
XQuery at Your Web Service

Nicola Onose
Ensimag

BP 72
38402 Saint Martin d’Hères Cedex, France

nicola.onose@ensimag.imag.fr

Jérôme Siméon
∗

IBM Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532, USA

simeon@us.ibm.com

ABSTRACT
XML messaging is at the heart of Web services, providing the
flexibility required for their deployment, composition, and main-
tenance. Yet, current approaches to Web services development
hide the messaging layer behind Java or C# APIs, preventing the
application to get direct access to the underlying XML informa-
tion. To address this problem, we advocate the use of a native
XML language, namely XQuery, as an integral part of the Web
services development infrastructure. The main contribution of the
paper is a binding between WSDL, the Web Services Description
Language, and XQuery. The approach enables the use of XQuery
for both Web services deployment and composition. We present
a simple command-line tool that can be used to automatically de-
ploy a Web service from a given XQuery module, and extend the
XQuery language itself with a statement for accessing one or more
Web services. The binding provides tight-coupling between WSDL
and XQuery, yielding additional benefits, notably: the ability to
use WSDL as an interface language for XQuery, and the ability to
perform static typing on XQuery programs that include Web ser-
vice calls. Last but not least, the proposal requires only minimal
changes to the existing infrastructure. We report on our experience
implementing this approach in the Galax XQuery processor.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
Languages, Standardization

Keywords
Web services, XML, XQuery, WSDL, Interface, Modules.

1. INTRODUCTION
Web services are considered by many to be the next revolution

that will allow the Web to distribute not only documents and data,
but also applications. XML lays at the heart of the Web services
infrastructure. It is used to describe services themselves (using
WSDL [25, 26]), as a format for the messages that are exchanged
between services and applications (using SOAP [20]), and to de-
scribe the structure of those messages (using XML Schema [21,

∗The work was done while this author was at Bell Laboratories,
Murray Hill, NJ 07974, USA.

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

17]). Indeed, because of its flexibility, XML greatly facilitates the
deployment, as well as access, composition, and maintenance of
Web services. Yet, current approaches to Web services develop-
ment tend to hide the XML layer behind Java or C# APIs, prevent-
ing the application to get direct access to the original Web services
description and semantics. In this paper, we propose tools and tech-
niques which enable the use of a native XML language, namely
XQuery, as an integral part of the Web services infrastructure.

To better understand where Web services development may ben-
efit from the use of XQuery, Figure 1 shows a typical Web service
architecture. The purpose of a Web service is to make some opera-
tions available to one or more target application(s). WSDL can be
used in conjunction with XML Schema to describe those operations
(1), including their input parameters and their result. Both the ser-
vice and the application are built around this description, and must
implement some messaging layer(2) that deals with the creation
and manipulation of the XML messages based on that description.
Finally, the corresponding logic, both on the service side and on
the application side needs to be implemented(3). Note that build-
ing the service itself may also require to access information located
in one or more legacy repositories(4), which themselves might be
another source for XML data.

Currently, existing Web services development environments use
Java or C# for both the application/server logic and the messaging
layer. In order to deal with the mismatch between XML Schema
and object-oriented type systems, they apply some code generation
from the WSDL description into OO classes. This approach has
several drawbacks. First, OO classes are often not a natural rep-
resentation for the original XML, making it more difficult for the
application to recover the actual semantics of the messages. Sec-
ond, those classes must be regenerated and recompiled whenever
the structure of the messages changes. Third, the XML messages
have to be encoded/decoded, and validated, at run time. Finally,
there is little use of the XML Schema information at compile time
to detect errors in programs, making development error-prone and
programs difficult to debug. We argue for a hybrid approach where
XQuery is used to handle the messaging layer (possibly along with
part of the application logic), while a general purpose programming
language is still available for dealing with the application.

Using XQuery to handle the messaging layer gives the appli-
cation a more direct access the original Web Service content and
semantics. XQuery provides features that can be used to directly
access the content of messages (e.g., using XPath expressions), as
well as to construct new messages (using XML construction syn-
tax) to be passed to a Web service operation. Finally, part of the
application/service logic may also benefit from some of the capa-
bilities of XQuery. For instance, XQuery might be used to access
and process the information from a back-end source. This hybrid

603

Application
Logic

XML
Messaging
Layer

Web
Server
Logic

Backend
Access

XML
Messaging
Layer

DBMS /
Legacy
Application

XML
message

XML
message

XML
message

Shared
XML Schema +
WSDL description

Web Service
(SOAP Server)

Web / SOAP
transport

Web Application
(SOAP client)

1

223

3

4

XML
message

Figure 1: Archetypal Web Service Architecture

approach requires proper interfaces between WSDL, SOAP and
XQuery on one hand, and XQuery and OO languages on the other
hand. The latter is the topic of a number of on-going research [10],
and industrial activities [19, 29] and will not be addressed here.
Instead, we focus on the integration between XQuery, SOAP and
WSDL. More precisely, the paper makes the following technical
contributions:

• We define a binding between XQuery and WSDL, based on
the relationship between XQuery modules and WSDL ports.
We identify constraints that must be fulfilled by the WSDL
description and the XQuery module that it is bound to.

