RDFPeers: A Scalable Distributed RDF Repository
based on A Structured Peer-to-Peer Network

Min Cai
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

mcai@isi.edu

ABSTRACT

Martin Frank
USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292

frank@isi.edu

distribution of RDF statements provides great flexibility for anno-
tating resources. However, distributed RDF documents on Web

Centralized Resource Description Framework (RDF) repositories hard to di hat | bviouslv. iust b
have limitations both in their failure tolerance and in their scala- P29€S are hard to discover. That is, obviously, just because you

bility. Existing Peer-to-Peer (P2P) RDF repositories either cannot PUt @n RDF document on your Web site does not mean that others

guarantee to find query results, even if these results exist in the €0 find it, much less issue structured queries against it. One ap-
network, or require up-front definition of RDF schemas and des- Proach is to crawl all possible Web pages and index all RDF docu-

ignation of super peers. We present a scalable distributed RDFmentS_ in centralized sear_ch_e_ngines, “RDF G_oogle” if you wish,
repository (“RDFPeers”) that stores each triple at three places in PUt this approachlmgkes It dlflfICU|tktO keep tre indexed RDF up to
a multi-attribute addressable network by applying globally known date. For example, it currently takes Google many days to index

hash functions to its subject, predicate, and object. Thus, all nodes? NeWly created Web page. Further, this approach has a large in-
know which node is responsible for storing triple values they are frastructure footprint for the organization providing the querying

looking for, and both exact-match and range queries can be effi- service, and is a centralized approach on top of technologies (RDF,

ciently routed to those nodes. RDFPeers has no single point Ofthe Internet itself) that were intentionally designed for decentra-
failure nor elevated peers, and does not require the prior definition lized operation. One choice for non-centralized RDF repositories is

of RDF schemas. Queries are guaranteed to find matched triplescdutella [12] which provides an RDF-based meta-data infrastruc-
in the network if the triples exist. In RDFPeers, both the number '€ for P2P applications. It uses a Gnutella-like [17] unstructured
of neighbors per node and the number of routing hops for insert- E’ZP network yvhlch has no centrallzeq index or predictable loca-
ing RDF triples and for resolving most queries are logarithmic to tion for RDF triples. Instead, RDF queries are flooded to the whole
the number of nodes in the network. We further performed exper- NEWOrk and each node processes every query. Measurement stud-

iments that show that the triple-storing load in RDFPeers differs ies [20, 21] show that Gnutella-like unstructured P2P networks do
by less than an order of magnitude between the most and the leas

ot scale well to a large number of nodes. This is because their
loaded nodes for real-world RDF data. !ooding mechqnism generates a large amount of unnecessary t.raf-
fic and processing overhead on each node, unless a hop-count limit
is set for queries — but then the queries cannot guarantee finding
results, even if these results exist in the network. An Edutella suc-
cessor [13] provides better scalability by introducing super-peers
and schema-based routing; however, it requires up-front definition

Categories and Subject Descriptors

C.2.4 [Computer Communication Networks]: Distributed Sys-
tems — Distributed Applications, Distributed Databases; Gl&t{

work Protocols]: Routing Protocols; H.2.3)atabase Manage-
ment]: Languages — Query Languages

General Terms
Algorithms, Design

Keywords

Semantic Web, Peer-to-Peer, Distributed RDF Repositories

1. INTRODUCTION

of schemas and designation of super peers. This paper presents
a scalable and distributed RDF triple repository named RDFPeers
for storing, indexing and querying individual RDF statements, and
which does not require the definition of an RDF schema before in-
serting RDF triples into the network. RDF triple storage providers
self-organize into a cooperative structured P2P network based on
randomly chosen node identifiers. When an RDF triple is inserted
into the network, it will be stored three times, based on applying a
globally-known hash function to its subject, predicate, and object
values. Queries can then efficiently be routed to those nodes in the
network where the triples in question are known to be stored if they
exist.

RDF [1] meta-data makes flexible statements about resources

that are uniquely identified by URIs. RDF statements are machine-
processable and machine-understandable, and statements about t

% RDFPEERS ARCHITECTURE

same resource can be distributed on the Web and made by different Our distributed triple repository consists of many individual no-
users. RDF schemata [2] are extensible and evolvable over timedes Ca”ed RDFPeers that Self-Organize into a multi'attribute ad'
by using a new base URI every time the schema is revised. Thedressable network (MAAN) [4] which extends Chord [22] to effi-

Copyright is held by the author/owner(s).
WWW2004May 17-22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

650

ciently answer multi-attribute and range queries. However, MAAN
only supported predetermined attribute schemata with a fixed num-
ber of attributes. RDFPeers exploits MAAN as the underlying

network layer and extends it with RDF-specific storage, retrieval,

tion we could use i$7 (v) = (v—Vmin) X (2™ —1)/(Vmax — Vmin),

and load balancing techniques. Figure 1 shows the architecture ofwherev € [vmin, Umax). Key k is assigned to the first node whose

RDFPeers. Each node in RDFPeers consists of five components
the MAAN network layer, the RDF triple loader, the local RDF
triple storage, the native query resolver and the RDQL-to-native-
guery translator. The underlying MAAN protocol contains three
classes of messages for (a) topology maintenance, (b) storage, an

identifier is equal to or followg: in the identifier circle. This node

is called the successor node of kieydenoted bysuccessor (k).
Similar to Chord, each node in MAAN maintains two sets of neigh-
bors, thesuccessor liseind thefinger table The nodes in the
duccessor list immediately follow the node in the identifier space,

