

Adapting Databases and WebDAV Protocol
Bita Shadgar

Chamran University of Ahvaz, Iran
Department of Computer Science

University Road
0098 611 3331040

shadgar@cs.bris.ac.uk

Ian Holyer
University of Bristol, U.K.

Department of Computer Science
Merchant Venture’s Building

0044 117 954 5148

Ian.Holyer@bristol.ac.uk

ABSTRACT
The ability of the Web to share data regardless of geographical
location raises a new issue called remote authoring. With the
Internet and Web browsers being independent of hardware, it
becomes possible to build Web-enabled database applications.
Many approaches are provided to integrate databases into the Web
environment, which use the Web's protocol, i.e., HTTP to transfer
the data between clients and servers. However, those methods are
affected by the HTTP shortfalls with regard to remote authoring.

This paper introduces and discusses a new methodology for
remote authoring of databases, which is based on the WebDAV
protocol. It is a seamless and effective methodology for accessing
and authoring databases, particularly in that it naturally benefits
from the WebDAV advantages such as metadata and access
control. These features establish a standard way of accessing
database metadata, and increase the database security, while
speeding up the database connection.

Categories and Subject Descriptors
H.3.4 [World Wide Web], H.2.4 [Database Manager].

General Terms
Design, Performance.

Keywords
Software Engineering, Web Authoring, Web Protocols,
Databases.

1. INTRODUCTION
There are many benefits to integrating databases with the Web
with regard to remote accessing of databases such as platform
independence, cross-platform support, graphical user interface,
scalable deployment and so on [1]. Integrating databases and the
Web involves the use of dynamic Web pages along with a
methodology or an approach to transport data between the
browsers and servers, and to process this data. The applied
methodology defines where the interaction is handled.

These approaches basically can be divided into three categories
with regard to the efficiency and the necessary modification to the
Web software that have to be made. Server-side, middle-layer and
client-side approaches constitute those approaches [2, 3].

Server-side approaches focus on extending the functionality of
Web servers to access databases via the Web. Those
methodologies normally use URL munging or RPC1 via POST
method to deliver data from clients to servers. Common Gateway
Interface (CGI) is the oldest and probably most widely used
approach to access databases, which falls in the server-side
approaches category. Furthermore, Netscape Server and Microsoft
Internet Information Server introduced a methodology to
extending the Web server using the dynamic link library files
called NSAPI and ISAPI, respectively. We can also name the
Active Server Pages (ASP), Java Servlets, and Java Server Pages
(JSP) as some other improved server-side methodologies [4-7].

Client-side approaches are another methodology introduced to
handle the interaction between servers and clients. The idea is to
distribute the application and send it to the client. The client then
executes the code locally on the user`s machine. Parts of the user
interface can be rebuilt on the Web and then run on the client
computer. One simple example is to send a compiled program to
the user and execute it there. This approach can lead to a better
performance and high scalability. JDBC (Java DataBase
Connectivity) and scripting languages such as JavaScript, JScript
are examples of client-side methodologies [7, 8].

While the previous two approaches are concerned with accessing
a single database from the Web, the middle-layer approaches
allow for integration of data from distributed and heterogeneous
data sources over the Web. One of the most popular middle-layers
used today is based on CORBA (Common Object Request Broker
Architecture) [9].

Although all of these approaches try to increase the functionality
of servers and clients by different methodologies, they still use the
same road map to transport the data. In other words, they apply
the HTTP protocol as their transfer protocol to exchange data
between servers and clients.

Moreover, none of those approaches provide database metadata.
JDBC is the only method that provides some flexibility to enable
the user to extract the database metadata. However, the
programming is not too easy, and also it is still vendor dependent.

This paper is organized to explain how HTTP is an inappropriate
protocol with reference to remote authoring in Section 2, followed
by the solution, which involves the WebDAV protocol. Section 3
defines some of the WebDAV specifications in brief. This is
followed by introducing a new methodology for integrating
databases and the Web to capture databases as a resource of the
WebDAV protocol i Section 4. This methodology, which is
based on the WebDA protocol, represents a major difference in

1 RFC stands for Rem

Copyright is held by the author/owner(s).
WWW 2004, May 17-22, 2004, New York, New York USA.
ACM 1-58113-844-X/04/0005.

612
n
V

ote Procedure Call.

the protocol level comparing to other methodologies that are
currently used. The section discusses advantages and
disadvantages of this method whilst comparing it with others.
Finally, Section 5 provides the conclusions and future work.

2. HTTP SHORTFALLS
Distributed authoring on the Web requires scaling content access
across the number of resources, number of users, and transaction
rates. Moreover, it must enable support for a broad user
community that is made up of workgroups consisting of multiple
users who are playing different roles. Supporting these
requirements demands a decentralized repository with a simple,
standard, multi-user, multi-version interface. Access is required
based on open, nonproprietary document formats where possible.
Collection operations are required in order to organize authored
content into logical groupings for complexity management and
namespace collision avoidance. Also extensibility is required
across document content and views, resource metadata, and links
between resources.

Many repository managers and source code control systems
address these requirements, which are typical of any distributed,
multi-user, and multi-version repository manager. However,
current systems have proprietary interfaces and content formats
which limit their appeal and applicability for web authoring. In
other words, for Web authoring we need to provide:

• Support for efficient, scalable and secure remote editing.
• Improved efficiency of common editing operations.
• Locking mechanisms to prevent overwrite conflicts.
• Improved link management for non-HTML content types.
• An extensible attribute/value metadata facility for capturing
information about a resource.
• Support for container data types (collections).
• Integrated versioning, variants, and configuration management
into the Web.
• Supported efficient searching of resource properties and
contents.

