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ABSTRACT
One of the key benefits of XML is its ability to represent a
mix of structured and unstructured (text) data. Although cur-
rent XML query languages such as XPath and XQuery can
express rich queries over structured data, they can only ex-
press very rudimentary queries over text data. We thus pro-
pose TeXQuery, which is a powerful full-text search extension
to XQuery. TeXQuery provides a rich set of fully compos-
able full-text search primitives, such as Boolean connectives,
phrase matching, proximity distance, stemming and thesauri.
TeXQuery also enables users to seamlessly query over both
structured and text data by embedding TeXQuery primitives
in XQuery, and vice versa. Finally, TeXQuery supports a flex-
ible scoring construct that can be used to score query results
based on full-text predicates. TeXQuery is the precursor of
the full-text language extensions to XPath 2.0 and XQuery 1.0
currently being developed by the W3C.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscellaneous

General Terms
Languages

Keywords
XQuery, full-text search

1. INTRODUCTION
One of the key benefits of XML is its ability to represent a

mix of structured and unstructured (text) data. One can already
find many real XML data repositories that contain such a mix
of structured and text data. For example, the IEEE INEX data
collection [16] contains IEEE papers in XML form, includ-
ing structured information such as the names of authors, date
of publication, sections, sub-sections, and references, and also
unstructured information such as the text content of the paper.
Other examples of such XML repositories are Shakespeare’s
plays in XML [4], DBLP [10] in XML, SIGMOD Record in
XML [25], and the United States Library of Congress docu-
ments in XML [17]. Furthermore, application domains such
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as Library Science have a growing need to seamlessly query
over both the structured and text parts of XML documents.

While current XML query languages such as XPath [29]
and XQuery [28] can express powerful structured queries over
XML documents, they can only express a very rudimentary
full-text search. For instance, full-text search in XQuery is ex-
pressed using the function: contains($e, keywords)
which returns true iff the XML element bound to the variable
$e contains all the keywords in keywords (see [33] for a
precise definition of contains). While this function is suffi-
cient for simple substring matching, it is woefully inadequate
for more complex searches. For instance, consider the fol-
lowing example in the W3C XPath and XQuery Full-Text Use
Cases Document [30].

Example 1: Consider an XML document that contains books.
Find the titles and contents of books whose content contains
the phrases “usability”, “Web site” and “is” in that order, in
the same paragraph, using stemming if necessary to match the
tokens.

The XQuery contains function is obviously too limited
to express the above search, which includes phrase match-
ing, order specifications, paragraph scope, and stemming. The
contains function also cannot express other full-text opera-
tions used by the Information Retrieval (IR) community, such
as distance predicates, synonyms, and thesauri. Finally, the
contains function cannot score or rank results, such as re-
turning the top 10 results for a given search.

Integrating sophisticated full-text search in XQuery intro-
duces many challenges. First, we need to identify a set of
full-text primitives that are natural to querying XML; these
primitives should not only be powerful, but should also be
composable with each other so that arbitrarily complex full-
text searches can be specified (e.g. using stemming with dis-
tance predicates and Boolean connectives). Second, we need
to leverage the full expressive power of the semi-structured na-
ture of XML by seamlessly integrating regular XQuery with
full-text search so that users can query over both structured
and full-text data; this is non-trivial because structured XML
queries operate on XML nodes, while by their very nature,
full-text queries operate on keyword search tokens and their
positions within XML nodes. Finally, we need to introduce
the notion of ranked results in order to support threshold and
top-K queries.

TeXQuery is a language extension to XQuery designed to
address the above issues. TeXQuery provides a set of power-
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Figure 1: XQuery and TeXQuery Composability

ful full-text search primitives called FTSelections. They
are fully composable, and arbitrarily complex full-text queries
can be created by combining the basic FTSelections. The
key that makes this possible (and one of the main contribu-
tions of this paper) is a formal underlying data model called
FullMatch.