• We extend XQuery with a Web services import statement that
provides transparent access to Web services from within an
XQuery program. Importing a service can be done with one
line in the XQuery prolog, as in:

import service namespace myservice =
"http://www.myservice.com/"
name "MyWebService";

• We show how to deploy a SOAP service from a given XQuery
module. We describe a simple command-line tool that can
perform the necessary installation:

xquery2soap -installdir /var/www/html
MyXQueryService.xq

• The proposed approach can be implemented with only min-
imal changes to the existing infrastructure. We describe our
own implementation in the Galax1 XQuery processor [7]. In
particular, we show how to use XQuery itself as a stub lan-
guage to implement the Web service import and deployment
mechanisms.

• We illustrate additional benefits of the approach. Notably,
we show how to use WSDL as an interface for XQuery mod-
ules, allowing a form ofhiding similar to the one found in
modern functional programming languages [16, 6, 15], and
we explain how to use static typing in order to detect errors
in XQuery programs that include Web service calls.

• Finally, we identify specific mismatches between XQuery
and WSDL, and suggest some possible solutions that may
further improve the coupling between the two technologies.

1http://db.bell-labs.com/galax/

Related work
Bindings between XML and object-oriented languages [13, 5] are
currently the most widely used approach, but none of those bind-
ings give the ability to manipulate the original XML information
natively. Web services composition languages [27, 24, 23, 22] fo-
cus on the orchestration between services and provide only lose
coupling with native XML languages such as XPath and XQuery.
Full-fledged programming languages for XML such as XDuce [11]
or CDuce [4] have the potential to support arbitrary XML applica-
tion development but do not address the specific needs of Web ser-
vices. Closer to our approach is the work on the XL language [9,
8], a native XML language for Web service development. However,
XL focuses on extensions to allow XQuery to support end-to-end
Web services development, and does not provide details about how
to connect to the existing Web services infrastructure. Instead, we
advocate an hybrid XQuery-OO approach which requires minimal
changes to XQuery. We believe the proposed WSDL-XQuery bind-
ing is a simple but essential step that immediately brings the ben-
efits of native XML languages to Web services development. Fi-
nally, the ActiveXML project at INRIA [18, 2], is a parallel project
which tries and address the need of Web service development. They
focus on a document-driven approach, where XML documents can
be extended to contain service calls, while our approach is more a
language-driven approach, which puts XQuery at the heard ot Web
services development.

Organization of the paper
The rest of the paper is organized as follows. Section 2 reviews
key aspects of WSDL and XQuery that are necessary for our work.
Section 3 describes the import service extension to XQuery, and its
implementation in Galax. Section 4 describes thexquery2soap
tool that can be used to deploy a Web service out of an XQuery
module, and its implementation in Galax. Section 5 gives a pre-
cise definition for the XQuery-WSDL binding itself, and defines
the constraints that apply to it. Section 6 discusses additional ben-
efits of the approach, and suggests some changes to XQuery and
WSDL to support a tighter integration. Section 7 concludes the
paper and outlines some future work.

2. XQUERY AND WSDL
The proposed binding takes advantage of the module system re-

cently added to XQuery to provide a tight coupling between WSDL

604

and XQuery. In this section, we briefly review the features of
XQuery and WSDL that we will use. The examples in the paper
are based on a simplified application scenario for a distributed user
profile management system. This scenario is inspired by the GUP-
ster project at Lucent whose goal is to support unified user profile
management across multiple service providers, based on the 3GPP
GUP standard [1].

XQuery expressions and functions
XQuery [30] is the W3C XML Query language. The design of
XQuery is that of a small functional language [31], based on a set
of expressions that can be composed together arbitrarily. Those ex-
pressions include navigation in XML documents using XPath [28],
database statements (the so-called FLWOR expressions), construc-
tion of new XML values, operations on XML Schema types, and
function calls. More significant in the context of Web services is
the ability for XQuery users to define their own functions. For in-
stance, the following function computes some contact information
with the name and the first phone number found for a given contact
(in variable$contactid), within a given user profile (in variable
$ownername).

declare function gup:getContact (
$ownername as xs:string,
$contactid as xs:integer

) as element(contact) {
let $prof := //profile[@owner = $ownername],

$c := $prof//contact[@id = $contactid]
return

<contact>
<name>{ concat($c/first,$c/last) }</name>
<tel>{ $c/phone[1] }</tel>

</contact>
};

A function has a name (heregup:getContact), takes some
input parameters, and returns a result. Each parameter is iden-
tified by a variable name and a type. XQuery can refer to ex-
isting XML Schema types using “sequence types”, for instance:
element(contact) is a sequence type that refers to the glob-
ally definedcontact element declaration. The body of the func-
tion is composed of an XQuery expression that computes the result
from the function’s input parameters. In our example, the query
uses XPath syntax to perform a lookup inside the profiles database
(assumed here to be an XML document), extracts the appropriate
contact information, then constructs acontact element which
contains the name and first telephone number found for the iden-
tified contact. Note that element construction in XQuery has the
same syntax as XML, and uses curly braces to switch back to the
XQuery expression syntax.