HTTP fulfills some of these goals and requirements. It is the
remote procedure call protocol used to retrieve content by all
current web browsers. It is widely implemented and deploys
results in a stable, reliable communication. HTTP is a stateless,
relatively secure, and authenticated protocol supporting persistent
and pipelined connections, potentially through proxy
architectures. Finally, HTTP is easily extended through a variety
of mechanisms including CGI programs, Servlets, Java Server
Pages, Active Server Pages and so on. HTTP/1.1 does all this with
seven methods known as GET, HEAD, PUT, POST, DELETE,
OPTIONS, and TRACE [10].

Despite all these capabilities, HTTP is not enough to support
remote authoring on the Web [11]. One of the most important
reasons is resulted by the HTTP POST method. This method has a
sufficiently open definition so that almost any operation can be
invoked using it. The server performs the stated operation and
returns a message body in the response, which gives the results of
the operation. Most of the methodologies discussed in Section 3.4
use the POST method to implement the transfer of different
structures of data, such as database queries and result sets, from
clients to servers and vise versa. The POST method also allows
domain specific marshalling of parameters. In other words,
parameters do not need to be mapped into HTTP methods and

headers, which has the benefit of reducing unanticipated
interactions with the rest of HTTP's operations.

However, the POST method ends up being a security hole through
which almost any operation can be executed. Trying to look into
the POST message body in order to determine what operation is
being performed is a very difficult task when programming.
Because each individual extension is free to marshal its
parameters in separate ways, the POST method does not allow
intermediaries to reveal the nature of a given request, whether it is
safe or not. For similar reasons, performing access control on
POST-based operations is extremely difficult, which causes
insecurity of the HTTP protocol.

Altogether, the HTTP protocol provides no means of organizing
the complex content that is typical of a Web server supporting
many Web applications. HTTP does not support any metadata
facility, nor provide any way to link documents other than those
whose content models directly support links (e.g., HTML).

Versioning must be done with other repository manager or source
code control systems, and then made available to the Web through
a separate publish step. Older versions are often no longer
accessible. Furthermore, the HTTP PUT method does not provide
any means to prevent multiple authors from simultaneously
updating the same resource, overwriting each other`s work. This is
surely inadequate, especially in geographically diverse locations.

The solution is to improve the HTTP protocol to satisfy remote
authoring needs. WebDAV, Web Distributed Authoring and
Versioning, consists of extensions to HTTP/1.1 to support remote
authoring of Web resources. It addresses the problem of
distributed authoring on the Web and resolves these issues by
providing a standard protocol for distributed authoring support
based on the highly successful and widely adopted HTTP
protocol.

WebDAV uses the add new methods approach to extend the
HTTP functionality. This approach takes advantage of existing
features such as operation precondition headers like If-[None-]
Match. Operation-based security and access control are also easy,
since the operation always occurs at a predictable location in the
protocol stream (normally at the beginning of the first line of the
request called as Request-Line). However, by using this approach
it turns out that HTTP headers are not sufficient for marshalling
many kinds of parameters. Furthermore, since existing HTTP
headers can be applied to any new method, the interactions
between existing headers and new methods need to be explicitly
defined. Finally, the existing mechanisms for extending HTTP
servers do not easily accommodate adding new methods.

However, in the end, the security and access control advantages of
adding new methods outweighed the (relatively minor) drawbacks
of the approach. In those cases in which parameters could not
easily be marshalled into HTTP headers, WebDAV (Web-based
Distributed Authoring and Versioning) as an extension to HTTP,
has used XML in the message body to encode the parameters.
Thus it is gaining some of the RPC via POST advantages without
its security and access control disadvantages. The next section
describes the WebDAV protocol in more detail.

3. WebDAV DEFINITIONS
WebDAV is an extension of the HTTP protocol to provide a
coherent set of methods in order to provide authoring mechanisms
on the Web. WebDAV is an official Internet Engineering Task

613

Force (IETF) standard protocol that was introduced in 1999 to
support some operations on properties, collections and
namespaces, and locks [12]. The nature of these operations is
discussed as below.

• Property operations: Provide the ability to create, remove, and
query meta-information about documents. They also provide the
ability to specify links, which connect media types that are
otherwise unable to contain embedded links. These are provided
via the PROPFIND and PROPPATCH methods of the WebDAV
protocol.

• Namespace operations: Provide the ability to create sets of
related documents, and to retrieve a hierarchical listing of their
members. They also present the ability to copy and move web
resources and collections of resources. MKCOL, MOVE and
COPY methods are defined in the WebDAV protocol in order to
establish the namespace operations.

• Locking operations: Control access to resources in order to
avoid lost updates in a distributed, multi-user authoring
environment using the LOCK and UNLOCK methods.

WebDAV addresses the HTTP deficiencies by adding new
methods to HTTP in order to support metadata, access control
through locking, and namespace and collection management.
These methods include new request and response headers as well
as entity request and entity response body definitions.

The related parameters for each method are specified as request
headers, or in the entity request body, or both. Complex methods
use entity request bodies as well as passing the parameters with
simple structure through the headers. Responses are again
returned through either headers or entity response bodies. The
response body generally contains the result of the method while
the response headers contain information about the response.

WebDAV working groups also defined other complementary
protocols and Internet drafts to WebDAV in order to provide
versioning through DeltaV, and access control using the
WebDAV Access Control Protocol. It also provides a mechanism
for searching the resources and properties by introducing DASL
(DAV Searching and Locating) via the SEARCH method.