The FullMatch data model contains sufficient information
about search tokens and their positions in an XML document
such that all FTSelections are closed under this data model.
In other words, each FTSelection can be formally defined
as taking in zero or more FullMatches as input and produces
a FullMatch as output. Thus FTSelections can be arbi-
trarily composed, as shown in the right part of Figure 1. Al-
though there have been many efforts to express full-text search
on XML documents [11, 20, 1, 8, 26, 6, 18, 5, 12, 15, 26]),
we are not aware of any previous data model that is closed for
the same wide variety of full-text primitives.

TeXQuery can also combine full-text queries with XML
queries on structure. This is achieved by two new XQuery ex-
pressions: ftcontains and ftscore (we call these the TeXQuery
expressions). TeXQuery expressions specify a well-defined
mapping between the FullMatch data model and the XQuery
data model (sequence of XML items) as shown in Figure 1.
Consequently, TeXQuery queries can be embedded in XQuery
and vice-versa. The ftscore expression also enables users to
score full-text search results.

TeXQuery is the precursor of the full-text language exten-
sions to XPath 2.0 and XQuery 1.0 currently being developed
by the W3C. TeXQuery satisfies all of the FTTF Requirements
specified in [31], and is powerful enough to express every use
case in the FTTF Use Cases document [30] (see [2] for the
complete list of solutions).

The rest of the paper is organized as follows. In Section 2,
we outline some design principles for XML full-text search
languages. In Section 3, we describe the TeXQuery language,
and in Section 4, we formally define the semantics of TeX-
Query. In Section 5, we discuss related work, and in Section 6,
we present some concluding thoughts.

2. DESIGN GOALS AND ALTERNATIVE
APPROACHES

We now motivate and describe a set of design goals that we
believe any full-text search extension to XQuery (or any XML
query language in general) should satisfy. We then show why
some simple extensions to the XQuery contains function
fail to satisfy the design principles due to some fundamental
limitations of the function-based approach. This motivates the
need for a more powerful approach such as TeXQuery, which
we describe in the next section.

We use the following terminology for the rest of this paper.
A linguistic token is a sequence of characters that corresponds
to a token in a given human language. In Western languages
and many other languages, a linguistic token corresponds to
a word. Leaf nodes in an XML document tree may contain
multiple linguistic tokens. A search token is a sequence of
characters defining a pattern for matching linguistic tokens.
We assume that XML documents are tokenized by a language-
dependent tokenizer to identify linguistic tokens.

2.1 Design Goals
We now describe our design goals based on the following

categories.

2.1.1 Searching over Semi-Structured Data
DG1: Users should be able to specify the search context, or

the context over which the full-text search is to be performed:
In traditional full-text search [23], the search context is usu-
ally the entire document collection. However, in the case of
structured or semi-structured XML documents, it is often de-
sirable to narrow the search to a sub-set of the documents, or
to fragments of documents. For instance, in the example given
in the introduction, the search context is limited to books (and
excludes papers, articles, etc.), and even within books, it is
limited to the book content (instead of the whole book).

DG2: Users should be able to specify the return context, or
the part of the document collection that is to be returned. In
traditional full-text search [23], the return context is usually
the entire document that satisfies the full-text search condi-
tion. However, in the case of structured or semi-structured
XML documents, it is often desirable to return specific frag-
ments of documents. For instance, in the example given in the
introduction, the return context is limited to the title and con-
tent of books (and not other fragments of the book, such as
author names, etc.).

2.1.2 Expressive power and Extensibility
DG3: Users should be able to express complex full-text

searches. Users should be able to use sophisticated full-text
primitives such as Boolean connectives, distance predicates,
phrase matching, stemming, and thesauri. Further, they should
be able to compose these primitives to express complex searches,
such as the example in the introduction.

DG4: The language should be extensible with respect to new
full-text primitives. Unlike the relational model, there is no
general notion of “completeness” in full-text search languages.
The language should thus be extensible so that new primitives
(e.g. synonyms) can be added based on new user requirements.

2.1.3 Scores and Ranking
DG5: Users should be able to obtain relevance scores for

the results of full-text searches. When searching over text, it is
often desirable to rank the results based on their relevance to
the search [23]. Many measures such as TF-IDF and keyword
proximity can be used to obtain the relevance scores.