We refer the reader to the growing literature on XQuery [12, 14]
for a more gentle and complete introduction to the language.

XQuery modules
XQuery adopted a notion of module in its May 2003 working draft.
Modules provide a means to regroup and identify a set of type dec-
larations, global variables and functions as a singleunit. For in-
stance, the following defines a module “gup”, importing the user
profile schema, and defining the same functiongup:getContact
as earlier.

module namespace gup = "http://example.net";

import schema
"http://example.net/UserProfile.xsd";

declare function gup:getContact (...

A module can then beimportedfrom within another module, as
follows:

import module
namespace gup = "http://example.net";

gup:getContact("jsimeon",4)

Once imported, the functions defined in that module are avail-
able to the query. In our example, the imported function is used to
retrieve the contact whose id is4 from the profile ofjsimeon .

<definitions
targetNamespace="http://example.net"
xmlns:tns="http://example.net" ...>

<types>
<xs:schema targetNamespace="http://example.net">

<xs:element name="contact">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="tel" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</types>

<message name="getContact">
<part name="ownername" type="xs:string"/>
<part name="contactid" type="xs:integer"/>

</message>

<message name="getContactResponse">
<part name="result" element="tns:contact"/>

</message>

<portType name="UserProfilePort">
<operation name="getContact">

<input message="tns:getContact"/>
<output message="tns:getContactResponse"/>

</operation>
</portType>

<binding name="UserProfileSOAP"
type="tns:UserProfilePort">

<soap:binding style="rpc"
transport="schemas.xmlsoap.org/..."/>

<operation name="getContact">
...

</operation>
</binding>

<service name="UserProfile">
<port name="UserProfilePort"

binding="tns:UserProfileSOAP">
<soap:address

location=
"http://example.net/services/gup.xqs"/>

</port>
</service>

</definitions>

Figure 2: WSDL for a user profile service

WSDL
WSDL stands for the Web Services Description Language. Here
we explain how ports and bindings work, and also what the rela-
tionship between WSDL and XML Schema is (for use in opera-
tion’s signature). We used WSDL 1.1 as the basis for this work, as
it appears to be the version most widely supported [3]. Note that
the binding can easily be adapted to WSDL 2.0 [26], although some
changes would be required (e.g.,portType s have been renamed
to interface s in WSDL 2.0).

605

Figure 2 shows the WSDL for a simplified service giving access
to user profile information.

A Web service description is typically composed of the following
elements:

• A set of types used by the service, and defined using XML
Schema.

• A set ofmessages, composed of one or morepart (s) which
are the components of that message. Eachpart has a name
and a type (described using XML Schema).

• A portType which regroups all theoperation s supported
by a service. Eachoperation is described by a name, an
input message and an output message.

• A binding element which identifies an implementation for
the service (e.g., using SOAP).

• A service element which defines the service itself, and as-
sociates aportType to its binding .

In our example, theUserProfileservice provides a single opera-
tion calledgetContactwhich takes as input the user profile owner’s
name (of typexs:string) and the id of the contact that is re-
quested (of typexs:integer), and returns acontact element.

Connecting XQuery modules to WSDL
There is a natural parallel between XQuery modules and WSDL
descriptions. The key remark is that an operation input/output mes-
sages in the WSDLportType are in essence similar to the func-
tion signature in the XQuery module. Each operation behaves like
a function, and each input part for the operation corresponds to
a parameter of that function. Also, both are using XML Schema
types to describe their input parameters and their ouput. There is
no equivalent in WSDL for the function’s body in XQuery. Instead,
WSDL allows to define abinding, which gives some information
about how to contact the service (in our example a SOAP server).
Of course, the corresponding service must effectively accept calls
according to the WSDL description and implement those opera-
tions.

The idea behind our approach is to exploit this parallel to provide
a tight coupling between XQuery modules and WSDL descriptions.

3. SERVICE IMPORT IN XQUERY
We now describe an extension that allows XQuery programs to

access Web services.

3.1 Example
The import service statement is very simple. One just needs to

identify the WSDL resource, the name of the service, and the port
which must be accessed (in the case there exists several ports for the
service). Optionally, the WSDL target namespace may be bound
to a prefix for use within the rest of the query. For instance, the
following statement can be used to import the user profile service
presented in the previous section in the query.

import service
namespace gup = "http://example.net"

name "UserProfile";

let $c := gup:getContact("jsimeon",4)
return $c/tel

Once the service is imported, the operations from that service
are available to the queryas standard XQuery functions. In our
example, the imported Web service operation is used to retrieve the
contact whose id is4 from the profile ofjsimeon . Calling the
XQuery functiongup:getContact triggers a SOAP call to the
appropriate Web service. The input parameters from the function
call are passed to the corresponding Web service operation. Once
the service returns a result for that call, this result is passed back to
the XQuery function and the query evaluation may proceed (here
by applying a simple path expression which extracts the telephone
number out of the result of the service call).