As is evident, WebDAV provides some content management
functionality. However, that functionality is accessible by HTTP
as well, such as Microsoft FrontPage [13, 14], Zope1.10.3 [15,
16]. This raises the question of what advantages make WebDAV-
based applications better than non-standard HTTP-based client
authoring solutions. We summarize some of these advantages as
follows.

• Interoperability: One of the reasons that the Web has been so
successful is at the protocol level. That means there is a
standardized interface for interacting with Web resources.
WebDAV extends HTTP to provide a standardized functionality
for distributed and collaborative authoring. SOAP (Simple Object
Access Protocol) allows arbitrary methods with arbitrary
functionality to be exposed as a Web server, so that it is able to
provide WebDAV-like functionality. However, there is no
guarantee of interoperability between clients and servers.
Therefore, WebDAV provides a better protocol regarding
interoperability than SOAP.

• Scalability: WebDAV is basically designed to allocate less
presentation to the server. The WebDAV server only sends the

result to the clients, and the WebDAV application in the client
part is responsible for the presentation of the result. This saves the
Server time and improves the scalability and performance of the
WebDAV-based environment. As an example we can name the
Outlook Web Access (OWA) for Exchange 2000 of Microsoft.
When the server had to do all the presentation work itself, the
OWA server could not handle so many users [17].

• User Interface: WebDAV allows clients to have control of the
User Interface (UI). For example, the UI can be a command line
such as Cadaver. It also can be a search-oriented file locator like
KCura, Windows Explorer-like such as Xythos WFS and
WebFolder [18-20].

• Locking: WebDAV allows locks to be obtained automatically
by the authoring application. However, HTTP-based authoring
applications either don`t support locking or make users obtain
locks manually such as Sharemation [17,21].

Given the above reasons, in a general authoring scenario,
WebDAV is much more scalable, high performing and well
designed than HTTP-based interfaces that use forms. Recently,
many applications such as Jakarta Slide, Zope2.0, mod_dav,
Cadaver, Dav4J and Jigsaw have been developed to support
authoring of Internet resources under the WebDAV protocol.
Some of those applications such as mod_dav and Python
davserver implement WebDAV on the server side. Some others
such as Cadaver and the Python DAV client library provide the
WebDAV client. However, there are some applications that
provide both server and client parts together such as Jakarta Slide,
Zope and Dav4J [22].

Furthermore, these applications support a variety of different Web
servers, such as Apache, IIS, JavaServer, and Jigsaw on different
platforms such as Unix, Windows 95/98/NT/2000, Linux, OS/2,
Solaris, Macintosh. Those applications are also programmed with
different languages such as Java, Python, C, C++ and Perl.

All of these together provide a wide range of options for users to
adopt, which increases WebDAV’s popularity. However, all of
these applications support file systems as their resources. Even
though many commercial database servers are already equipped
with WebDAV support such as Oracle iFS, Xythos, they have
only used the database to store files [20, 23, 24]. Moreover
mod_dav_dbms, which works with mod_dav server, is a database
backed repository layer for Apache web server that fulfills the
requirements for WebDAV and DASL protocols [25]. That means
they still deal with file systems as their WebDAV resources.

To date well-known technologies such as CGIs, scripting
languages, JDBC, Servlets, JSP and ASP are being used to
produce dynamic information through access to a database, as
discussed in Section 1. However those technologies are based on
the HTTP protocol and therefore they sustain a loss because of the
HTTP weaknesses for distributed authoring.

Our methodology, called WebDAV-based Authoring of Databases
(WebDAD), is the first to present a framework of accessing and
authoring databases based upon the WebDAV protocol, which
provides a better foundation for remote authoring.

Most of the WebDAV methods are generally intended to support
file system resources, i.e., files and directories. WebDAD tries to
highlight the fact that file systems are not the only Web resources
on the Internet. Indeed other resources such as databases, which

614

play a significant role in the structure of the Web, also need to be
considered in the WebDAV protocol.

4. WEBDAD METHODOLOGY
The WebDAV protocol has basically been designed to complete
the original vision of the Web as a medium for collaboration. The
WebDAV protocol is particularly concerned with distributed Web
authoring. We have invented WebDAD in order to provide an
integrated and easy way for authoring databases by using the
WebDAV protocol [26]. It describes an architecture to carry
database-oriented requests from the client to the server, and send
the response back from the server to the client.

WebDAD uses WebDAV methods to convey requests and
responses between servers and clients. In other words, WebDAD
describes a way to express a given SQL query in the form of a set
of WebDAV methods. However, before being able to map SQL
statements into the WebDAV methods, it is necessary to provide a
database data model compatible with the WebDAV data model.

WebDAV methods are defined to operate on resources and
collections (Section 3). WebDAD maps each record into a
resource. It also considers each table as a collection of records in
a Relational Database (RDB), which is the essential part of the
mapping. But how to define URL addresses for records and tables
is the issue discussed in Section 4.4.

WebDAD selects a relatively complete subset of SQL queries to
map into the WebDAV methods. SQL includes statements that are
used by database designers to define conceptual and internal
schema for the database. Those statements are known as Data
Definition Language (DDL) statements such as Create, Alter,
Drop, Grant and Revoke. Furthermore, SQL provides statements
to manipulate the database, known as the Data Manipulation
Language (DML). Typical manipulations include retrieval,
insertion, deletion, and modification of the data [27].