(c) search. (a) The topology maintenance messages are used fowhile the nodes in the finger table are spaced exponentially around

keeping the correct neighbor connections and routing tables and
include JOIN/LEAVE KEEPALIVE and other network-structure-
stabilizing messages. (b) TI®TOREmessage inserts triples into
the network. (c) Th66EARCHmessage visits the nodes where the

the identifier space. The finger table has at megntries. Theé-th

entry in the table for the node with ID contains the identity of the
first nodes that succeeds by at leas2’~! on the identifier circle,
i.e.s = successor(n+2""1), wherel < i < m and all arithmetic

triples in question are known to be stored, and returns the matchedis modulo2™. MAAN uses Chord’s successor routing algorithm to

triples to the requesting node. The RDF triple loader reads an RDF
document, parses it into RDF triples, and uses MAAN'BORE

forward a request of ke to its successor node. If a nodere-
ceives a request with key, the node searches its successor list for

message to store the triples into the RDFPeers network. When anthe successor df and forwards the request to it if possible. If it

RDFPeer receives 8aTOREmessage, it stores the triples into its
Local RDF Triple Storage component such as a relational database

does not know the successor fof it forwards the request to the
nodej whose identifier most immediately precedesn its finger

The native query resolver parses native RDFPeers queries and usetable. By repeating this process, the request gets closer and closer

MAAN’s SEARCHmessage to resolve them. There can be a mul-
titude of higher-level query modules on top of the native query re-
solver which map higher-level user queries into RDFPeers’ native
gueries, such as an RDQL to Native Query Translator.

RDQL
Queries

E

JOIN/LEAVE,
STORE,
SEARCH,
KEEPALIVE

RDFPeer RDFPeer

RDQL to
Native
Query

Translator

RDQL to

Local Native
RDF
Triple

Storage

Local
RDF
Triple
Storage

RDF
Triple
Loader

RDF
Triple
Loader

Translator

Native
Query
Resolver

Native
Query
Resolver

MAAN Network Layer MAAN Network Layer

RDFPeers Network

Figure 1: The Architecture of RDFPeers

3. MAAN AS USED FOR RDFPEERS

MAAN [4] uses the same one-dimensional modalb-circular
identifier space as Chord, whene is the number of bits in node
identifiers and attribute hash values. Every node in MAAN is as-
signed a uniquen-bit identifier, called the node ID, and all nodes
self-organize into a ring topology based on their node IDs. The
node ID can be chosen locally, for example by applying a hash
function to the node’s IP address and port number. In Chord, bun-
dles of related attribute-value pairs such as “name: John, age: 27"
are called “resources”, a term we will avoid in this paper because
of its different meaning in RDF. Note that for RDFPeers’ use of
MAAN, a “bundle of related attribute-value pairs” is always synon-
ymous with “an RDF triple”. Unlike Chord in which these bundles
can only be stored and looked up by one unique key, they can be
stored and looked up by any attribute value in MAAN. Chord uses
SHA1 hashing [11] to assign each key a uniquebit identifier.
MAAN uses the same hashing for string-valued attributes. How-
ever, for numeric attributes MAAN uses locality preserving hash
functions to assign each attribute value an identifier insthéit
space. Here, we refer to the hashing image of the key in Chord as
well as to the hashing image of the attribute value in MAAN as “the
key” which is an identifier in the circularn-bit space. Suppose we
have an attributes with numeric values) € [Vmin, Umax]- (NoOte
that in RDFPeers, the only attributes that can have numeric values
are the objects given that subjects and predicates are always non
numeric URIs in RDF.) A simplistic locality preserving hash func-

651

to the successor df. Since the fingers on each node are spaced
exponentially around the identifier space, each hop from moide

the next node covers at least half the identifier space (clockwise)
betweemn andk. The average number of hops for this routing is
O(log N) for a network withN nodes.

MAAN stores each bundle of attribute-value pairs on the suc-
cessor nodes of the keys for all its attribute values. Suppose each
bundle has\Vf pairs <a;, v;> and H;(v) is the hash function for
attributea,; (Note that)M is always 3 in RDFPeers; is always
subject a2 is alwayspredicate andas is alwaysobject) Each
bundle of attribute-value pairs will be stored at node= suc-
cessor(H (v;)) for each attribute value;, wherel < ¢ < M.

A STOREmessage for attribute valug is routed to its successor
node using the above successor routing algoritimnodes store
the same bundle consisting bf attribute-value pairs, each by key-
ing on a different attribute. Thus, the routing hops for storing a
bundle of attribute-value pairs 3(M log N) for bundles withM
attributes.

Since numeric attribute values in MAAN are mapped tosthe
bit identifier space using locality preserving hash functiénnu-
merically close values for the same attribute are stored on nearby
nodes. Given a range quefy u] wherel andu are the lower
bound and upper bound respectively, nodes which contain attribute
valuev € [l,u] must have an identifier equal to or larger than
successor(H (1)) and equal to or less thamccessor(H (u)).

Suppose node wants to search for bundles with attribute value
v € [l,u] for attributea. Noden composes SEARCHmessage
and uses the successor routing algorithm to route it to npdie
successor off (I). The search message has parameters, R,
andX. k is the key used for successor routing, initighly= H (I).

a is the name of the attribute we are interestedrrnis the desired
query range{l, u] and X is the list of bundles of attribute-value
pairs discovered in the range. Initialll, is empty. When node;
receives the search message, it searches its local sets and appends
those sets that satisfy the range query for attrilute X in the
message. Then it checks whether it is the successHi(af) also.

If true, it sends back the search resultinto the requesting node

n. Otherwise, it forwards the search message to its immediate suc-
cessom,. Noden, repeats this process until the message reaches
noden,, the successor df (u). Thus, routing the search message
to noden; via successor routing takéXlog N) hops forN nodes.