It is important to note that because the values manipulated by
XQuery and the SOAP messages are both in XML, the user does
not need to perform any conversion of the input parameters (resp.
of the result) before (resp. after) calling the service. The query
can use the Web service operation as if it were an XQuery func-
tion whose type signature is the one given in the WSDL descrip-
tion. Also note that the similarity between theimport service
statement and XQuery’s standardimport module statement is
not fortuitous. In fact, the WSDL import behaves exactly like a
module import and has a similar semantics [31] as far as XQuery
is concerned. We will see more in Section 5 about the relationship
between XQuery modules and WSDL descriptions.

The import service statement is very concise. This facilitates
both access to and composition of multiple Web services. For in-
stance, the following XQuery program imports both the user profile
service and the Google search service2, and compose operations
from the two services to retrieve Web pages containing the tele-
phone number of the contact with id4.

import service
namespace gup = "http://example.net"
name "UserProfile";

import service
namespace google = "urn:GoogleSearch"
name "GoogleSearchService";

let $c := gup:getContact("jsimeon",4)
return google:doGoogleSearch($c/tel,...)

3.2 Service Import Statement
The full syntax for the proposed import service statement is as

follows:

import service
(namespace NCName =)? (: namespace prefix :)
StringLiteral (: target namespace :)
(at StringLiteral)? (: location hint :)
name StringLiteral (: service name :)
(port StringLiteral)? (: port name :)

The Web service is identified using its target namespace. The tar-
get namespace, or an optional location hint, may be used to retrieve
the corresponding WSDL description which contains the necessary
information to implement the service import. The name of the ser-
vice must be provided as well, and optionally the port name (in case
there are multiple ports defined for that service). In case there are
several ports, each of them may be imported independently. The
rationale behind this choice is that each port in fact corresponds
exactly to one XQuery module.

Note that from a user point of view, the import service state-
ment behaves the same, independently of the actual binding for the
service. Obviously, the actual implementation for the import must

2http://www.google.com/apis/ .

606

take the actual binding into account. In the rest of the section, we
report on our experience in implementing theimport service
to access a SOAP service.

3.3 Implementing SOAP Service Import
Implementing access to a SOAP service in Galax is done in two

steps. First we add a simple low-level, generic, SOAP call to the
XQuery engine. Second, we implement theimport service
statement by compiling the WSDL description and the correspond-
ing binding information into a specific XQuery stub that is im-
ported as a standard XQuery module. The approach makes the stub
generation very simple since we can use the XQuery’s operations
to construct and access the necessary SOAP envelopes.

Generic SOAP call
A SOAP [20] call is typically implemented as an HTTP request
that follows certain conventions concerning the encoding of XML
parameters for the service operation. Usually, a SOAP call has an
HTTP header beginning with the POST method, or another HTTP
method mentioned in the ‘verb’ attribute of anhttp:bindingelement
from the WSDL file of the web service. The header must also con-
tains aSoapActionfield (possibly empty) and a MIME type that
tells the server that it receives XML data:Content-Type: text/xml;
charset=utf-8. The result of the http request is then decoded to
extract the appropriate XML response.

Galax already supports standard HTTP requests. HTTP requests
are implemented in Galax using thelibcurl library3 that offers
high-level routines for sending requests for the most common In-
ternet protocols: HTTP, HTTPS, FTP, FTPS, GOPHER, LDAP etc.
The programmer can also specify options such as user and pass-
word, timeout, stream buffer callbacks or the way to deal with in-
valid SSL certificates.

In order to support SOAP calls, we just added a new built-in
function, calledglx:soap-call , whose signature is the follow-
ing:

declare function
glx:soap-call(xsd:anyURI,

xsd:string,
xsd:string,
item()*) as (document) external;

The first argument represents the URI of the server (as specified
in thesoap:addressor http://addressandhttp:locationelements in
the WSDL). The second argument is the string representation of
the HTTP method to be used (“GET” or “POST”). The third is the
concatenation of additional HTTP headers (such asSoapAction:
. . .) and the last one is the body of the SOAP message made up of
untyped XML data.

Stub generation
From the WSDL description, we generate a stub which implements
the XQuery interface in terms of the underlying protocol level (us-
ing theglx:soap-call function). Compiling the WSDL into
the corresponding XQuery stub is done in four steps: (1) the WSDL
file is parsed as an XML document, (2) theWSDL loaderinterprets
that XML document as a WSDL description and builds a WSDL
abstract syntax tree (AST), (3) theWSDL compilertakes the result-
ing AST and generates the stub as an XQuery module, finally (4)
that module is imported as a standard XQuery module.

The result of theimport service statement in our earlier
example is equivalent to the import of an XQuery module con-
taining a single function with the same type signature as the first
3Seehttp://curl.haxx.se/libcurl/ .

