request. This request is passed as an input to
the core logic, which may call some methods implemented by the
client (the customizing logic, or CL). At some point during the core

CL

CL

CL

Request

Request

Request

Response

Response

Response
Behavior #3

Behavior #1

Behavior #2

Control Protocol

Request

Response

Converter

Converter

Figure 2: ReAgent Architecture

logic operation, request(s) are made to a server, which returns a re-
sponse. This response is also passed through the core logic, and
possibly some more CL methods, before being output. At no point
does the behavior initiate communication with the client; the re-
Agent containing the behavior is responsible for that, as well as for
handling the input and output. During execution, the client can tell
the reAgent to invoke the control methods of the behavior, which
help externally control the reAgent’s behavior.

Because the input and output are handled at a higher level in a
consistent fashion, multiple behaviors can be combined in a chain.
What is needed is a converter, code that can convert the response
output of one behavior into the request input for another one. Then,
the higher-level reAgent code can run a behavior, get the output,
feed this output to the converter, get the converter’s output, and
feed the converter’s output to the next behavior in the chain.

Finally, a reAgent and its behaviors are able to customize com-
munication. For each behavior, a server request is made using the
server protocol. The server protocol is defined as the protocol that
the server understands (in the case of the Web, HTTP). Meanwhile,
the reAgent is able to communicate with the client via a two-tier
protocol, the top layer being the control protocol and the bottom
layer being the client protocol. The control protocol is fixed by im-
plementation and is the means by which the client can invoke the
behavior control methods. The client protocol is customizable by
the client and allows the client to substitute a protocol that is better
suited than the server protocol for the connection between client
device and reAgent host. A useful scenario for a custom client
protocol comes when browsing the Web, where a portion of the
network path near the client is relatively unreliable, e.g., wireless
access. One could launch a reAgent to a location past the unreliable
portion, e.g., beyond the wireless base station, set up a more stable,
reliable protocol between the client and reAgent, while continuing
to use HTTP between the reAgent and the Web server.

2.3 Behavior Library
Our focus is on behaviors useful for composing reAgents. A

behavior is “useful” if it intrinsically exhibits benefits derived from
a reAgent’s ability to operate remotely. These benefits come from
some combination of, but are not limited to, the following:

• avoiding a problematic portion of the network (due to high
latency, low bandwidth, low reliability, etc.);

• ability to act autonomously on behalf of the client in a cus-
tomized fashion.

• use of remote computational resources;

696



The following sections catalog the useful behaviors we have iden-
tified. (This catalog is not meant to be exhaustive, but exemplary.)
For each behavior, we present a description of the behavior, an out-
line of the core logic, and a common Web application using the
behavior. To simplify the exposition, we show the core logic in
pseudo-code, and describe what happens when the behavior is or-
dered by the reAgent to process a request.

2.3.1 Transformer

Client ServerreAgent Hostlaunch

Tfrm

Browser/Proxy Core Logic

Client
Protocol

(Changed
Response)

Figure 3: The Transformer Behavior

Description. The Transformer behavior (Fig. 3) is used when-
ever there is a need to modify a response sent from a server to the
client. The CL (customizing logic) is the application-specific algo-
rithm that defines how to change (transform) the data.

Core Logic
input: request

----------------------------------------------------------------
serverProtocol.send(request)
response = serverProtocol.receive()
newResponse = transformerLogic.transform(response, args)
----------------------------------------------------------------

output: newResponse

The behavior passes the request through to the server, runs the
transforming algorithm on the server’s response, and sends the mod-
ified response back to the client.

Application. The Transformer behavior is designed for scenar-
ios where the server data is in an unsatisfactory format for the
client. One frequently occurring scenario involves browsers on
clients with limited capabilities, such as small battery-powered wire-
less devices (e.g., PDAs). General features of such a device include
limited network bandwidth as well as low-fidelity rendering of data,
so transforming the data by filtering extraneous or unusable data be-
fore sending it to the browser would conserve bandwidth without
significantly impacting the perceived quality of the data.

As an aside, a trivial but useful form of this behavior is a “null
Transformer,” where the CL simply outputs whatever data is input,
untouched. This captures the behavior of relaying data and is useful
when used in combination with other behaviors that perform an
action and then need to communicate briefly with the server.

2.3.2 Monitor

Description. The Monitor behavior (Fig. 4) is designed for use
in applications that have a need to frequently observe the state of
a remote object (on a distant server) until a certain state is reached
(determined by the response). The calculation of the next attempt
to observe, plus the response evaluation function, forms the CL.