The next sequential forwarding from to n,, takesO(K) , where

K is the number of nodes between andn,. So there are total

O(log N + K) routing hops to resolve a range query for one at-

tribute. Given that the nodes are uniformly distributed insthbit index for these triples. In th 8 TOREmessage one of the three at-
identifier spaceK is N x s wheres is the selectivity of the range tribute values is designated as the destination of the routing, and

query ands = (I — u)/(Umax — Umin)- we store each triple three times, once each based on its subject,
MAAN supports multi-attribute and range queries using a single- predicate, and object. Each triple will be stored at the successor
attribute-dominated query resolution approach. Supp®sere node of the hash key of the value of the routing key attribute-value

the bundles of attribute-value pairs satisfying all sub-queries, and pair. Since the value of attribute “subject” and “predicate” must be
X, are the bundles satisfying the sub-query on attrilfevhere a URI which is a string, we apply the SHA1 hash function to map-
1 <i < M. Sowe haveX = [X; and eachX; is a superset ping the subject value and predicate value tothbit identifier

of X. This query resolution approach first computeX awhich space in MAAN. However, the values of attribute “object” can be
satisfies one sub-query on attribute Then it applies the sub-que- URIs, plain literals or typed literals. Both URIs and plain literals
ries for other attributes on these candidate bundles and computesare strings and we apply SHA1 hashing on them. The typed literal
the intersectionX which satisfies all sub-queries. Here, we call at- can be either string types or numeric types, such as an enumeration
tribute a, the dominant attribute. In order to reduce the number of type or a positive integer respectively. As discussed above, we ap-
the candidate sets which do not satisfy other sub-queries, we carryply SHA1 hashing on string-typed literals and locality preserving
all other sub-queries in theEARCHmessage, and use them to fil- hashing on numeric literals. For example, to store the first triple
ter out the unqualified bundles of attribute-value pairs locally at the above by subject, RDFPeers would send the following message in
nodes visited. Since this approach only needs to do one iterationwhich the first attribute-value paffsubject”, info:rdfpeers)is the
around the Chord identifier space for the dominant attrilbwtet routing key pair, anckeyis the SHA1 hash value of the subject
takesO(log N + N X sy) routing hops to resolve the query, where value.

si, Is the selectivity of the sub-query on attribute. We can further STORE {key, {("subject’, <info:rdfpeers>),

minimize the routing hops by choosing the attribute with minimum ("predicate”, <dc:creator>),

selectivity as the dominant attribute, presuming, of course, that the ("object”, <info:mincai>)}}

selectivity is known in advance; in that case, the routing hops will Where key=SHAlHash('<info:rdfpeers>")

beO(log N + N X smin), Wheresmin is the minimum range se- This triple will be stored at the node which is the successor node
lectivity for all attributes in the query. of key Figure 2 shows how the three triples above are stored into

Although the simplistic locality preserving hash function above an example RDFPeers network. It also shows the finger tables of
keeps the locality of attribute values it does not necessarily pro- example node&/6 and N'14 for illustration.

duce uniform distributions of hashing values if the distribution of

attribute values is not uniform. Consequently, the load balanc- Hash

ing of resource entries can be poor across the nodes. To addres: VR!/Literal | Y e

this problem, we proposed a uniform locality preserving hashing [<iforatpeess | 13 BY SUbject: <foatnames “Min Cai’
function in MAAN which always produces uniform distribution of | Znfeamineai> 1 By opamncal> <oafage> 26"

hashing values if the distribution function of input attribute values | <foaf:name> 4 L <{'7'J°f’°’fpee’5> <de-creator> <info-mincai>
is continuous and if the distribution is known in advance. (The | cae 7 /'f?ﬁ] ' Sl

former condition is satisfied for many common distributions, such 28" 2 :;i}MJA

e

By'object::“:\
“| <info:mincai> <foaf:age> “28”

TNz

N1 4/5}/
VAR

By subject: DN e
<info:rdfpeers> <dc:greator> <info:mincai>|~--- .
=

as Gaussian, Pareto, and Exponential distributions.) Suppose at-
tribute valuev conforms to a certain distribution with continuous

and monotonically increasing distribution functién(v) and pos- | Niset

sibility function P(v) = *2) "andv € [vmin, Umax]. We can N ntens

design a uniform locality preserving hashing functi@iitv) as fol- mz@ [y predicats: ———
N6+3~| ~ <info:rdfpeers> <dc:creator| <info:mincai>

lows: H(v) = D(v) x (2™ —1).

\\sinfo:mincai> <foaf:name> Min Cai”

4. STORING RDF TRIPLES B o <oatage> 25 N O
RDF documents are composed of a set of RDF triples. Each | ™<mimincai <foatiame> in car o/

triple is in the form ofsubject, predicate, objecThesubjectis the ﬂ e

resource about which the statement was made. préeicateis a N1O

resource representing the specific property in the statement. The T—

objectis the property value of the predicate in the statement. The

object is either a resource or a literal; a resource is identified by a Figure 2: Storing three triples into an RDFPeers network of
URI; literals are either plain or typed and have the lexical form of eight nodes in an example 4-bit identifier space that could hold
a unicode string. Plain literals have a lexical form and optionally a up to 16 nodes. (In reality a much larger identifier space is
language tag, while typed literals have a lexical form and a datatype used, such as 128 bits.)