DG6: Users should be able to control how scores are com-
puted. When issuing full-text searches, users may wish to
specify that certain search tokens are more important than other
search tokens [23]. For example, when searching for “XML
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books”, the search token XML may be more important than
book, and users should be able to specify this in some way
(e.g., using weights).

DG7: Users should be able to obtain the top-K results based
on their relevance score. Since users are often interested only
in the top few results, they should be able to specify this ex-
plicitly.

DG8: Users should be able to specify a scoring condition,
which is possibly different from the full-text search condition.
For example, a user may need to find all books on “software
developers” and score them based on their relevance to “us-
ability testing”.

2.1.4 Integration with XQuery
DG9: Users should be able to embed full-text searches in

XQuery expressions. This will enable users to query seam-
lessly over both structured data (using XQuery) and full-text
data (using full-text search). This requires that full-text search
expressions be fully composable with XQuery expressions.

DG10: Users should be able to embed XQuery expressions
in full-text searches. Users should be able to use XQuery ex-
pressions to specify the search tokens for full-text search. For
example, a user may wish to search for all articles that men-
tion the title of one of Richard Dawkins’ books. Here, the
search tokens are the titles of Richard Dawkins’ books, which
are themselves the result of a XQuery query.

DG11: XQuery’s query capabilities should be leveraged wher-
ever possible. XQuery provides a powerful way to select, and
manipulate XML documents, and this should be leveraged to
avoid duplication of functionality. Some obvious ways where
XQuery query capabilities can be leveraged are in the specifi-
cation of the search and return contexts (DG1 and DG2).

DG12: There should be no extensions to the XQuery data
model. Support for full-text search should have no impact on
the XQuery “sequence of items” data model. The main reason
is that XQuery expressions are fully compositional, and each
expression takes zero or more sequences of items as input, and
produces a sequence of items as output. Changing this data
model (such as adding scores to items, or adding positions of
search tokens) would require changing the definition of ev-
ery XQuery expression, including those that are not full-text
search expressions.

2.1.5 Language Syntax and Efficiency
DG13: It should be possible to statically verify that a query

is syntactically correct. This is a simple requirement that states
that we should be able to detect syntax errors statically (at
compile time). For instance, in full-text search, we should
be able to statically determine whether the Boolean operator
’and’ has two operands. The main advantage, of course, is to
build robust applications.

DG14: The language syntax should allow for static type check-
ing and inference. Static type checking and inference are es-
pecially important when applications (not humans) interpret
query results. Further, static type checking is already achieved
by XQuery and it should be preserved for full-text search.

DG15: The language should allow for an efficient implemen-

tion. While functionality is important, language design should
not preclude an efficient implementation.

2.2 Limitations of Function Approaches
We now consider two extensions to the XQuery language,

which attempt to extend the basic contains function with
more expressive full-text search capabilities. Our main goal
is to illustrate that these function-based approaches have some
fundamental limitations that preclude them from achieving all
of the above design goals; this in turn motivates the need for
a more powerful language such as TeXQuery, which we de-
scribe in the next section.

We consider two different function-based approaches. In
the first approach, we create a new contains-like function
for each full-text primitive (such as Boolean connectives, dis-
tance predicates, etc.). In the second approach, we extend the
contains function so that this single function is used to ex-
press all full-text primitives, similar to SQL/MM [18]. Both of
these approaches can be viewed as end-points in a spectrum,
and there are certainly hybrid approaches that fall in between.
However, the limitations of these two end-points also carry
over to the hybrid approaches.

2.2.1 One Function Per Full-Text Primitive
The contains function checks for the occurrence of search

tokens in an XML node. One can thus create other func-
tions for other full-text operations such as Boolean connec-
tives and distance predicates, and compose these functions to
create complex full-text queries. As an example, consider the
following query.

Example 2: Find all XML nodes (bound to variable $n) that
contain the search token “usability” and the search token “test-
ing”. Further, the search tokens should be within a window of
size 10 (i.e., a window of at most 10 tokens should contain all
the search tokens).