Our subset includes both DDL statements and DML statements.
The WebDAD DDL statements are Create Table, Alter Table,
Drop Table, Grant and Revoke. Also, WebDAD chooses Update,
Insert, Select, and Delete statements as DML statements. Section
4.5 discusses the details of mapping each query into the relevant
WebDAV methods. However, each SQL statement is normally
mapped to more than one WebDAV method. Also since each SQL
query is considered as one single transaction in a database, we
need some kind of mechanism, which maps each sequence of
relevant WebDAV methods corresponding to a given SQL query
as one single transaction. For these we use the ATOMIZE
method. This method is used to provide atomicity of each SQL
statement, and is described in more detail in Section 5.1.

As illustrated in Figure 1, WebDAD consists of five components:
SQL Parsing, ATOMIZE Method Generator (AMG), ATOMIZE
Method Handler (AMH), Response Generator, and Result
Producer. When a user asks for an SQL query, the SQL Parsing
parses that query. During the parsing, the different elements of the
query are recognized and saved. When the SQL Parser parses the
SQL queries, if there is any syntax error, the WebDAV client
reports that error to the user. The AMG parameterizes WebDAV
methods relevant to the given SQL query, and encapsulates those
methods into a ATOMIZE method. It then passes the ATOMIZE
method onto the server. The AMH opens the ATOMIZE method
to find out which SQL query has been requested.

Figure 1. The WebDAD Architecture.

At this stage, the WebDAV server checks the permission of the
user to access the data involved in the requested SQL query. If
the user is authorized, the SQL query is sent to the database
server. The database server runs the query and provides the result
set for the user. Meanwhile the related methods included in the
ATOMIZE method are run on the WebDAV server. The
WebDAV server mirrors the metadata about objects in the
database. The Response Generator generates the proper response
for the ATOMIZE method based on the interactions in AMH.
Also the Response generator reflects any exception or error in the
WebDAV server or the database server to the client by using a
proper message status code. Finally, in the client part, the Result
Producer does the presentation work for the response and
produces a proper result for the user.

4.1 Why WebDAD
This section explains some of the main reasons for introducing
WebDAD. Basically the WebDAD specification and development
arise from the fact that it is based on the WebDAV protocol, and
so it naturally benefits from WebDAV’s advantages with regard to
remote authoring as discussed in Section 3.

The WebDAV protocol claims not only to support file systems,
but to support all Web resources identified by URIs. To prove this
claim it is necessary to consider other resources that satisfy the
condition. WebDAD illustrates a way to express the database
resources by URIs and investigate whether the WebDAV
statement is true or whether it is just an exaggeration.

WebDAD references a new methodology of accessing databases
based on the WebDAV protocol, which has essentially been
defined to support the authoring of Web resources. The WebDAV
functionality for file systems, which has been implemented by
many different application vendors, shows that it is far better than
HTTP-based client applications for authoring. However, there is
no WebDAV-based application for authoring databases, which
can practically be compared to the HTTP-based one. WebDAD
make this comparison possible.

This new architecture for authoring databases moves the control
on the users` access from inside the database to the outside.
Therefore it provides more protection for the database in case of
any unauthorized access, which increases the database security.

Database
Server

U
S
E
R

W
E
B
D
A
V

S
E
R
V
E
R

AMG

Result
Producer

AMH

Response
Generator

SQL
Parsing

Internet

615

As well as the security issue, there is another crucial aspect, which
is very time consuming in busy databases, called connection time.
The WebDAD structure allows users to access the database by
using a single connection and connection pool, which speeds up
the connection time considerably.

Finally the last reason, which emphasizes WebDAD, regards the
provision of a standardized mechanism to extract metadata.
Considering the importance of metadata in our world today, the
retrieval and storage of metadata are important aspects of the
metadata phenomenon. Providing a standardized and easy way to
access database metadata is another motivation for the provision
of WebDAD.
4.2 WebDAD vs. Other Methodologies
The protocol level is the main difference between WebDAD,
compared to other methodologies for authoring databases. All the
methodologies that we discussed in Section 1 for the remote
authoring of a database use the HTTP protocol to carry requests
from a client to a server and return responses from the server to
the client. However the WebDAD methodology uses the
WebDAV protocol to transfer data between clients and servers.

As we already mentioned in Section 2, the HTTP POST method is
an inappropriate method because it tunnels any kind of data, such
as SQL queries, inside its body. However, WebDAD maps SQL to
the WebDAV methods, so that each SQL query is expressed by a
set of relevant WebDAV methods. As a result, WebDAV does not
apply the POST method in order to pass queries into the server
and thereby the security hole problem, which is raised by the
POST method, is solved by the WebDAD architecture.

Moreover, WebDAD uses the access control policy that is
provided by the WebDAV protocol using the Access Control
protocol. In fact, it moves the access control check for different
users from database servers to WebDAV servers. So, only one
database connection exists for all the different users. Now using a
pooled connection can significantly increase the speed of making
a connection to a database. Normally when different users are
accessing a database, it is necessary to make different connections
to the database. The database server checks those connections and
user authentication to access the database. Under this
circumstance, if the network is busy, it is likely to hang up the
database server, and consequently network efficiency decreases
dramatically.

Another WebDAV advantage concerns metadata. It is important
for database users to know about database metadata. Furthermore,
since there is no standard language to extract this metadata, each
database provides its own metadata-oriented commands and
instructions.

The java.sql.DatabaseMetadata and java.sql.ResultSetMetaData
interfaces are provided by JDBC to partially solve this problem.
However, for some purposes users still need to know the name of
tables, which are used to store metadata. Those table names are
different in each database [7].