URI. The following triples show three different types of objects,

resource, plain literal, and typed literal, respectively. Since nodes might fail and network connections might break, the
@prefix info: <http:/fwww.isi.edu/2003/1 Lfinfo#> . Fripleg stored on its corr_espo_ryding successor nodes are replicate_d on
@prefix dc: <http://purl.org/dc/elements/1.1/> . its neighbors in Chord identifier space. This can be done by setting
@prefix foaf: <http://ixmins.com/foaf/0.1/> . the parameteReplicaFactorin MAAN. Whenever a node receives
@prefix xmls: <http://www.w3.0rg/2001/XMLSchema#> . . . L .

a triple storing request, it will not only store the triple locally but
<info:rdfpeers> <dc:creator> <info:mincai> . also store it to as many of its immediate successors as the above
<info:mincai> <foaf:name> "Min Cai" . parameter dictates. If any node fails or its connection breaks, its

<infomincai> - <foafage> - "28""<xmisinteger> . immediate successor and predecessor will detect it by checking the

In order to support efficient queries on distributed RDF triples, KEEPALIVEmessages. If the node does not come back to life af-
we exploit the overlay structure of MAAN to build a distributed ter a time-out period, nodes will repair the ring structure using the

652

Chord stabilization algorithm. After stabilization, the immediate 5.2 Disjunctive and Range Queries
successor node of the failed node will restore its replicas to its new RDFPeers’ native queries support constraints on variables in the

predecessor. triple patterns. Q9 extends the above atomic queries with a con-
straint list which limits the domain of variables.

5. NATIVE QUERIES IN RDFPEERS

Q9 = TriplePattern '"AND’ ConstraintList

Based on the above triple-storing scheme, we define a set of na-TriplePattern ::= Q1|Q2|Q3|Q4|Q5|Q6|Q7
. H H — : 3 N . *
tive queries which can be efficiently resolved via MAAN's multi- ~ ConstraintList ::= OrExpression (&& OrExpression)
OrExpression ;= Expression (||" Expression)

attribute range queries. These native queries include atomic triple gxpression "= Variable (NumericExpression
patterns, disjunctive and range queries, and conjunctive multi-predi- | StringExpression)+

cate queries NumericExpression ::=(>'|'<|=1="|'<="]'>=")
' NumericLiteral
. . StringExpression ::= ('=|''=")Literal
5.1 Atomic Tl'lple Patterns Literal ::= PlainLiteral|URI|NumericLiteral

An atomic query pattern is a triple pattern in which the subject,)))])
predicate, or object can each either be a variable or an exact value, Variables can be either string-valued or numeric. Constraints can
The eight resulting possible queries are shown in Table 1. limit the domain of string values by enumerating a set of either

Q1 is the most general and most expensive query which matchesa"O_N?d or forbidden constants. Numeric variables can additionally
all triples. Since there is no restriction whatsoever on this triple e limited to a set of disjunctive ranges.
pattern, we have to propagate this query to all nodes, which takes
O(N) routing hops for a network wittv nodes.

We can use MAAN's routing algorithm to resolve queries Q2
Fhrough Q8 since we st_ore each triple three times based on its sub- Ag discussed in Section 3, MAAN can efficiently resolve range
ject, predicate, and object hash values. In these seven query patyyeries by using locality preserving hashfntn addition to speci-
terns, there is always at least one value which is a constant, andfying a single range, Q9 can also specify a set of disjunctive ranges
we resolve the query by routing it to the node responsible for stor- for attribute values. For example, a user can submit a range query
ing that constant, that node then matches these triples against thgr variable 7z and 7z € Uf,l[li,ui]. Obviously, this kind of
pattern locally and returns them to the requesting rfoler exam- disjunctive range query could simply be resolved by issuing one
ple, in Figure 2 if nodeV6 asks the native queryinfo:mincat>, query for each contiguous range and by then computing the union
<foaf:name>, ?namg, we hash orinfo:mincaiand get the hash of the results. For a query witt disjunctive ranges, this takes
value “1”. ThenN6 routes it to the corresponding nodél (via dx O(log N + N x s), wheres is the aggregate selectivity of tde
N14). N filters triples locally using this pattern, and sends back ranges. So the number of hops in the worst case increases linearly
the matched triple<info:mincat>, <foaf:name>, “Min Cai” to with d and is not bounded bi¥. We can optimize this by using a
N6 (via N5). range ordering algorithm which sorts these disjunctive query ranges
in ascending order. Given a list of disjunctive ranges in ascending
order,[l;,u],1 <4 < dwherel; < [; andu; < u; iff ¢ < j, the

(a) (?s, dc:creator, ?c) AND ?c="Tom” || ?c="John”
(b) (?s, foaf:age, ?age) AND ?age > 10 && 7age < 20

[No. [Query Pattern| Cost [Query Semantics |

Q1 | (7s,7p,?0) O(N) T find all possible triples query request will be first routed to nodeg;, the successor node

Q2 | (7s,7p,0:) log N | given objecb; of any predicate, of H(l1) which is the key corresponding to the lower bound of the
find the subjects and predicates first range. Node; then sequentially forwards the query to the
of matched triples successor node of the upper bouddu) if it itself is not the suc-

Q3 | (?s,ps,70) log N | given predicate;, find the sub- cessor node off (u1). Then noden,; uses successor routing to
jects and objects of the triples ~ forward the query to node;:, the successor node corresponding
having this predicate to the lower bound of the next rangk, u2], which in turn for-

Q4 | (?s,pi,0:) log N | given objecto; of predicatep;, wards the query to the successor nodéi@i:). This process will
find the subjects of matched be repeated until the query reaches the successor nabéwof).
triples This optimized algorithm exploits the locality of numeric MAAN

Q5 | (si,?p,70) log N | given subjects;, find all predi- data on the Chord ring and the ascending order of the ranges, re-
cates and objects of the re- duces the number of routing hops, especially for cases where
source identified by; large, and bounds the routing hopsio Disjunctive exact-match

Q6 | (si,7p,0:) log N | given subjects;, find its predi- queries such a& € {Tom, John} present a special case of the
cate which has objeet; above disjunctive range queries where both the lower bound and

Q7 | (si,pi,?0) log N | given subjects;, find its object upper bound of the range are equal to the exact-match value, and
of predicatep; we use the same algorithm to resolve them.