XQuerygetContactfunction we defined at the beginning of the sec-
tion4:

module
namespace gup =

"http://example.net/UserProfile#UserProfilePort";

import schema
"http://example.net/UserProfile.xsd";

define function
gup:getContact($ownername as xs:string,

$contactid as xs:integer)
as element(contact)

{
let $input :=

<soapenv:Envelope>
...
<tns:getContact>

<ownername>{$ownername}</ownername>
<contactid>{$contactid}</contactid>

</tns:getContact>
...

</soapenv:Envelope>
let $output :=

glx:soap-call(xsd:anyURI("http://example.net"),
"POST", "SoapAction: ", $input)

return
$output/soapenv:Envelope/soapenv:Body/

tns:getContactResponse/tns:contact
};

Note that the module imports the schemaUserProfile.xsd
which contains the schema that corresponds to thetype element
in the WSDL description. Also note that the target namespace for
the module contains both the service target namespace and the port
name, in order to deal properly with services that contain multiple
ports.

In practice, the generated stub is small5. This is due to a conjunc-
tion of two things. First, the stub can leave most of the message ‘as
is’, and second, XQuery expressions can be used to conveniently
construct and access the necessary SOAP envelope.

4. DEPLOYING AN XQUERY SERVICE
In this section, we describe how to use the XQuery-WSDL bind-

ing to deploy a Web service from a given XQuery module. The
xquery2soap top-level application exports an XQuery module
as a SOAP-apache server. Server responses are serialized by an
XQuery server skeleton according to the SOAP specifications.

4.1 Example
We will illustrate these procedures by deploying thegup module

from our first example in Section 2.

xquery2soap
-installdir "/var/www/services"
-interfacedir "/var/www/services/wsdl"
-address "http://example.net/gup.xqs"
gup.xq

As a result of this call, a WSDL file similar to that in Figure 2 is
generated. Based upon that WSDL file, an XQuery SOAP server is

4Due to space limitations, we only show the stub built when using
the WSDL RPC style. The alternative WSDL document style can
be generated in a similar way. See [25] for more details about the
two encoding styles.
5As an illustration the complete stub for the Google search service
can be found athttp://db.bell-labs.com/xbutler/.

607

built and copied along withgup.xqto the location of the apache ser-
vice directory (here “/var/www/services ”). In addition, the
tool generates the appropriate stub (denoted ‘gup.xqs ’ in the fol-
lowing) between the apache server and the XQuery module. Com-
pared to the stub generated in theimport service case, this
one plays the inverse role: it extracts the parameters from the SOAP
messages and passes them to the appropriate XQuery function in
the XQuery module. The result of the XQuery call is then wrapped
back again as a soap message which is sent back as a result to the
calling application.

4.2 The Syntax ofxquery2soap

The complete syntax for the export application is:

xquery2soap
[-wsdl WSDL]
[-port WSDLPort] [-binding WSDLBinding]
[-installdir Directory]
[-interfacedir Directory]
[-address URI]
XQueryModule

The mandatoryXQueryModule argument indicates the mod-
ule to be exported and accessed via the (SOAP) server XQuery
program. The optionalWSDLargument designates the WSDL in-
terface used for the module. If it is present, the system checks
for consistency between the WSDL interface and the correspond-
ing module. If it is absent, an interface is created automatically,
respecting the same conventions of passing from XQuery functions
to WSDL parameters as those for the XQuery binding. In this
case, the names of the SOAP port and the SOAP binding can be
given with the options-port and-binding respectively. The
-installdir option specifies the directory in the local file sys-
tem where the SOAP server will be installed. The WSDL interface
can also be published with the-interfacedir argument. Fi-
nally, the-address URI is the Web address of the server and is
used to build thesoap:address element in the WSDLport .
If absent, the name of the local host concatenated with the module
name is assumed by default.

4.3 Server Implementation
The xquery2soap is meant to produce an XQuery program

that would act as a SOAP server called through apache. Again,
an important component of that SOAP server is an XQuery stub
which maps generic SOAP calls into the appropriate XQuery func-
tion call.

The XQuery stub starts with the statement.
import module namespace gup="http://example.net"
The rest of the stub is dispatching the call to the appropriate

function in the XQuery module. The result of that function is then
wrapped into the proper SOAP response.

declare function
local:make_envelope

($funname as xs:string,
$nmsname as xs:string,
$param as item()*)
as element(soapenv:Envelope) {

if ($nmsname="http://example.net"
and $funname="getContact")

then
<soapenv:Envelope ..>

...
{gup:getContact($param/p1/node(),

$param/p2/node())}
...

</soapenv:Envelope>

else if ...
};

A SOAP client− such as one generated with the XQuery import
service statement− may send a request to the Web server contain-
ing the message:

POST /services/gup.xqs HTTP/1.1
Host: example.net
...
SOAPAction: ...