Client
Protocol

Client Server

Server Object

reAgent Hostlaunch

Browser/Proxy

Test

(Multiple
Requests)

(High Latency)
Core Logic

Figure 4: The Monitor Behavior

Core Logic

input: request, requestParam

----------------------------------------------
do

/* pause before checking */
queryTime =

monitorLogic.calcnextQuery(requestParam)

sleep (queryTime - currentTime)

/* check remote object */
serverProtocol.send(request)
response = serverProtocol.receive()

while (monitorLogic.testResponse(response) -> FALSE)
-----------------------------------------------

output: response

The behavior repeatedly calculates the next time to query the
server, queries the server at that time, and then checks to see if a
trigger state, a function of the response, has been reached. Once
this occurs, monitoring is terminated and the response correspond-
ing to the trigger state is returned.

Application. A simple example of a Web application for a Mon-
itor involves intelligent auto-refresh. Many pages auto-refresh at
fixed intervals. A Monitor can bypass the automatic refresh and
refresh at its own customized rate. This can be advantageous when
the Monitor is sensitive to network conditions and adjusts the rate
depending on the amount of traffic. More importantly, the intelli-
gent auto-refresh only updates the client when the server changes,
and will not force a refresh if the data remains unchanged, saving
bandwidth.

2.3.3 Cacher

Server

Client
Protocol

Client reAgent Hostlaunch

Cache

Browser/Proxy

(May not occur)

(High Latency)

Core Logic

Figure 5: The Cacher Behavior

Description. The Cacher behavior (Fig. 5) is used for storing
recently retrieved server data at a nearby location with the expec-
tation that it will be accessed again, thus improving future per-
formance. When previously retrieved data is requested again, the
nearby stored copy is retrieved instead of the distant original. This
behavior is especially useful for applications that have frequent but
similar requests to remote servers.

697



Core Logic
input: request

------------------------------------
key = cacherLogic.hash(request)

if (cacherLogic.lookup(key) -> TRUE)
response = cacherLogic.get(key)

else
serverProtocol.send(query)
response = serverProtocol.receive()
cacherLogic.replace(key, response)

------------------------------------

output: response

This behavior uses customizing logic on the request input to de-
cide whether or not to pass along the request to the server. If the
request has not been made recently, the behavior associates the re-
quest with a “key” (derived from the protocol) and uses the request
to contact the server. When the server responds, the behavior asso-
ciates the data in the response to the key of the request and stores
both items in a database, i.e., the cache, before outputting the re-
sponse data. When a request is made that matches a key in the
cache, the behavior will bypass sending the request to the server
and immediately return the associated cache data.

The behavior is in charge of inserting, removing, and retriev-
ing data contained within the cache. Insertion occurs whenever the
server sends the behavior a response. Data and its corresponding
key are removed whenever the amount of storage allocated to the
cache begins to run out, or by special order of the client. Data is
retrieved when the client request key matches a key in the cache.
While the behavior defines these general actions, particulars re-
garding cache policy (such as which cache entries to replace first
when the cache is full) are supplied as part of the CL.

Application. Caching of frequently accessed Web pages is so
beneficial to performance that most major browsers support some
form of caching. Without intermediate hosts, the server data is
stored on the client device. While this practice is optimal for mini-
mizing network latency, some client devices have limited amounts
of memory (or CPU power) such that cache performance is se-
riously degraded by running locally. These resource-poor clients
would benefit from moving the cache to a nearby location with suf-
ficient resources.

2.3.4 Collator

Protocol
Client

Client reAgent Host

Collate

Browser/Proxy

Servers

(Many Different Servers)

Core Logic

launch

Figure 6: The Collator Behavior

Description. The Collator behavior (Fig. 6) transmits the same
request to multiple servers from a remote location, and waits until
a wait condition, specified by the client, is met. Afterwards, the
responses are sent to an application-specific function that produces
a result for the client (collating).

Core Logic
input: request, serverList

-----------------------------------------
n = sizeof(serverList)

replies = 0 // synchronized

for (i = 1 to n)
spawn Thread that runs :
for (s = 1 to n)

serverProtocol.connect(serverList[i])
serverProtocol.send ()
response[i] = serverProtocol.receive() // blocking until timeout
replies = replies + 1

collateLogic.wait ();

fusedResponse = collateLogic.collate(response) // all responses passed
-----------------------------------------

output: fusedResponse

A request is sent once to the reAgent, which then transmits copies
of it to each server. The reAgent then waits for responses from
the servers in an application-specific fashion, as defined by the
wait() method. For example, the reAgent may only wait for
the first response from any server, or for some bounded number
of responses, or even wait for responses from all servers within a
timeout period. After the wait() method returns, the server re-
sponses are collated by the collate() function, and the result is
sent to the client.