Q8 | (supion) | loglV | vetum th 'rsettl:'fr:en(')fﬂ'fmzx'StS °l 5.3 Conjunctive Multi-Predicate Queries

In addition to atomic triple patterns and disjunctive range que-
ries, RDFPeers handles conjunctive multi-predicate queries which
describe a non-leaf node in the RDF graph by specifying a list of
edges for this node. They are expressed as a conjunction of atomic

Table 1: The eight possible atomic triple queries for exact
matches. The cost is measured in the number of routing hops
needed to resolve each query.

2Note that this is the one case where RDFPeers would benefit from
up-front RDF Schema information: if say an Integer-valued object
of some triples in reality only ever has values 1 through 10, RDF-
Peers can use a hash function that yields better load balancing for
these triples.

INote that we assume that the value is not “overly popular”, in
which case we would have to ué¥n) messages, see Section 7.2.

653

triple patterns or disjunctive range queries for the same subject vari-

native RDFPeers queries above; however, we have not yet written

able. Q10 consists of a conjunction of sub-queries where all subjectsuch a translator and it may be inefficient for some queries, espe-

variables must be the same.

Q10 = TriplePatterns 'AND’ ConstraintList
TriplePatterns := (Q3|Q4|Q9)+

In Q10, we restrict the sub-query Q9 to be the Q3-style triple

cially for joins. This section informally describes how the exam-
ple RDQL queries from the Jena tutorial (http://www.hpl.hp.com-
/semweb/doc/tutorial/RDQL) would be resolved.

(1) SELECT ?x WHERE (?x, <vcard:FN>, "John Smith")
(2) SELECT ?x, ?fname WHERE (?x, <vcard:FN>, ?fname)

pattern with constraints on the object variable. Thus Q10 describes(3) SELECT ?givenName

a subject variable with a list of restrictimgedicate, objecor predi-
cate, object-ranggairs.

(?x, <rdf:type>, <foaf:Person>)

(?x, <foaf:name>, "John")

(?x, <foaf:age>, ?age) AND ?age > 35

To efficiently resolve these conjunctive multi-predicate queries,

we use a recursive query resolution algorithm which searches can-
didate subjects on each predicate recursively and intersects the can-
didate subjects inside the network, before returning the search re-

WHERE (?y, <vcard:Family>, "Smith"),
(?y, <vcard:Given>, ?givenName)
(4) SELECT ?resource
WHERE (?resource, <inf:age>, ?age) AND ?age>=24
(5) SELECT ?resource, ?givenName
WHERE (?resource, <vcard:N>, ?z),
(?z, <vcard:Given>, ?givenName)
(6) SELECT ?resource, ?familyName
WHERE (?resource, <inf:age>, ?age),
(?resource, <vcard:N>, ?y),
(?y, <vcard:Family>, ?familyName) AND °?age>=24

Query (1) translates directly into Q4, so that it can be resolved

sults to the query originator. The search request takes the param+n log N routing hops in a network oV nodes. Similarly, query

etersq, R, C, andI, whereq is the currently active sub-querig

is a list of remaining sub-querie€; is a set of candidate subjects
matching current active sub-query, ahi a set of intersected sub-
jects matching all resolved sub-queries. Initiadlys the first sub-
query in this multi-predicate querR contains all sub-queries ex-
ceptq, C'is empty and is the whole set. Suppose the sub-query
for predicatep; is vi; < 0; < vy;, Wherev;; andv,,; are the lower

(2) translates directly into Q3, takigg N hops. To resolve query

(3) , we first issue a Q4-style query and then use its query result as
constraint to issue a Q9-style disjunctive query with Q3-style triple
patterns. Since all the predicate values in the two triple patterns are
known, these two native queries can be resolvelbiriog N hops.
Query (4) is a typical Q9-style range query with the constraint on
the object value. Since its predicate value is known, we can route

bound and upper bound of the query range for the object variable the query to the node which stores the triples with predicdtage

oi, respectively. When node wants to issue a search request, it
first routes the request to node; = successor(H (vi;)). The

noden;, receives the request, searches its local triples correspond-

ing to predicatep;, appends the subjects matching sub-quety

C, forwards this request to its immediate successgrunless it

is already thesuccessor(H (v.;)). Noden,; repeats this process
until the search request reaches nade = successor(H (vui)).
When node,,; receives the request, it also searches locally for the
subjects matching sub-quegyand appends them @. It then in-
tersects sef with setC, and pops the first sub-query Rto q. If

in log NV hops.

Our native queries do not include join operations, so that we de-
compose join queries into multiple native queries. Query (5) can
be resolved via two Q3-style queries, and by then joining the first
triple set’s object with the second triple’s subjexk log N routing
hops. (However, note that these two Q3-style queries might gene-
rate large-size messages if the predicatesrd:N or vcard:Given
are popular.). Query (6) can be resolved by first issuing the same
query as for the previous RDQL example for the first triple pattern.
Then we use the query result as a constraint for variat@source

Ror I is empty, it sends the query response back with the subjects and resolve the second triple pattern as a Q9-style disjunctive range

in I as the result; otherwise, it resolves sub-queryrhis process
will be repeated until no sub-queries remain/as empty.

k
This recursive algorithm take9(>" (log N + N x s;)) rout-
1=1

ing hops in the worst case, Whe%e;s:the number of sub-queries
and s; is the selectivity of the sub-query on predicate How-

ever, it intersects the search results on different predicates in the
network and will terminate the search process before resolving the;

query on all predicates if there are no matches left,/i.is.empty.