Moreover, working with JDBC needs Java and Web programming
skills. Hence these issues do not make JDBC programming an
easy way to access database metadata. In the absence of a standard
methodology to extract database metadata, WebDAD uses the
WebDAV metadata mechanism, which prepares database
metadata on the WebDAV server. Therefore users can extract

database metadata without even connecting to the database by
using the simple method of WebDAV, i.e., PROPFIND.

Apart from extracting the database metadata in a standard way,
this mechanism has more advantages. First, it is vendor
independent. Second it is easy, because it does not need any
programming. Users can simply extract the database metadata
using the PROPFIND method. Finally, it provides the database
metadata without needing to access the database. Therefore it
makes the access more secure for users who are not allowed to
access the data in the database, but who need to know about
specific metadata as database application designers and
programmers.

Finally, WebDAD provides an SQL Parser that parses SQL
statements before they are passed to the database. Therefore, any
malicious SQL statement is rejected before being passed to the
database. This means WebDAD prevents SQL poisoning, which
increases security. Also the SQL Parser reflects any syntax error
in the SQL statement to the user, without sending the request on
to the server. Regarding the fact that usually syntax errors happen
a lot, the SQL Parser causes remarkable savings of server time and
load.

4.3 WebDAD Drawbacks
Like any other methodology, WebDAD also raises some
problems. Tailoring the database data model and operations onto
the WebDAV data model and methods is the root of all the
problems with which WebDAD is faced. Firstly, WebDAV
methods are mostly intended to support file systems. This causes
us not to be able to represent the very detailed aspects of SQL
queries by WebDAV methods, so that at the moment it is
necessary to pass the SQL query as a part of the request to the
server.

Secondly, almost all of the SQL queries are represented by more
than one WebDAV method. To deal with the sequence of
WebDAV methods relevant to a given SQL query as one single
transaction, WebDAD needs a mechanism for atomicity. We
provide this mechanism by inventing a new method called the
ATOMIZE method, discussed in detail in Section 5. However, the
ATOMIZE method is not part of the WebDAV protocol and has
not been standardized yet, which raises an interoperability
problem.

Furthermore, the current specification of the WebDAV properties
is not very efficient [28], especially when they are dealing with
resources that present a high rate of repetitive properties such as
databases. The types and representations of WebDAV properties
affect their space and their search time.

In the WebDAD framework, logically, each attribute is considered
as a property of the resource. However it is not an efficient design
with the current specification of WebDAV properties, since this
design is space and time consuming, especially for databases with
big tables. In the current framework of WebDAD, each resource
carries a pointer to the relevant record in the database [29]. The
values of the records are stored in the tables belonging to the
database repository. However, we propose Inheritance as a new
specification for the WebDAV properties that solves the problem
in Section 5.

Finally, WebDAV as an extension to the HTTP protocol is a
stateless protocol. Therefore it faces the same problem as the
HTTP protocol when handling transactions. This problem is

616

solved in current approaches by using cookies, which can be used
in WebDAD as well.

4.4 WebDAD Data Model
Our architecture for the distributed authoring of databases based
on the WebDAV protocol applies a data model that maps the
database data model onto WebDAV resources. The WebDAD
architecture is flexible enough to be applied to relational
databases or object-oriented databases. We present a data model
for both types of databases.

In a RDB, we propose to consider each record as a separate
resource, and each table as a collection within WebDAV. Since
URIs identify WebDAV resources, we represent each table by a
URI using the schema and table name. Figure 2 illustrates a URL
for a given database table.

Figure 2: Representing a table in a RDB by a URL.

Furthermore we use the schema, table name and record in the
structure of the URL to identify each record in a table, as shown
in Figure 3.

Figure 3: Representing a record in a RDB by a URL.

Since the primary key uniquely identifies each record in a table,
the value of the primary key can be applied to distinguish between
records in a table. The row identification is another alternative for
uniquely identifying each record in a table; since the table may
not provide a primary key [30]. To accomplish this, the URL in
Figure 3 will change to one of the URLs in Figure 4.

Figure 4: URLs representing a record in a RDB uniquely.

In an OODB, objects and classes are analogous to RDB records
and tables. Therefore we use URL patterns similar to Figure 2 and
Figure 3 to represent each class and object respectively. Indeed,
since the Object Identifier (OID) uniquely identifies each object in
an OODB [30], we express each class and object in the database
by URLs such as those given in Figure 5.

Figure 5: URLs representing a class and an object in an

OODB.

4.5 WebDAD Operations
The next issue is to map WebDAD operations into the WebDAV
methods. In fact, the WebDAD operations are database operations
such as SQL statements. For our application, we select a primitive
subset of SQL statements. The semantics of this subset is
supported by SQL99 and two of the most popular commercial

database packages on the market (Microsoft SQL server and
Oracle8i), and two of the best-known open source database
products (PostgreSQL and MySQL) [31]. The syntax chosen for
the subset is compatible with Oracle8i. The subset covers the most
important SQL statements such as the Create Table, Alter Table,
Delete, Drop Table, Insert, Select, Update, Grant and Revoke
statements. WebDAD sends an SQL statement to the database and
sends the corresponding WebDAV methods to the repository.
Table 1 illustrates each SQL query and its relevant methods.

Table 1. SQL statements and relative WebDAV methods.