Application. A typical Web application that exhibits this behav-
ior is a comparison agent that queries different servers with the
same question and returns the “best” result. While many services
for finding the best price of an item already exist on the Web, they
do not perform correctly if a server is not known or supported by
the query service, or if the user is more concerned about some other
attribute besides price, such as delivery time or seller reputation.

3. SOFTWARE INTERFACE

3.1 Programming Language
We chose to use Java [6] as our implementation language for

reAgents for several reasons. First, Java’s modularity allows the de-
lineation of the CL from the core behavior logic as separate classes,
or method packages. Second, Java’s dynamic extensibility allows
the pattern code to instantiate and load classes on demand, a ne-
cessity for flexible specialization of behaviors and converters. Java
programs are also portable, only requiring that the destination server
be able to run a Java Virtual Machine (JVM). Portability is highly
advantageous in any heterogeneous environment. Finally, JVMs
are currently a de facto standard for running foreign code on the
Web, making Java-based applications highly deployable.

We expect that any programmer wishing to employ reAgents in
their applications will use mobile agent middleware that is both
able to invoke Java programs, and have their movement and com-
munication procedures be invoked in return by a Java program. We
also require that the middleware be able to obtain a copy of the
CL, whether it be carried by the agent or downloaded from a soft-
ware repository. These requirements are all met if the agent system
is written to support Java-based agents. Many if not most mobile
agent systems (such as Aglets [7] and D’Agents [8]) support Java-
based agents.

698



3.2 Application Programming Interface
The following sections define the external interfaces for the user-

defined components of the reAgent: the communication protocols,
the behaviors, the converters, and the reAgent itself. Any cus-
tomization performed by the reAgent must use at least one, if not
all, of these interfaces.

3.2.1 Custom Protocol Interface
All protocols used by the reAgent must conform to a Protocol

interface:
public interface Protocol
{

public boolean connect (InetAddress address, int port);
public Protocol waitForConnect (int port);
public void send (Object obj);
public Object receive ();
public void disconnect ();
public void cleanup();

}

The interface defines general functions that protocols must sup-
port (send, receive, connect, and disconnect). In this manner, flex-
ibility of protocol choice is retained while giving the reAgent an
interface that it can use to communicate with the client in a cus-
tomized fashion.

The Protocol interface enables reAgents to support standard
protocols such as HTTP or TCP. Library implementations of these
protocols are provided to the reAgent programmer to simplify the
programming in standard cases.

More generally, this is also where the programmer can imple-
ment any custom code that requires execution at both the client
and the reAgent, such as compression/decompression and encryp-
tion/decryption.

3.2.2 Behavior Interfaces
The behavior interface is different for each behavior type, as each

behavior supports different methods. However, all behaviors have
a few methods in common:

public interface Behavior {
public Behavior (String type, Protocol sProtocol,

String CL, String[] CLargs);

public void pause ();
public void resume ();

}

• Behavior() is the constructor, which constructs a specialized be-
havior. A programmer must specify the type of behavior, the cus-
tomizing logic (the CL), the logic-specific arguments to the CL, and
the implementation of the server protocol. These are provided as pa-
rameters to the general implementation of the core logic (which acts
as a template for the behavior):

• pause() is a control method that causes all CLs in the behavior
to be ignored. The request and response are still made, as if the
specializing behavior did not exist.

• resume() is a control method that only has an effect on a paused
behavior. The behavior is unpaused and its CLs become operational
on the requests and responses sent to it.

The result is a specialized behavior that acts similarly to other
behaviors created from the same type, but differs in a specific, cus-
tom manner (by the CL, the arguments of the CL, or the server
protocol).

The following section describes both the CL interface and the
control method interfaces for each of the behavior types.

Transformer
public interface Transformer extends Behavior {

// called by the reAgent logic
public byte[] transform (byte[] content);

// may be called by the user for control
public void setLevel(int level);

}

Customizing Logic method:
• transform() transforms the server data in a client-specific fash-

ion.

Control method:
• setLevel() changes the level, or amount of transformation to the

amount specified in the argument. (The level is a class variable and
is parsed according to the CL.)