Using a function for each Boolean connective and distance
predicate, the above query can be written as:

distance(contains($n,’usability’)
and contains($n,’testing’), 10)

The function contains($n,’usability’) returns true
iff $n contains the search token ’usability’, and similarly for
contains($n,’testing’). The XQuery ’and’ function
is used for the Boolean connectives. Finally, a distance func-
tion operates on this result to return true only if the search
tokens occur within a distance of 10.

The main problem with using this approach in the context
of XQuery is that it requires an extension of the XQuery data
model (thereby violating DG12). To see why this is the case,
consider the return type of the first parameter of the distance
function. The return type is Boolean because contains re-
turns a Boolean value, and the Boolean connectives also return
a Boolean value. But given just a Boolean value as input, how
can the distance function determine if the search tokens
are within a distance of 10 from each other? This will not be
possible unless some extra information about search token po-
sitions is somehow “carried around” with the Boolean value -
this is essentially a fundamental extension to the XQuery data
model, violating DG12. The above problem can be avoided by
disallowing distance predicates, but this would then limit the
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expressive power of the language, violating DG3. It should
be noted that the above problem is not pertinent exclusively
to XQuery. In fact, most structured query languages for XML
work at the coarse granularity of nodes.

2.2.2 Single Function for Full-Text Search
The main problem with the previous approach was that it

isolated the full-text primitive into separate functions. By do-
ing so, it had to extend the XQuery data model with position-
related information so that distance-based searches can be com-
posed. This problem can be solved by embedding the entire
full-text search into a single contains function, such as the
approach taken in SQL/MM [18]. By doing so, all the process-
ing related to full-text search (including distance-based pred-
icates) is expressed entirely within the contains function,
and the XQuery data model would not have to be extended.
For instance, Example 2 above can be written as follows in
SQL/MM-like syntax:

contains($n, ’usability and testing
distance 10’)

The main problem with this approach is that the full-text
search is specified in an uninterpreted string that is opaque to
the rest of the XQuery language. This causes a problem when
we wish to embed XQuery within full-text searches, as in the
following example.

Example 3: Find all articles that mention the title of one of
Richard Dawkins’ books.

Here, the search tokens (the titles of Richard Dawkins’ books)
are themselves the result of an XQuery expression, and there is
no natural way to embed these results into the full-text search
string (thereby violating DG10). One could think of generat-
ing the full-text search string “on the fly”, using string con-
catenation on the results of XQuery expressions as follows.

contains($n, concat(
//book[author = ’Dawkins’]/title,’ and’))

However, this implies that the full-text search string will not
be created until runtime, which means that even simple syntax
errors in the string cannot be checked until runtime (such as an
’and’ operator with only one operand in the above example).
This violates DG13.

2.2.3 Discussion
As illustrated in the previous sections, the function-based

language syntax has some fundamental limitations in meeting
the design goals. This is unusual because, in language design,
the precise syntax often does not significantly impact the ex-
pressive power or semantics. However, in our case, the syntax
makes a significant difference because we are proposing an
extension to an existing language (XQuery), and the syntax
should fit within the framework of that language.

Of course, the syntax is just one aspect of the language. The
other important aspect is its formal semantics. Even using a
function-based syntax, the SQL/MM extensions do not pro-
vide the desired level of composability and semantics as out-
lined in our design goals (a more detailed comparison with
SQL/MM can be found in Section 5). In the next two sec-
tions, we define the syntax and semantics of TeXQuery, which
satisfies all of the above design goals.

3. TEXQUERY LANGUAGE
We now describe and illustrate the TeXQuery full-text search

extensions to XQuery. TeXQuery satisfies all the design goals
presented in Section 2.

3.1 High-Level Overview
At its core, TeXQuery introduces two new XQuery expres-

sions, which we call TeXQuery expressions. These expres-
sions are just like other XQuery expressions - they take zero or
more sequences of items as input, and produce a sequence of
items under which XQuery expressions are closed (left part of
Figure 1 in the introduction). Consequently, TeXQuery seam-
lessly integrates with XQuery.