SQL Statement Relative WebDAV Methods
Create Table MKCOL, PROPPATCH

Alter Table MOVE | PROPPATCH
Drop Table DELETE (collection)

Select SEARCH
Insert [SEARCH ,] PUT

Update SEARCH (where clause)
 [, SEARCH (set clause)]

Delete [SEARCH,] DELETE (resource)
Grant ACL (to set properties)

Revoke ACL (to remove properties)

5. PROPOSAL FOR WEBDAV
The WebDAD framework could improve if the WebDAV
protocol provided a better foundation for supporting methods and
properties. In this section we propose two extensions to the
WebDAV protocol in order to establish an improved protocol for
authoring.

5.1 WebDAV and Atomicity
The WebDAV methods execute basic and simple operations. A
complex operation such as a database operation is normally
implemented through a sequence of WebDAV operations. Hence,
it is necessary for a complex operation to be atomized as a single
operation, so that the WebDAV methods relevant to the complex
operation are all done or none are. Therefore, we propose to make
use of an ATOMIZE method in order to provide atomicity in the
WebDAV protocol.
Although the ATOMIZE method is not a standard method in
WebDAV, there are, however, many discussions about it among
the WebDAV group under the title of the BATCH method. This
method has been suggested in order to increase performance and
also implement transactions. However, for some reasons such as
low priority and lack of consensus, it has been postponed [32-35].

In these discussions, the BATCH method is suggested as a
mechanism for passing a group of methods in one request in order
to improve the performance of the network. However, it is refused
because it raises the same problems as the POST method does.
The BATCH method is also proposed for implementing
transactions so that a group of methods that form a transaction are
passed to the server in one request using the BATCH method.
Under this circumsta ce, intermediaries are not able to find out
what methods and ho many of them are tunneled by the BATCH
method. This is not R

Although the ATOM
discussed for transac

http://host[:port]/rdb/schema/table/primaryKey
http://host[:port]/rdb/schema/table/rowIdentifier

http://host[:port]/oodb/schema/class
http://host[:port]/oodb/schema/class/oid

http://host[:port]/rdb/schema/table

http://host[:port]/rdb/schema/table/record

617
n
w

ESTful and so is rejected [36-37].

IZE method is very similar to what is
tions, there is a major difference that leaves

the ATOMIZE method RESTful. This method is used to provide
the atomicity of database operations, intermediaries can recognize
the content of the method simply by retrieving the Pragma header
as discussed in the next section.

5.1.1 ATOMIZE Method Request
This section presents the syntax and semantics of our proposed
ATOMIZE method. Like the other WebDAV methods, the
ATOMIZE method request consists of two parts, the header and
the body. The header of the ATOMIZE method has the same
syntax as other HTTP methods. We also set the value of the
Pragma header2 to the type of SQL query, such as create-table,
select, insert, and so on.

However, we propose the syntax shown in Figure 6, for the
ATOMIZE method`s entity body. The body is an XML document
with an atomize element to include attributes and elements. The
header and body of each method relevant to the given SQL query
are passed to the server through a request element inside the
atomize element.

 Figure 6: Syntax of a ATOMIZE method request body.

The expected status element representing the status code results
from running the related method correctly. It is used to make sure
that the result of running this method is the same as what is
expected.

To present an instance of an ATOMIZE method we use an
example concerning the creation of the Registrations table. Figure
7 illustrates an ATOMIZE method request related to the SQL
query in the sql-query attribute, with relevant WebDAV
methods as shown in Table 1, i.e., the MKCOL method followed
by the PROPPATCH method.

5.1.2 ATOMIZE Method Response
The ATOMIZE method response is an XML document similar to
other WebDAV methods. It presents the response of the last
method in the ATOMIZE method that has been executed.

However, if the ATOMIZE method fails during the running of
sub-requests in the ATOMIZE method, it returns the error status
for the current request that has failed.

2 The Pragma header is an HTTP request header, which contains
any additional information that the client wishes to specify to the
server [38].

Figure 7: ATOMIZE method request for creating a table.

5.2 WebDAV and Inheritance
Inheritance in the WebDAV properties is an issue that can save time
and space in handling and searching the WebDAV properties. Since
each single resource on the Web can be linked to an unrestricted
number of properties, the rate of repetitive properties associated
with resources grows remarkably when the size of Web sites
increase.

For example, a university`s publication Web site includes hundreds
of papers and books. Each book can be associated with properties
such as the name of the author or authors, date, title, publisher,
number of pages, and category. Also each paper can be linked to
properties such as name of author or authors, date, title, name of
conference or journal, and keywords.

As is evident in the above example, some resources have similar but
not identical properties. If there were a large degree of similarity, it
would be useful to be able to share the common properties.
Inheritance allows one resource to be defined as a special case of a
more general resource. These special cases are known as sub-
resources and the more general cases are known as super-resources.
By default a sub-resource inherits all the properties of its super-
resource. Furthermore it defines its own unique properties, plus a
live property named subResourceOf, so that its value refers to the
URI of its super-resource. Each collection in WebDAV can be a
super-resource or a sub-resource. However a non-collection
resource can only be a sub-resource. This inheritance is a single
inheritance3.