Monitor
public interface Monitor extends Behavior {
// called by the reAgent logic
public long calcNextQuery (Response responseStruct, long lastQueryTime);
public boolean testResponse (String [] args, Response responseStruct);

// may be called by the user for control
public void sendQueryNow();

}

Customizing Logic methods:
• calcNextQuery() returns the next time the monitor should make

another query.

• testResponse() tests to see if the server response has produced
a trigger state.

Control method:
• sendQueryNow() forces an immediate query to the server.

Cacher
public interface Cacher extends Behavior {
// called by the reAgent logic
public String hash (byte[] request);
public boolean lookup (String key);
public Response get (String key);
public void replace (String key, Response responseStruct)

// may be called by the user for control
public void flush();
public void changeCacheSize(int size)

}

Customizing Logic methods:
• hash() takes a request as input and returns a String that is the

key string for that request.

• lookup() returns whether the key string is in the cache.

• get() returns the Response associated with a key string in the
cache.

• replace() puts a key string in the cache and associates it with a
Response. This method also implements the cache replacement
policy.

Control methods:
• flush() removes all entries from the cache.

• changeCacheSize() changes the size of the cache.

Collator
public interface Collator extends Behavior {
// called by the reAgent
public void wait ();
public Object collate (Response[] responses);

// called by the user for control
public void forceCollate ();

}

Customizing Logic methods:
• wait() defines how long the reAgent should wait for server re-

sponses.

• collate() takes all the results received and combines them into
one object to be sent back to the client.

699



Control method:
• forceCollate() interrupts the wait() method and forces the
collate() method to be called immediately.

3.2.3 Converter Interface
The reAgent programmer who chains behaviors together is re-

sponsible for writing the conversion algorithm so that the output of
the first behavior can be parsed as input to the second behavior. The
interface of a converter is simple:

public interface Converter {
// convert function
byte[] convert (byte [] content, String [] args) throws IOException;

}

where convert() converts an input response into an output
request to be used as input for the next behavior.

3.2.4 ReAgent Interface
The reAgent interface is used to create and control reAgents.

These methods are called from the front-end proxy.
The reAgent interface is :

public interface ReAgent {
public ReAgent (Protocol cProtocol);

public boolean launch (String hostname, String configFile);
public void addBehavior (Behavior behavior, Converter converter);
public Object process (Object request);
public void stop ();

public void sendControlMessage (String message);

}

where:

• ReAgent() creates an object that, after migration, will communi-
cate with the client with the protocol specified as a parameter.

• addBehavior() adds a specialized behavior object (Section 3.2.2)
to the internal reAgent queue. If the behavior is to be chained to a
previous behavior, the converter (Section 3.2.3) that will change the
output of the previous behavior into acceptable input is also added.

• launch() launches the reAgent to a remote site, specified as the
first parameter. The second parameter, the configuration file, defines
system variables that enable the reAgent to migrate. For example, a
configuration file specifies the type of agent system that the reAgent
host is running so that the correct migration methods are called.

• process() sends a request to the launched reAgent for process-
ing.

• stop() stops the reAgent and begins the process of removing it
from the reAgent host.

• sendControlMessage() allows the client to send a message to
the reAgent using a pre-defined control protocol. (The control pro-
tocol is defined by the messaging system of the middleware running
the reAgent.) Such a message can be used to exert fine-grained con-
trol over an individual behavior.

4. USAGE
This section describes how a Java-based implementation of re-

Agents is used to simplify customized extension of Web browsers.
First we describe how a reAgent is used in conjunction with a
browser with access to a Java Virtual Machine. Then, we walk
through an example that uses a reAgent with two behaviors, moni-
toring and transforming, to customize stock trading beyond simple
limit orders.

4.1 Building and Using a ReAgent
The Java implementation of reAgents is a code package that im-

plements the general reAgent behaviors for existing mobile code
systems. To build a reAgent, its behaviors and converter compo-
nents need to be specialized beforehand by calling the Behavior

and Converter constructors with the appropriate client-specific
arguments. Then, a reAgent object is constructed with a custom
client protocol, and each of the desired components are added to
the reAgent via calls to the addBehavior method. This can be
done directly using the front-end proxy code, or, for ease of use,
through a GUI such as a web form. In the latter scenario, the form
calls a script that creates all the Behaviors, Converters, and Proto-
cols in the form, and then links them together by constructing a re-
Agent object calling the reAgent constructor and addBehavior
methods to create a reAgent object that is usable by the front-end
proxy. If a reAgent consists of more than one behavior component,
the behavior inputs and outputs are chained together in the order
they are added to the reAgent.