Thus, we can further reduce the average number of expected rout-
ing hops by sorting the sub-queries in ascending order of selectivity
presuming the selectivity can be estimated in advance. For exam-

ple, in the above three-predicate query, the sub-quemdbtype
might match many subjects, whifeaf:agematches far fewer and
foaf:namematches only a handful. After sorting the sub-queries,
we resolveoaf:namefirst, thenrdf:age, and finallyrdf:type

6. RESOLVING RDQL QUERIES

RDQL [10] is a query language for RDF proposed by the deve-
lopers of the popular Jena Java RDF toolkit [8]. RDQL operates at
the RDF triple level, without taking RDF Schema information into
account (like RQL [7] does) and without providing inferencing ca-
pabilities. As such, it is the type of low-level RDF query language
that we want RDFPeers to support well. It is our intuition that it
is possible to translate all RDQL queries into combinations of the

654

query. Finally, we use the second query result as a constraint for
variable?y and again resolve the third triple as a Q9-style query,
which in the aggregate takésx log N hops.

7. IMPLEMENTATION AND EVALUATION

We implemented the MAAN layer of RDFPeers in Java and mea-
sured its performance on a real-world network of up to 128 nodes
in a previous paper [4]. We also measured the number of neighbors
per node against the network size. Similar to Chord, the number of
neighbors at each node increases logarithmically with the network
size, so that the node state in MAAN scales well to a large number
of nodes; for example, in a hypothetical network of eight billion
nodes (one for each human on Earth) each node would maintain
just thirty-three IP connections. We measured the number of rout-
ing hops against the network size for both exact-match queries and
for range queries. The experiment results show that for exact-match
queries, the number of routing hops in the worst cage(isg V)
and the average routing hopslig; N/2. However, for range que-
ries whose selectivity; > %, meaning that they select more than
one node, the routing hops increase linearly with network size. This
is optimal in the sense thaf of total N nodes have to be visited by
the search queries presuming we want to evenly balance the load
to the nodes. We implemented an RDF/XML triple loader based
on the Jena Toolkit 2.0 to measure the number of routing hops in a
simulation (measuring the query cost); we also studied the number

of triples stored per node by loading real-world RDF data into our
simulator (measuring the storage cost).

7.1 Routing Hops to Resolve Native Queries

The number of routing hops taken to resolve a query is the domi-
nant performance metric for P2P systems. Figure 3 shows our si-
mulation result for atomic triple patterns from 1 node to 8192 nodes
on a logarithmic scale, which matches our theoretical analysis.

T T T
mimimum, average and maximum F—e—

Routing hops

9 I I I I
100 1000 jalalalal

Number of nodes

Figure 3: The number of routing hops to resolve atomic triple
patterns Q2 through Q8.

We also compared two disjunctive range query resolution algo-
rithms: the simple algorithm vs. range ordering algorithm. Figure 4
shows the simulation result for up to 1000 disjunctive exact-match
values §; = ¢%) in a network with 1000 nodes.

8000

T T T T T
w/0 range order
W/ range ordering

T T
ing ——
000 *

cuog
jsgalela]

40008

Routing hops

30008

2008

10608

e

— + TR +

1t | I I I I I I
5]
B 1908 200 300 400 500 B0 700 80O 900 1000

Number of exact-match values per query

Figure 4. The number of routing hops to resolve disjunctive
exact-match queries in a network with 1000 nodes.

Figure 5 shows the result for up to 1000 disjunctive ranges with
0.1% selectivity each in the same network. From these two ex-

8000 |
L

+

T T T T T
W/0 range ordering
ws range ordering

7000
6000

ceee

4000

Routing hops

3000

2000

1008 +

e

g

2} 1 1 1 1 1 1 1 1 1
9 100 200 300 400 S00 600 700 800 900 1000

Number of disjunctive ranges per query

Figure 5: The number of routing hops to resolve disjunctive
range queries (0.1% selectivity) in a network with 1000 nodes.

Literals in the RDF dump of the “Kids and Teens” catalog of the
Open Directory Project (http://rdf.dmoz.org). There are two RDF
files for this catalogkt-structure.rdf.u8.gandkt-content.rdf.u8.gz

The former describes the tree structure of this catalog and contains
19,550 triples. The latter describes all the sites in this catalog and
contains 123,222 triples. Figure 6 shows that only 10 to 20 URIs
and literals (less than 0.1%) occur more than a thousand times.

10608009

@
+

T T T T
kt-structure.rdf.u8.gz

4 44 Kkt-content.rdf.uB.gz

10860

ko3
8§ 4
o F

1000

I

100

Frequence count

3 +
- +
1 1 1 1 pr——

1 10 109 1000 10000

Rank of URIs and Literals

100000

Figure 6: The frequency count distribution of URIs and literals
in the ODP Kids and Teens catalog.

Table 2 lists the URIs and literals which occur more than 1000
times inkt-structure.rdf.u8.gz For example, since each URI as a
predicate value will be stored at only one node, this node has the
global knowledge about the frequency count of this predicate value.

We deal with predicate values that become overly popular by

periments, we can see that the range ordering algorithm takes lessimply no longer indexing triples on them. Each node defines a

routing hops to resolve a range query than the simple algorithm,
and that its routing hops are indeed bounded\ay

7.2 Dealing with Overly Popular URIs and
Literals

Popular_Thresholdparameter based on its local capacity and will-
ingness (subject to some minimum community expectation). Each
node keeps counting the frequency of each predicate value. If
a predicate value occurs more thBapular Thresholdtimes, the
node will refuse to store it and internally makes a note of that. If