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope ...>

<soapenv:Body>
<getContact xmlns="http://example.net">

<ownername>jsimeon</ownername>
<contactid>4</contactid>

</getContact>
</soapenv:Body>

</soapenv:Envelope>

The associated XQuery module extracts the XML content and
the meaningful HTTP headers and, using the Galax C interface,
calls themake envelope function in the generated stub:

local:make_envelope (
"getContact",
"http://example.net",
<param>

<p1>jsimeon</p1> <p2>4</p2>
</param>

)

This, in turn, callsgup:getContact as shown before and
produces a SOAP Envelope which is sent to the client in a HTTP
response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
...

<soapenv:Envelope ...>
<soapenv:Body>

<tns:contact>
<name>...</name>
<tel>...</tel>

</tns:contact>
</soapenv:Body>

</soapenv:Envelope>

Again, the generated stub is compact because most of the data
processing is done directly in XML, and XQuery itself is used to
manipulate the SOAP envelopes.

Currently, thexquery2soap utility in Galax is capable of pro-
ducing an XQuery server skeleton for the XQuery apache module
through the use of the apache API, which itself calls the Galax C
API6. The automatic WSDL generator is still under implementa-
tion.

5. THE WSDL-XQUERY BINDING
In all our previous examples, the WSDLportType describes

an operation with the right name and signature for the XQuery
module given above. In such a case, we can use the XQuery module
as animplementationfor the service, as was described in Section 4.
Obviously, not all pairs of XQuery modules and WSDL portTypes
can be bound to one another. In this section, we provide a complete
description of the WSDL-XQuery binding which underlies both the
import service statement and thexquery2soap tool.
6The corresponding C API is only available in Galax version 0.3.1
and later.

608

5.1 Binding Definition
The binding between WSDL and XQuery relies on the close

relationship between WSDLportType s and XQuery modules,
which we explained informally in Section 2. We define the XQuery-
WSDL binding by giving a mapping between the constructs of
WSDL and XQuery statements. The mapping uses standard “nor-
malization rules” notations (see [31, 14] for an introduction to those
notations).

• A WSDL portType is mapped to an XQuery module:

[<portType> Operations</portType>]Bind

== [Operations]Bind

• A WSDL operation is mapped to an XQuery function:

[<operation name="QName">
Input Output

</operation>]Bind

==
define function QName([Input]Input)
[Output]Outputexternal

• A WSDL input message is mapped by mapping each of its
part s to an XQuery variable declaration:

[<message> Parts</message>]Input

== [Parts]Input

[<part name="QName" Type/>]Input

== $QName as [Type]Type

• A WSDL ouput message is mapped only if it has a single
part , which is mapped to an XQuery sequence type:

[<message> Part</message>]Output

== [Parts]Output

[<part name="QName" Type/>]Output

== [Type]Type

• A WSDL part type is mapped depending on the method used
to identify the type, into an XQuery sequence type:

[element="QName"]Type

== element(QName)

[type="AtomicType"]Type

== AtomicType

[type="ListType"]Type

== AtomicType*

WhereAtomicType is the atomic type from which the list
type is derived.

[type="ComplexType"]Type

== element(*,ComplexType)

In essence, the binding maps WSDL operations to XQuery func-
tion signatures. There are three important remarks on that mapping.

• One limitation of the binding is that output messages for op-
erations must have exactly one part. This limitation is im-
posed to accommodate the fact that XQuery function must
have exactly one return value. This is not a strong limitation
in practice as a user may always include the various parts
within an XML elements if necessary. For instance, the fol-
lowing WSDL operation cannot be mapped to XQuery.

<message name="getContactResponse">
<part name="name" type="xs:string"/>
<part name="tel" type="xs:string"/>

</message>

<operation name="getContact">
<input message="tns:getContact"/>
<output message="tns:getContactResponse"/>

</operation>

• The mapping does not bind XQuery global variables as there
is nothing equivalent at the WSDL level. For instance, in
the following XQuery module, the global variable cannot be
made accessible as a service operation.

module "http://myexample.com";
declare variable $const { 1 };

• The mapping is precise for XML Schema atomic types, list
types, and element types. However, it handle complex types
and union types only if enclosed an element which must be
generated by the system. For instance, the following opera-
tion

<types>
<xs:schema

targetNamespace="http://example.net">
<xs:complexType name="Contact">

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="tel" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:schema>
</types>

<message name="getContactResponse">
<part name="result" type="Contact"/>

</message>

<operation name="getContact">
<input message="tns:getContact"/>
<output message="tns:getContactResponse"/>

</operation>

can only be mapped to an XQuery function which uses an element
around the result information, as in:

declare function gup:getContact (
$ownername as xs:string,
$contactid as xs:integer

) as element(result,Contact) ...

This forces the user to pay special attention to those cases when
using the service import and Web services deployment tool. We
will propose some suggestions to avoid those specific problems
in 6.3.

5.2 Semantics Constraints
The proposed binding can be used in several ways:

• To generate automatically an XQuery module out of given
WSDL portType . This is the direction used when import-
ing a service in XQuery (See Section 3).