After the reAgent is constructed, it is launched to the reAgent
host by calling the launch method. This can be done via a Web
form or code. The reAgent is sent to the reAgent host, and the
client and reAgent protocols are set up for communication.

After this launch, the user redirects the browser to use the front-
end proxy linked with the reAgent so that all of the browser’s re-
quests will be intercepted by the reAgent. In this manner, the
browser no longer communicates with the server; it only commu-
nicates with the reAgent (using the client protocol of the front-end
proxy).

When the reAgent is launched via a Web form, a browser con-
trol window is automatically made available. The control window
gives the user the means to dynamically control the operation of
the reAgent by giving the user the ability to call the control meth-
ods of the reAgent’s behaviors at run-time. Actions here result in
messages sent by the front-end proxy to the reAgent via the control
protocol that invoke the corresponding control methods of the be-
haviors in the reAgent. Only control methods corresponding to the
behaviors composing the reAgent appear in this control window.

When the user no longer wishes to use the reAgent, the proxy
settings can be changed to no longer communicate with the reAgent
front-end proxy, or the control window can be closed to send a stop
message to all the behaviors in the reAgent.

4.2 Application: Custom Stock Trading
Many investors are now using the Web to manage their money.

With large amounts of money at stake, minimizing response time
to client requests is important. While server programmers can an-
ticipate common client requests, such as executing a stock transac-
tion as soon a certain price is reached (a limit order), more unusual
but desirable requests may not be supported. For example, many
investors believe it is important to buy or sell after the stock price
crosses the 200-day moving average, or after the stock price reaches
a new local extrema for the third time in an arbitrary time period.
Thus, a window of opportunity may be missed if the server does
not offer the ability to transact after a complex formula is satisfied.

To address this problem, the user can customize a reAgent to
migrate close to the stock server, repeatedly query the stock price
from a nearby location, evaluate the current stock price based on
its custom algorithm, and send a buy or sell order once that custom
algorithm recommends action. This involves the combination of
two behaviors: the Monitor, which monitors stock prices until some
condition is satisfied, and a null Transformer (which has an empty
CL) to perform a simple request/response (to buy or sell).

The user can build this reAgent by first developing the custom
stock-evaluation algorithm and coupling it with the Monitor behav-
ior’s API to create a class file that implements this algorithm, viz.
CustomStockMonitor.class. The user must also create a
null Transformer. These behaviors are created with the following
method calls:

700



Behavior stockMonitor = new Behavior("Monitor", // type
new HTTP(), // protocol
"CustomStockMonitor.class", // CL
null) // CL args

Behavior purchaser = new Behavior("Transformer", // type
new HTTP(), // protocol
null, // CL
null) // CL args

The user also needs to develop a class, using the Converter API,
that translates a server response into a BUY request, and puts it in
a class file, viz., BuyStock.class.

public class BuyStock implements Converter {

public byte[] convert (byte[] input, String[] args) {

// parse input for stock ticker name and return request to BUY stock

// this is a private custom function (not shown here, as it
// varies based on the server output) that parses the HTML
// response for the ticker name
String stockName = getTickerName (input, args);

String response =
"GET http://www.stockbroker.com/buy.cgi?ticker=" + stockName;

return response.toByteArray();
}

}

The user (via HTML form or code) then has the front-end proxy
create a reAgent with a standard HTTP client protocol, the two be-
haviors instantiated above, and an instance of the class BuyStock.

reAgent = new ReAgent(new HTTP());
reAgent.addBehavior (stockMonitor, null);
reAgent.addBehavior (purchaser, new BuyStock());

The reAgent is launched to the reAgent host middleman.org
with the code :

reAgentHost = "middleman.org";
reAgent.launch (reAgentHost, configFile);

Upon launching, the reAgent will wait for a request from the
client. Say the client requests that the reAgent monitor the stock
price of IBM:

request = "GET http://www.stockbroker.com/quotes/?p=IBM"
reAgent.process (request);

The reAgent executes the Monitor behavior at the remote host,
and the specialized algorithms in CustomStockMonitor are
called to determine how often to request a stock quote, and whether
the situation is attractive enough to buy IBM. When the algorithm
issues a buy signal, the Monitor returns the HTML response that
triggered the buy signal to the reAgent. The reAgent then feeds
this response to the BuyStock Converter, which turns it into a
BUY request for the appropriate stock, which in turn is fed into
the Transformer component. The server then receives the BUY re-
quest from the Transformer, executes the transaction, and sends a
response confirming the transaction back to the Transformer. The
Transformer, with a null CL, returns it unchanged to the reAgent,
which returns it to the client. All of this complexity is handled
automatically by the reAgent.