Even today’s cheapest PCs have a surprising storage capacitythe node receives a search request with the overly popular value

each can store well over ten million RDF triples by dedicating for the predicate, it sends a refusal message back to the requesting
10 Gigabytes of its typical 80-120 GB disk. Nevertheless, some node and the requesting node must then find an alternative way of
triples in RDF such as those with the predicaetétype may oc- resolving the query by navigating to the target triples though either
cur so frequently that it becomes impossible for any single node the subject or object values. This approach will &ldogN) to

in the network to store all of them. That is, in practice, triples that node’s total query cost in hops. We limit subject and object
may not hash around the Chord identifier circle uniformly due to values in the same way. We are aware that this still makes the node
the non-uniform frequency count distribution of URIs and literals. with popular URIs a hotspot for query messages which can be ad-
Figure 6 shows the frequency count distribution of the URIs and dressed by querying nodes caching which queries were refused in

655

the past. In essence, this means that you cannot ask e.g. “whichthe minimum, average and maximum number of triples per node
instances in the world are the subclass of some class”. However,with Probing Factor from 1 to 9 in a network with 100 physical
these queries are so general and would return so many triples thanodes. Thd?opular.Thresholds set to 1000 in this experiment. If

we suspect they would rarely be of use in practice anyway (in anal- there is no successor probing, the most loaded node has 7.2 times
ogy to the English language, where the words “a” and “the” occur more triples than the least loaded node. If each node probes 9 nodes
frequently but provide little value as search terms). For the above when it joins, the node with the heaviest load only has 2.6 times
query, you could alternatively gather the class URIs for which you more triples than the node with the lightest load — which further
want to look for instances for, then traverse to the instances via thatreduces load imbalances to much less than an order of magnitude.

set of URIs by issuing a Q4-style query. We can further improve load balancing with a background virtual
node migration scheme proposed in [14], subject to the limitation
| Frequency[URI or literal [Type | that it cannot distribute the load for a single overly popular value.
3158 rdf:type predicate
3158 dCTltle ObjECt 0000 minimum, ‘average and maxi‘mum —e—i
2612 http://dmoz.org/rdf/Topic object 3 asa00 | ,
2612 http://dmoz.org/rdf/catid predicate S sooao L]
2574 http://dmoz.org/rdf/lastUpdate predicate & - |
2540 http://dmoz.org/rdf/narrow predicate <
1782 http://dmoz.org/rdf/altlang predicate T i
1717 dc:Description object < e 7
< 10000 l 4
S saoo t 4
Table 2: URIs and literals that occur more than one thousand -, ! % % l l ‘
times in kt-structure.rdf.u8.gz Leaa Loaea

Threshold of popular URIs and Literals

Figure 7 shows the minimum, average, and maximum number of gjq,re 7: The number of triples per node as a function of the

triples per node witiPopular. Thresholdrom 500 to 32,000. Inthis reshold of popular triples (100 physical nodes with 6 virtual
experiment, we store botktstructure.rdf.u8.gandktcontent.rdf.- nodes per physical node).

u8.gz(total 142,772 triples) into a network of 100 physical nodes

(and the standard Chord log(100)=6 virtual nodes per physical node

for trading off load balancing against routing hops). WiRapu-

lar_Threshol&32,000, there are no overly popular URIs or literals O T rintm, sverage and maximm o
being removed and there is an average of 4303 triples per node. 7008 - 1
However, the load is unevenly balanced — the minimum number of
triples per node is 700 while the maximum number of triples per
node is 36,871. WheRopular.Thresholdis set to 500, there are

20 overly popular URIs and literals being removed from indexing
and there are an average of 2352 triples per node. The minimum
number of triples per node is 688 while the maximum number of
triples per node is reduced to 4900 — which we believe at less than
an order of magnitude difference is acceptable load balancing. ‘ ‘ ‘ ‘

%) 2 4 6 8 10

6000 B

5000 - —

4000

3000 - —

2000 B

Number of triples per node

1000 -

7.3 Load Balancing via Successor Probing e e
Although limiting overly popular URIs and literals greatly re- Figure 8: The number of triples per node as a function of the

duces the difference between the maximum and minimum number number of successor nodes probed (100 physical nodd2gpu-

of triples per node, the triples are still not uniformly distributed lar_Threshold=1000).

around all nodes. This is because the frequency count distribu-

tion of non-popular URIs and literals remains non-uniform even

after removing overly popular values. We propose a preliminary

successor probingcheme inspired by the “probe-based” node in- 8. RELATED WORK

sertion techniques of [5] to further achieve a more balanced triple Many centralized RDF repositories have been implemented to

storage load on each node. In Chord, the distribution of node iden- support storing, indexing and querying RDF documents, such as

tifiers is uniform and independent of the data distribution. In this RDFDB [19], Inkling [9], RDFStore [3] and Jena [8]. These cen-

successor probing scheme, we use a sampling technigue to genetralized RDF repositories typically use in-memory or database-sup-

rate a node identifier distribution adaptive to the data distribution. ported processing, and files or a relational database as the back-end

When a node joins the network, it will use SHA1 hashing to ge- RDF triple store. RDFDB supports a SQL-like query language,

nerateProbing Factor candidate identifiers. Then it uses Chord’s while Inkling, RDFStore and Jena all support SquishQL-style RDF

successor routing algorithm to find the successors corresponding toquery languages. Centralized RDF repositories are very fast and

these identifiers. All the successors will return the number of triples can scale up to many millions of triples. However, they have the

which would be migrated to the new node if it joined there, and the same limitations as other centralized approaches, such as a single

new node will choose the identifier that gives it the heaviest load. processing bottleneck and a single point of failure. Edutella [12]

The cost of this technique is that it increases the insertion time of a and its successor super-peer-based RDF P2P network [13] were

triple fromlog N to Probing_Factor x log N. Itis our intuition discussed in Section 1. Super-peers are often desirable in order

thatlog IV is a good setting for the probing factor. Figure 8 shows to place the load unevenly among heterogeneous nodes, but our