• To generate automatically a WSDL port type out of a given
XQuery module. This is the direction used when deploying
a Web service from an XQuery module (See Section 4).

• The binding can be used to check that a given module and a
given WSDL port type are consistent with each other. This

609

is used in the case where thexquery2soap tool uses the
optional -wsdl flag, or if one wants to use WSDL as an
interface language for XQuery (See Section 6.1).

In the latter case, it is necessary to check semantic constraints for
the WSDL and XQuery binding to be valid. We propose to use se-
mantic constraints which are similar to those which apply to mod-
ule interfaces in standard functional programming languages [16,
6, 15]. A WSDLportType can be validly bound to an XQuery
module, iff:

• The target namespace of the module corresponds to the target
namespace of the WSDL files concatenated with the name of
the service and the name of the port.

• Each WSDLoperation has exactly one implementation
as an XQuery function in that module.

• For each WSDLoperation , there is the same number of
input part s as the number of parameters in the function it
is bound to. Each part corresponds to a parameter with the
same name and appearing in the same order, and the type of
the part is a subtype of the type for the corresponding func-
tion parameter.

• For each WSDLoperation , there is exactly one output
part . The type for that part must be a super type for the
corresponding output type of the function.

As we will see in Section 6.1, those constraints not only make
sure that the binding is valid, but also that it can be used to support
some form of hiding during module import.

6. BENEFITS AND IMPROVEMENTS

6.1 WSDL as a Module Interface
As we have seen in the previous section, the binding requires that

all WSDL operations have a corresponding function in the XQuery
module it is bound to, but not the other way around. As a re-
sult, there might be some XQuery functions which are not exported
through the service, and are therefore left local to the module itself.
Notably this may be applied to hide part of the implementation of
that module to other modules or applications.

For instance, consider the following alternative implementation
for the user profile module, which uses the additional local function
local:getFullContact .

declare function local:getFullContact((
$ownername as xs:string,
$contactid as xs:integer

) as element(fullcontact) {
let $prof := //profile[@owner = $ownername]
return

$prof//fullcontact[@id = $contactid]
};

declare function gup:getContact (
$ownername as xs:string,
$contactid as xs:integer

) as element(contact) {
let $c :=

local:getFullContact($ownername,$contactid)
return

<contact>
<name>{ concat($c/first,$c/last) }</name>
<tel>{ $c/phone[1] }</tel>

</contact>
};

Now assuming we export that module using thesameWSDL file
as before, then only the registered operationgup:getContact will
be accessible to other modules, leaving the local function hidden.
This approach of hiding can bring numerous benefits for large scale
application development, most notably one can change the imple-
mentation for a module without recompiling the other modules as
long as the interface for that module is left unchanged. The prob-
lems and benefits of module systems has been a topic of interest in
the programming language field for many years [16, 6, 15].

6.2 Static Typing on Web Service Composition
XQuery is a statically typed language [30, 31, 14]. When us-

ing static typing, the XQuery processor may check that operations
are applied on the right type(s) and detect errors at compile time.
Because of the tight-coupling between WSDL and XQuery, static
typing on XQuery programs with service calls come for free. For
instance, let us consider again the small program given in Section 3
which imports the user profile service and the Google search ser-
vice. Let us assume for a moment that the user mistakingly inverted
the parameters when calling thegup service, as in:

import service
namespace gup = "http://example.net"

name "UserProfile";

let $c := gup:getContact(4,"jsimeon")
return google:doGoogleSearch($c/tel,...)

If it supports static typing, the XQuery processor can detect such
errors at compile time, before the service is effectively called. This
feature, although maybe not very useful for such small programs,
is most valuable when Web services application become large or
when some changes to the underlying Web services require some
maintenance to the program.

6.3 Suggestions for WSDL and XQuery
In Section 5, we identified a few specific mismatches between

WSDL and XQuery modules. We finish the technical presentation
with a few suggestions about how to deal with those problems.

Multiple output parts. We suggest to restrict WSDL output mes-
sages to contain only a single part, making those consistent
with the functional approach used in XQuery.

Complex types in WSDL. Sequence types in XQuery do not pro-
vide all the functionalities required to describe parameters
from operations in WSDL. We suggest to extend XQuery se-
quence type to align it with WSDL’s type descriptions. Con-
versely, one might extend the WSDL types to support the
equivalent of minOccurs, maxOccurs.

Global variables. It might be convenient to be able to support
global variables through a service. Currently a user would
have to wrap the content of that variable as a function. We
suggest to extend WSDL with a notion of ‘constant’ value,
which could be retrieved through a service call.

We believe those specific changes could further improve the cou-
pling between the two technologies, without significantly changing
the spirit of any of the corresponding specifications.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented techniques and tools to allow

the use of XQuery as an integral part of the Web services devel-
opment infrastructure. Our work relies on the notion of modules

610

recently added to XQuery. We introduced a notion of binding be-
tween XQuery and WSDL which can be used for both Web services
deployment and composition. The approach has the advantage of
requiring only limited changes to both XQuery and WSDL, and to
facilitate Web services development.