After launching, the user has the option to control the reAgent
via the control window. This provides the user with the ability to
pause or resume the reAgent, and the Monitor behavior also gives
the user the ability to override it by forcing a query at a specific
time.

5. EXPERIMENT
We have implemented the behaviors in Java, on top of a locally-

developed Java mobile code system called Java Active Extensions
(JAE), a middleware system that supports one-shot code mobil-
ity [9]. To experimentally evaluate the overhead introduced by
reAgents, we implemented a simple filtering example, based on
the Transformer behavior. We show that the overhead is low, es-
pecially when taken relative to the performance gains derived by a
compressing reAgent.

5.1 Experiment: Image Reduction
In this experiment, the transformer was used to simply reduce in

size the Web server images received before sending it over a low-
bandwidth connection to the client. The algorithm used was part of
the ACME Images package.

5.1.1 Environment
In the following experiment, the following conditions applied:

• The client was a home computer PC PII–300 connected to
the Internet via a dialup connection.

• The reAgent host was tap.ucsd.edu, a machine with 2
800Mhz Pentium III processors and on the same subnet as
the data server.

• The data server was charlotte.ucsd.edu, the depart-
mental web server.

The client was connected to the reAgent host via a dialup con-
nection with effective bandwidth measured at 10–15 KB/s (KB =
kilobytes). The reAgent host and data server were on the same
subnet, so there was little overhead due to network latency (thus al-
lowing us to isolate observed overhead to our system). The regular
bandwidth between the reAgent host and the server was measured
at approximately 800 KB/s.

A fixed cost that needs to be paid at least once per reAgent cre-
ation is the launch overhead (the time it takes for the reAgent to
be launched from the client to the reAgent host). The mean launch
overhead of the JAE system for sending the reAgent and its asso-
ciated classes over the local subnet was 984 ms (with a 95% confi-
dence interval of 11 ms). Note that this is a one-time start-up cost;
once the reAgent is launched, it can be used for multiple transac-
tions, each of which involves receiving a request from the client,
passing it to the server, getting the server’s response, applying a
function (in this case, transformation), and sending it to the client.

5.1.2 Setup
To eliminate alternative sources of overhead, a primitive Web

browser was written in Java. It takes a series of HTTP requests as
input, and returns the HTML output. The HTTP requests were for
actual image files found on the Web, ranging from 10 KB to 3.4 MB
in size (with each successive file larger than the previous by a factor
of approximately 2–3). This was to give the test suite a variety of
realistic data files, which exhibited different filtering ratios, rather
than canned ones that might be biased in favor of certain client-
specific algorithms.

A proxy was also written as the interface for the browser to com-
municate with the reAgent. The browser was set to use the proxy,
and launched the reAgent via a form. Thereafter, all communica-
tions from the browser went through the proxy and reAgent before
the server.

5.1.3 Results
The results, compared to a non-transforming Web browser, are

summarized in Fig. 7. For most of the files, the transforming re-
Agent exhibited good performance gains, reducing end-to-end times
by 30–75%. (The variable performance gain was dependent on
how effective the reduction was.) The exception was the 10 KB
file, where the gain from compressing the data sent over the lim-
ited bandwidth link did not compensate for the reAgent process-
ing overhead. However, the transformer provided superior perfor-
mance for files greater than 10 KB. An obvious optimization would
be for the reAgent to not transform small files, as the benefit does
not outweigh the cost.

701



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 500 1000 1500 2000 2500 3000 3500

PDF File size (kilobytes)

ms

Standard Browser reAgent

Figure 7: End-to-end comparison times

We timed different parts of the reAgent while transforming in
order to determine which factors are contributing the most to the
end-to-end processing time and how they scale. The results are
shown in Fig. 8, which provides more detail for the smaller con-
tributers to overhead by using logarithmic scales. The majority of
the time was spent sending the data over the low-bandwidth link.
The cost of transforming, processing, or moving the data from the
server to the reAgent host were all minor and scaled well.

In this figure:

• Control is the end-to-end processing time for a standard (i.e.,
non-reAgent) client/server implementation.