In the above given example, Books and Papers collections are sub-
resources of the Publication resource. The Publication resource is a

3 Single inheritance d

no more than one sup

 <!ELEMENT atomize (request+)>
 <!ELEMENT request (header, body, expected-status)>
 <!ELEMENT header (#PCDATA)>
 <!ELEMENT body (#PCDATA)>
 <!ELEMENT expected-status (#PCDATA)>
 <!ATTLIST atomize sql-query ENTITIES #REQUIRED>
 <!ATTLIST atomize involved-objects CDATA #REQUIRED>

ATOMIZE /rdb/schema HTTP/1.1
Host: databases.example
Content: text/xml; charset="utf-8"
Content-Length: xxxx
Pragma: create-table

<?xml version="1.0" encoding="utf-8" ?>
<atomize xmlns=“http://authoring.db/webdad”
 involved-objects ="/rdb/public"
 sql-query = "Create Table Registrations(
 student varchar(6), unit varchar(9),
 year varchar(6), mark int, result varchar(1),
 primary key (student, unit, year),
 foreign key (student) references Students,
 foreign key (unit, year) references Units);">
 <request>
 <header>
 Header of MKCOL(Registrations)
 </header>
 <body>Body of MKCOL(Registrations)</body>
 <expected-status>201</expected-status>
 </request>
 <request>
 <header>
 Header of PROPPATCH(Registrations, properties)
 </header>
 <body>
 Body of PROPPATCH(Registrations, properties)
 </body>
 <expected-status>207</expected-status>
 </request>
</atomize>

618

eclares that the sub-resources inherit from
er-resource [26].

collection associated with the properties such as authors, date, and
title, which are common properties between the Books and Papers
collections. They inherit all the properties from their super-resource,
i.e., the Publications resource. They also have their own unique
properties, which are added to the inherited properties. The Books
and Papers collections include all the published books and papers of
the university as their internal resources. Each resource inherits all
the properties from its super-resource.

Figure 8 illustrates the inheritance hierarchy for this example. As
you see, the inheritance avoids repetition of the property names,
which are repetitive in the non-collection resources.

Figure 8: Inheritance hierarchy for university publications.

If the WebDAV protocol supported inheritance for properties, the
WebDAD framework would change remarkably. Under this
circumstance, WebDAD could define each table as a collection
with the table attributes defined as properties for the collection.
The value of each property carries the data type of the given
attribute. The resources in this collection, which are in fact the
records of the table, inherit all properties of the collection.
However, the value of each property for the given record carries
the corresponding field of that record. This collection is
considered as the super-resource and records are its sub-resources.

In this scenario, the value of each record is represented via a
sequence of property values, so that the WebDAV repository
stores the records of the database. Furthermore, the table
constraints are considered as a new collection in the table, which
includes sub-resources such as Primary key, Foreign keys and
other constraints. Each sub-resource defines its own properties.

Figure 9 illustrates how the Registrations table is represented via
the inheritance hierarchy.

Figure 9: Inheritance hierarchy for the Registrations table.

6. CONCLUSIONS
The development of the WebDAV protocol in order to encompass
remote authoring of every kind of Web resource has been
investigated in this dissertation which promotes the WebDAV
protocol from an authoring protocol for file systems to an
authoring protocol for every kind of Web resource.

The paper referenced the need for authoring and accessing
databases via the Web. It also presented a collection of possible
mechanisms which are currently used for accessing databases
through the Web.

Furthermore we introduced a new methodology for authoring
databases, which almost preserves the advantages of other
methods, but does not reflect their drawbacks (see Section 4). We
invented this methodology, called WebDAD, based on the
WebDAV protocol. This methodology is a seamless and easy way
of authoring databases over the Web.

Considering the benefits and advantages of WebDAD compared
to other methodologies for authoring databases, this methodology
emphasizes the fact that the WebDAV protocol and its
complementary Internet drafts such as DASL and WebDAV
Access Control provide a better foundation for remote authoring
of databases as well as file systems. This became more apparent
when we mapped SQL statements into WebDAV methods.

Furthermore, the WebDAV specifications such as metadata and
properties easily provide a repository of database metadata so that
a user can extract the metadata in a standard way. Regarding the
fact that there is no standard way for extracting database metadata,
the role of WebDAV as a foundation for remote authoring
databases becomes more comprehensible.

Also, we observed how the WebDAD framework using the
WebDAV access control resolves the connection problem that
occurs when JDBC is used in order to remotely author databases.

On the other hand, considering the differences between the
structure of file systems and databases, it states that WebDAV
needs more extensions to be considered as a package protocol for
authoring every kind of Web resources. We suggest some of those

 pages, } Books
 publisher,
 {category

Publications {author,
 date, title}

Papers {C/J-name,
 keywords}

B2 B1

Collection
resource

Non-collection
resource

B inherits A

Properties

A B

 { }

Legends:

B3 Bn P1 P2 Pm

Registrations {student, unit, year, mark, result}

. . .

RI2 RI3 RInRI1 . . .

FK1 FK2

PK

Constraints

Foreign_keys
 {columns, referenceTo}

Primary_key
 {columns}

619

in Section 5, which make the protocol more flexible and practical
to apply to every kind of Web resource.

7. ACKNOWLEDGMENTS
The authors would like to thank the WebDAV and Jakarta Slide
mailing lists for their supports and cooperation.

8. REFERENCES
[1] Greg Riccardi. Principles of Database Systems with Internet

and Java Applications. Addison Wesley. 2001. ISBN:
020161247X.

[2] Ralf Kramer. Databases on the Web: Technologies for
Federation Architectures and Case Studies. Proceedings of
the International Conference on Management of Data and
Symposium on Principles of Database System, pages 503-
506, USA, 1997.

[3] Daniela Florescue, Alon Levy and Alberto Mendelzon.
Database Techniques for the World Wide Web: A Survey.
SIGMOD Record, 27(3): 59-74, 1998.