656

scheme can achieve the same effect more flexibly by nodes host-

ing more or fewer Chord virtual nodes according to their capac-

ity. Recent structured P2P systems use message routing instead of

flooding by leveraging a structured overlay network among peers.
These systems typically support distributed hash table (DHT) func-
tionality and offer the operatiotookup (key) which returns the
identity of the node storing the object with the key [16]. Current
proposed DHT systems include Tapestry [23], Pastry [18], Chord
[22], CAN [15], and Koorde [6]. In these DHT systems, objects are

associated with a key which can be produced by hashing the object
name. Nodes have identifiers which share the same space as the
keys. Each node is responsible for storing a range of keys and cor- [7]

responding objects. The DHT nodes maintain an overlay network

with each node having several other nodes as neighbors. When a

lookup (keyyequest is issued from one node, the lookup message
is routed through the overlay network to the node responsible for
the key. Different DHT systems construct different overlay net-
works and employ different routing algorithms. They can guaran-
tee to finish lookup irO(log N) or O(dN'/?) hops and each node
only maintains the information aP(log N) or d neighbors for a

N nodes network wheré is the dimension of the hypercube orga-
nization of the network. Therefore, they provide very good scal-
ability as well as failure resilience. However, these DHT systems
only provide single key based lookup and do not efficiently support
multi-attribute and range queries, nor do they provide RDFPeers’
triple storage load balancing.

9. FUTURE WORK AND CONCLUSION

We would like to perform further experiments measuring cost

in terms of message sizes rather than just in the routing hops that
are the customary P2P performance metric, and to implement the

RDQL-to-RDFPeers-Native-Queries translator that we have only
sketched in this paper. We would like to be able to bound the size of
initital query results, so that e.g. only the first one-hundred matches
are returned with the note “there are roughly 4,000 more matches,
would you like to retrieve them?”. We have not yet implemented
triple deletions in RDFPeers, only triple insertions. We would also
like to improve load balancing using a background virtual node

migration scheme, and to add (binary and other non-meta-) data

storage support on top of RDFPeers.

In conclusion, RDFPeers advances the state of the art of P2P

RDF systems by guaranteeing that query results will be found if
they exist, by not requiring up-front schema definition, by not re-
lying on super-peers, and by balancing the triple-storing load be-

tween the most and least loaded nodes. Its storage cost in neigh-

borhood connections is logarithmic to the number of nodes in the
network, and so is its processing cost in routing hops for all in-

sertion and most query operations, thus enabling distributed RDF
repositories of truly large numbers of participants.

10. ACKNOWLEDGEMENTS

The successor probing technique of Section 7.3 was inspired by
discussions with Shahram Ghandeharizadeh and Antonios Daskos

about load balancing techniques. We gratefully acknowledge feed-
back from the anonymous reviewers, Stefan Decker, and Geoff
Pike, and AFOSR funding under grant F49620-01-1-0341.

11. REFERENCES
[1] http://www.w3.0org/RDF. World-Wide Web Consortium:
Resource Description Framework.
[2] http:/iwww.w3.org/TR/rdf-schema. World-Wide Web
Consortium: RDF Schema.

657

[3] RDFStore. http://rdfstore.sourceforge.net.

[4] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A

multi-attribute addressable network for grid information

services. Irdth Int'l Workshop on Grid Computin@003.

S. Ghandeharizadeh, A. Daskos, and X. An. PePeR: A

distributed range addressing space for P2P systenhst’lin

Workshop on Databases, Information Systems, and

Peer-to-Peer Computing (at VLDR)003.

F. Kaashoek and D. R. Karger. Koorde: A simple

degree-optimal hash table. 2md Int'| Workshop on P2P

SystemgFeb. 2003.

7] G. Karvounarakis, S. Alexaki, V. Christophides,

D. Plexousakis, and M. Scholl. RQL: A declarative query

language for RDF. I11th World Wide Web Conference

2002.

B. McBride. Jena: Implementing the RDF Model and Syntax

specification. Ir2nd Int'l Semantic Web Workshop001.

L. Miller. Inkling: RDF query using SquishQL.

http://swordfish.rdfweb.org/rdfquery.

L. Miller, A. Seaborne, and A. Reggiori. Three

implementations of SquishQL, a simple RDF query

language. IrFirst Int'l Semantic Web Conferenc2002.

[11] National Institute of Standards and Technology. Publication
180-1: Secure hash standard, 1995.

[12] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. S. A. Naeve,

M. Nilsson, M. Palmer, and T. Risch. EDUTELLA: A P2P
networking infrastructure based on RDF.1hth World Wide
Web Conference2002.

[13] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz,

M. Schlosser, I. Brunkhorst, and A. Lser. Super-peer-based
routing and clustering strategies for RDF-based peer-to-peer
networks. In12th World Wide Web Conferendday 2003.

[14] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in structured P2P system&nih
Int'l Workshop on P2P Systen2003.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable netwoAC
SIGCOMM 2001.

[16] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms
for DHTs: Some open questions. 2nd Int'| Workshop on
P2P Systemd-eb. 2003.

[17] M. Ripeanu, I. Foster, and A. lamnitchi. Mapping the

Gnutella network: Properties of large-scale peer-to-peer

systems and implications for system desidfEE Internet

Computing Journal6(1), 2002.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systemsLecture Notes in Computer Scien@218, 2001.

[19] R.V.Guha. rdfDB : An RDF database. http://guha.com/rdfdb.

[20] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A

measurement study of peer-to-peer file sharing systems. In

Multimedia Computing and Networkingan. 2002.

[21] S. Sen and J. Wong. Analyzing peer-to-peer traffic across
large networks. IACM SIGCOMM Workshop on Internet
MeasurementNov. 2002.

[22] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. kCM SIGCOMM 2001.

[23] B.Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Technical Report CSD-01-1141, UC Berkeley, 2001.

(5]

(6]

(8]
9]

[10]