• Server is the time it took for the reAgent host to download
the file from the server (over a typical connection with high
bandwidth).

• CL is the time for the transforming CL to operate.

• Send is the time it took for the client to download the file
from the reAgent host.

• Process is the processing time of the reAgent on the file.

• E2E is the end-to-end processing time of the reAgent.

This experiment shows that the main bottleneck is clearly the
network, and not the reAgent. In such cases, a reAgent based on
the Transformer behavior not only imposes little overhead, but can
provide significant improvements in performance over a traditional
client/server application.

6. RELATED WORK
Research on customizing applications for improved performance

has seen a variety of solutions. Active networks, dynamic proxies,
mobile agents are but a few of the approaches advanced to solve
this problem. In this section, we describe the related research in
this area.

6.1 Dynamic Proxies
One type of customization solution lies in the use of proxies,

which act as intermediaries between client and server. Proxies are
different from our approach in that they are not necessarily mo-
bile (movable from site to site), and thus tend to be part of the
existing infrastructure rather than originating from the client in re-
sponse to a certain problem. While traditional proxy applications

1

10

100

1000

10000

100000

1e+06

10 100 1000 10000

PDF file size (kilobytes)

Control Server CL Send Process E2E

Figure 8: Overhead of transforming (log-based)

concentrate on caching Web results for improved performance and
for controlling Internet access through firewalls [10], there has been
some work done on proxies that actively customize application be-
havior (dynamic proxies). In [11], the idea of an Active Cache,
or a dynamic proxy that acts to help improve caching for dynamic
Web objects, was proposed. In Active Cache, content providers
provide specialized code in the form of a cache applet that inter-
mediate caching servers execute to produce a new version of the
cached object. More recently, [12] describes a large-scale, server-
based framework for caching dynamic Web content and facilitating
personalized services, called WebGraph. WebGraph is designed to
be deployed without client-side support, so it is primarily targeted
at groups of clients instead of individual clients.

Server-based customization techniques such as dynamic prox-
ies are highly deployable because they do not require changing the
underlying network infrastructure and represent the most popular
approach of solving the problem of client heterogeneity. However,
such techniques, while effective, do not fit our goal for a scalable
customization solution. New clients with correspondingly different
demands are continually being created, and requiring server pro-
grammers to cater to every potential variation in client capabilities
is problematic.

6.2 Client-based Customizers
For improved scalability, we examine customizers with more

client-side support. In [13], the author describes the implementa-
tion of a client-proxy-server framework that supports the on-demand
downloading of custom filters (the customizing logic) to a proxy.
The proxy then executes the filter on communications from the
server before passing it onto the client. This framework focuses
on filtering applications instead of all types of applications that
could benefit from mobile code. A more flexible Web-oriented
customization scheme is detailed in [14], which describes the im-
plementation of a middleware architecture that supports adaptive
Web-based proxies called Customizers. Customizers tend to be de-
ployed on behalf of a client, and are split into two points of control,
so as to separate the individual extension of a Web browser from
its remote, location-dependent computation. It is optimized for
use over an HTTP client/server connection and not a more generic
client/server connection. Finally, the Active Names project [15] de-
scribes the use of a dynamic proxy, introduced by either server or
client, that customizes how resources on a wide-area network are
located and transported to a client.

702



6.3 Mobile Agents
A significant area of past research in client-based customization

has been based upon mobile agents. The IBM Aglets Workbench
[7] and the D’Agents project [8], from industry and academia re-
spectively, are prominent examples of systems that support the ex-
ecution of mobile agents. A fuller description of these and other
important agent systems can be found in [16].

Mobile agents provide a robust solution for addressing the prob-
lems of client heterogeneity. And yet, mobile agent-based appli-
cations are rare. This is not due to lack of theoretical value: [17],
[18], and [19] describe applications which take advantage of mo-
bile agents. Yet, most application programmers are still unfamiliar,
or have difficulty, with the mobile agent programming model. Our
work differs from previous mobile agent literature by concentrating
on a method that reduces the complexity of building agent-based
applications.

7. CONCLUSION
We described a means for developing remotely executing agents

(reAgents) that allow Web browsers to be customized to derive per-
formance benefits for heterogeneous clients that are resource lim-
ited. The approach is based on identifying useful remote behaviors
that abstract away many of the complexities of mobile code sys-
tems. When a developer uses these behaviors as a foundation for
development, extending Web browsing becomes easier to imple-
ment due to pre-coded support for the movement, communications,
and general processing functions used by that application’s charac-
teristic behavior.