[4] Tony Beveridge and Paul McGlashan. High Performance
ISAPI/NSAPI Web Programming. The Coriolis Group.
1997. ASIN: 1576101517.

[5] Marco Bellinaso and Kevin Hoffman. ASP.NET Website
Programming: Problem, Design, Solution. Wrox. 2003.
ISBN: 0764543865.

[6] Mark Felton. CGI: Internet Programming in C++ and C.
Prentice Hall. 1997. ISBN: 0137123582.

[7] M. Campione, K. Walrath, A. Huml, and the Tutorial Team.
The Java Tutorial Continued. Addison Wesley. 1999. ISBN:
0201485583.

[8] H. M. Deitel, P. J. Deitel, T. R. Nieto, T. M. Lin and P.
Sadhn. XML How to Program. Prentice Hall. 2001. ISBN:
0130284173.

[9] Bob Blakely. CORBA Security: an Introduction to Safe
Computing with Objects. Addison Wesley. 2000. ISBN:
0201325659.

[10] R. Fielding, J. Gettys, J. C. Mogul, L. Masinter, P. Leach, H.
Frystyk and T. Berners-Lee. Hypertext Transfer Protocol -
HTTP/1.1. RFC 2616. 1999. http://www.rfc-editor.org/-
rfc/rfc2616.txt.

[11] E. James Whitehead, Yaron Y. Goland, WebDAV: A
network protocol for remote collaborative authoring on the
Web. Proceedings of the Sixth European Conference on
Computer Supported Cooperative Work (ECSCW`99), pages
291-310, Denmark, September 1999.

[12] Y. Goland, E. Whitehead, A. Faizi, S. R. Carter and D.
Jensen. HTTP Extensions for Distributed Authoring –
WEBDAV. RFC 2518. 1999. http://www.rfc-editor.org/rfc-
/rfc2518.txt.

[13] Mark Reed. The Fast Track to the Web: FrontPage Express.
1998. http://www.microsoft.com/windows98/usingwindows-
/internet/Articles/003Mar/FPExpress.asp.

[14] Microsoft Office. FrontPage 2003 Version Comparison.
2003. http://www.microsoft.com/office/frontpage/prodinfo/-
compare.mspx.

[15] Brian Lloyd. An Introduction to Zope. 2003.
http://www.zope.org/Resources/Zope-Intro.

[16] Zope Org. Zope Changes. http://www.zope.org/Products/-
Zope/Products/Zope/2.0.0a4/CHANGES.txt

[17] Lisa Dusseault. WebDAV efficiency. 2003. http://lists.w3-
.org/Archives/Public/w3c-dist-auth/2003AprJun/0087.html.

[18] KCura. 2002. http://www.kcura.com.
[19] Joe Orton. Cadaver. http://www.webdav.org/cadaver.
[20] Xythos WFS. www.xythos.com/home/xythos/wfs.html.
[21] Lisa Dusseault. WebDAV: Next Generation Collaborative

Web Authoring. Prentice Hall. 2003. ISBN: 0130652083.
[22] WebDAV Projects. http://www.webdav.org/proj-ects.
[23] Oracle. Oracle HTTP Server: WebDAV-enabled Collabo-

ration. http://otn.oracle.com/products/ias/daily/dec04.html.
[24] Oracle Internet File System. http://products.datamation.com-

/dms/im/958570191.ht-ml.
[25] Sung Kim, Kai Pan and Elias Sinderson. Mod_dav_dbms: A

database backed DASL module for Apache. 2002.
http://www.webdav.org/catacomb.

[26] B. Shadgar, I. Holyer, An Application for WebDAV-based
Authoring of Databases - WebDAD, Proceedings of the
Twelfth International World Wide Web Conference
WWW2003, Hungary, May 2003.

[27] Thomas Connolly and Carolyn Begg. Database Systems, A
Practical Approach to Design, Implementation, and
Management. Addison Wesley. 2002. ISBN: 0201708574.

[28] E. James Whitehead and Yaron Y. Goland, The WebDAV
Property Design. 2003. http://www.webdav.org.

[29] B. Shadgar, I. Holyer, WebDAD: A WebDAV
implementation for authoring databases, Proceedings of the
IADIS International Conference WWW/Internet 2002, pages
827-828, Portugal, November 2002.

[30] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems. Addison Wesley. 2000. ISBN:
0201542633.

[31] Kevin Kline and Daniel Kline. SQL in a Nutshell. O`Reilly
& Associates. 2001. ISBN: 1565927443.

[32] WebDAV Mailing List. Interest in standardizing Batch
methods. 2002. http://lists.-w3.org/Archives/Public/w3c-dist-
auth/2002JanMar/0001.html.

[33] WebDAV Mailing List. Proposal: WebDAV and
transactions. 2002. http://lists.w3.-org/Archives/Public/w3c-
dist-auth/2002JulSep/0172.html

[34] WebDAV Mailing List. Proposal: WebDAV and
Transactions. 2002. http://lists.w3.org/Archives/Public/-w3c-
dist-auth/2002JulSep/0172.html.

[35] WebDAV Mailing List. RE: Interest in standardizing Batch
methods. 2003. http://lists.w3.org/Archives/Public/w3c-dist-
auth/2003JulSep/0023.html.

[36] Roy T. Fielding and Richard N. Taylor. Principled Design of
the Modern Web Architecture, ACM Transactions on
Internet Technology, 2(2): 115-150, May 2002.

[37] Robert McMillan. A RESTful approach to Web services.
Network World. 2003. http://www.nwfusion.com/ee/2003/-
eerest.html#chart.

620