We believe this work is a first step that immediately brings the
benefits of native XML processing to Web developers, but also
opens several new research opportunities. For instance, this pro-
vides an interesting framework for distributed XQuery processing,
or information integration. Also we plan to investigate several new
extensions to XQuery in order to make it even more useful in the
context of Web services development.

Acknowledgments.We want to address our thanks to the GUPster
team at Bell Labs for interesting discussions on Web services, and
to Sihem Amer-Yahia and Mary Fernández for helpful comments
on previous drafts of the paper.

8. REFERENCES
[1] 3rd Generation Partnership Project. 3GPP generic user

profile - architecture. Technical report, Technical
Specification Group Services and System Aspects, 2003.

[2] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and
R. Weber. Active xml: Peer-to-peer data and web services
integration. InProceedings of International Conference on
Very Large Databases (VLDB), pages 1087–1090, Hong
Kong, China, Aug. 2002.

[3] Axis user’s guide.http://ws.apache.org/axis/ .
[4] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An

XML-centric general-purpose language. InProceedings of
the ACM International Conference on Functional
Programming, Uppsala, Sweden, Aug. 2003.

[5] Castor.http://castor.exolab.org/ .
[6] P. Curtis and J. Rauen. A module system for Scheme. In

Proceedings of the ACM conference on LISP and Functional
Programming, pages 13–19, Nice, France, 1990.

[7] M. Fernandez, J. Siḿeon, B. Choi, A. Marian, and G. Sur.
Implementing XQuery 1.0: The Galax experience. In
Proceedings of International Conference on Very Large
Databases (VLDB), pages 1077–1080, Berlin, Germany,
Sept. 2003.

[8] D. Florescu, A. Gr̈unhagen, and D. Kossmann. XL: A
platform for Web services. InConference on Innovative Data
Systems Research (CIDR), Asilomar, CA, Jan. 2003.

[9] D. Florescu, A. Gr̈unhagen, and D. Kossmann. XL: An XML
programming language for Web service specification and
composition. InProceedings of International World Wide
Web Conference, pages 65–76, May 2002.

[10] V. Gapeyev and B. C. Pierce. Regular object types. In
Proceedings of the 17th European Conference on
Object-Oriented Programming (ECOOP’2003), pages
151–175, Darmstadt, Germany, July 2003.

[11] H. Hosoya and B. C. Pierce. XDuce: an XML processing
language. InInternational Workshop on the Web and
Databases (WebDB’2000), Dallas, Texas, May 2000.

[12] P. B. James McGovern, K. Cagle, J. Linn, and V. Nagarajan.
XQuery Kick Start. SAMS, 2003.

[13] Java architecture for XML binding (JAXB).
http://java.sun.com/xml/jaxb/ .

[14] H. Katz, editor.XQuery from the Experts: A Guide to the
W3C XML Query Language. Addison-Wesley, 2003.

[15] X. Leroy. Manifest types, modules, and separate
compilation. InProceedings of ACM Symposium on
Principles of Programming Languages (POPL), pages
109–122, Portland, Oregon, Jan. 1994.

[16] D. MacQueen. An implementation of standard ML modules.
In Proceedings of the ACM Conference on LISP and
Functional Programming, pages 212–223, Snowbird, Utah,
1988.

[17] M. Maloney and A. Malhotra. XML schema part 2:
Datatypes. W3C Recommendation, May 2001.

[18] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. D.
Ngoc. Exchanging intensional xml data. InProceedings of
ACM Conference on Management of Data (SIGMOD), pages
289–300, San Diego, California, June 2003.

[19] Ojxqi - the oracle java xquery api.
http://otn.oracle.com/sample code/
tech/xml/xmldb/jxqi.html .

[20] SOAP version 1.2 part 0: Messaging framework. W3C
Recommendation, June 2003.

[21] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML schema part 1: Structures. W3C
Recommendation, May 2001.

[22] WebL. compaq’s Web language.
http://www.research.compaq.com/SRC/WebL .

[23] WSCI. Web service choreography interface.
http://wwws.sun.com/software/xml/
developers/wsci , 2002.

[24] WSCL. Web services conversation language.
http://www.w3.org/TR/wscl10 , Mar. 2002.

[25] Web services description language (wsdl) 1.1. W3C Note,
Mar. 2001.

[26] Web services description language (WSDL) version 2.0 part
1: Core. W3C Working Draft, Mar. 2003.

[27] WSFL. Web services flow language.
http://www.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf .

[28] XPath 2.0. W3C Working Draft, Nov. 2003.
[29] XQuery API for Java (XQJ).

http://jcp.org/en/jsr/detail?id=225 .
[30] XQuery 1.0: An XML query language. W3C Working Draft,

Nov. 2003.
[31] XQuery 1.0 and XPath 2.0 formal semantics. W3C Working

Draft, Feb. 2004.

611