Our main conclusions are as follows:

• Restricting movement of reAgents to one hop does not sig-
nificantly impact the ability to construct useful, desirable ap-
plications. Meanwhile, it greatly simplifies security concerns
and operation semantics.

• ReAgents can be categorized as behaving in a certain man-
ner. We have identified a small set of behaviors that capture
common and useful patterns of action by remotely executing
agents. These behaviors are: Transformer, Monitor, Cacher,
and Collator.

• We can more easily build intermediary-based applications
through these behaviors. They allow the programmer to plug
in customizing logic to create a reAgent that customizes per-
formance in a manner that fits their needs. This is a simple,
scalable, and practical solution to the problem of client het-
erogeneity that adds little overhead.

8. REFERENCES
[1] WAP Forum. Wireless Application Protocol 2.0

Specification, http://www.wapforum.org, July 2001.
[2] J. Pasquale, E. Hung, T. Newhouse, J. Steinberg, and N. S.

Ramabhadran, Improving Wireless Access to the Internet By
Extending the Client/Server Model Proc. European Wireless,
Florence, Italy, Feb. 2002.

[3] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, G.
Tsudik, Itinerant Agents for Mobile Computing IEEE
Personal Communications, 2(5): 34–39, 1995.

[4] J. W. Stamos and D. K. Gifford. Remote Evaluation. ACM
Trans. Programming Languages and Systems,
12(4):537–565, March 1990.

[5] D. Kotz, R. Gray, and D. Rus, Future Directions for
Mobile-Agent Research, IEEE Distributed Systems Online,
3(8), Aug. 2002.

[6] K. Arnold and J. Gosling, The Java Programming Language,
Addison-Wesley, Reading, MA, 2nd ed., 1998.

[7] D. Lange, M. Oshima, G. Karjoth, and K. Kosaka, Aglets:
Programming Mobile Agents in Java, Proc. Worldwide
Computing and its Applications (WWCA’97), Lecture Notes
in Computer Science, Vol. 1274, 1997.

[8] R. Gray, G. Cybenko, et al., D’Agents: Applications and
Performance of a Mobile-Agent System, Software - Practice
and Experience, 32(6):543–573, May 2002.

[9] T. Newhouse and J. Pasquale, Java Active Extensions: A
Middleware System for Remote Execution, submitted for
publication, 2004.

[10] A. Luotonen and K. Altis, World-Wide Web Proxies,
Computer Networks and ISDN Systems, 27(2): 147–154,
1994.

[11] P. Cao, J. Zhang, and K. Beach, Active Cache: Caching
Dynamic Contents (Objects) on the Web, Middleware ’98,
Sep. 1998.

[12] P. Mohapatra, H. Chen, WebGraph: A Framework for
Managing and Improving Performance of Dynamic Web
Content, IEEE Journal On Selected Areas in
Communications, 20(7), Sep. 2002.

[13] B. Zenel, A Proxy Based Filtering Mechanism for the Mobile
Environment, PhD Thesis, Columbia University, 1998.

[14] J. Steinberg and J. Pasquale, A Web Middleware Architecture
for Dynamic Customization of Content for Wireless Clients,
Proc. 11th Int’l WWW Conf., Honolulu, HI, May 2002.

[15] A. Vahdat, M. Dahlin, T. Anderson, A. Agarwal, Active
Names: Flexible Location and Transport of Wide-Area
Resources, Proc. USENIX Symposium on Internet
Technologies and Systems (USITS), Oct. 1999.

[16] R. Gray, G. Cybenko, D. Kotz, and D. Rus, Mobile Agents:
Motivations and State of the Art, Handbook of Agent
Technology, AAAI/MIT Press, 2002.

[17] C. Harrison, D. Chess, A. Kershenbaum, Mobile Agents: Are
They a Good Idea?, IBM Research Report, Mar. 1995.

[18] R. Gray, D. Kotz, et al., Mobile Agents for Mobile
Computing, Proc. 2nd Aizu Int’l Symp. Parallel Algorithms /
Architectures Synthesis, Fukushima, Japan, Mar. 1997.

[19] Y. Villate, A. Illaramendi, E. Pitoura, Mobile and External
Storage Space Using Agents for Users of Mobile Devices,
Workshop on Ubiquitous Agents on Embedded, Wearable,
and Mobile Devices, Bologna, Italy, 2002.

703