TeXQuery expressions support powerful full-text search by
using a set of fully composable full-text primitives called
FTSelections. FTSelections are closed under a data
model that we call FullMatch (right part of Figure 1). The
above design brings significant flexibility to TeXQuery. It can
be easily restricted by removing FTSelections or extended
by adding new FTSelections using extended
FullMatches. These can be achieved without modifications
to the semantics of the other FTSelections.

The FullMatch model is different from the XQuery model
because full-text search, by its very nature, has to deal with
linguistic tokens and their positions within XML nodes. We
describe FullMatch in detail in Section 4.

It is important to note that the FullMatch data model is not
an extension to the XQuery data model (DG12). Rather, Full-
Match is internal to TeXQuery expressions. TeXQuery ex-
pressions still return a sequence of items, and are thus fully
composable with other XQuery expressions (DG9 and DG10).
Having a different data model within an XQuery expression is
not specific to TeXQuery. In fact, one of the core XQuery ex-
pressions - FLWOR - has an internal model of tuples, which is
not present in the XQuery data model [32].

3.2 TeXQuery Expressions
We now introduce the two TeXQuery expressions,

FTContainsExpr and FTScoreExpr.

3.2.1 FTContainsExpr
The FTContainsExpr has the following syntax.

Expr ‘‘ftcontains’’ FTSelection

Expr is any XQuery expression that specifies the search
context, which is the sequence of XML nodes over which the
full-text search is to be performed. FTSelection specifies
the full-text search condition. The FTContainsExpr re-
turns a Boolean value that is true iff some node in the search
context satisfies the full-text search condition. An example of
an FTContainsExpr is given below.

//book ftcontains ’usability’ && ’testing’

The above expression returns true iff some book in the search
context //book (which is an XQuery expression) contains
the search tokens ’usability’ and ’testing’. Here ’usability’
&& ’testing’ is a simple example of an FTSelection.
More complex FTSelections can be specified, but we de-
fer this discussion to a later section.
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The simple example above illustrates several key points.
First, it shows how FTContainsExpr can limit the search
context, thereby satisfying DG1. Second, since
FTContainsExpr always returns a Boolean value, it can be
easily type-checked (DG14). Third, since FTContainsExpr
returns a result in the XQuery data model (a Boolean value),
it can be arbitrarily nested within other XQuery expressions
thereby satisfying DG9. A concrete instantiation of this is
shown in the example below.

//book[.//section ftcontains ’usability’
&& ’testing’]/title

The above query returns the titles of those books in which
some section contains the search tokens ’usability’ and ’test-
ing’. Note how the FTContainsExpr (.//section
ftcontains ’usability’ && ’testing’) is nested
within the XQuery expression //book[ ]/title.

There are two other points to note about the above example.
First, it shows how TeXQuery can specify a return context,
or the part of the selected XML items that are to be returned
(DG2). In the example, the return context is only the titles
of the selected books, not the contents of these books. Sec-
ond, it shows how TeXQuery leverages existing XQuery con-
structs such as path expressions to specify the search context
(.//section) and the return context (/title), thereby
satisfying DG11.

3.2.2 FTScoreExpr
FTContainsExpr returns true iff some node in the search

context satisfies the FTSelection. However, it does not
specify how relevant the search context nodes are to the
FTSelection. FTScoreExpr addresses this issue by re-
turning a score or measure of relevance for each node in the
search context (thereby satisfying DG5). FTScoreExpr has
the following syntax.

Expr ‘‘ftscore’’ FTSelectionWithWeights

Expr is an XQuery expression that specifies the search con-
text. FTSelectionWithWeights specifices the full-text
search condition and is similar to FTSelection, with the
added notion of weights for computing scores. FTScoreExpr
returns a sequence of scores corresponding to each XML node
in the search context sequence.
FTScoreExpr provides the framework for supporting dif-

ferent scoring mechanisms, but does not dictate the exact scor-
ing mechanism to be used. This decision was made because it
is unlikely that different implementations will agree to use the
same scoring techniques. In fact, scoring for XML is an active
area of research (e.g., see [9, 12, 14, 15, 19, 26]) and many
vendors view their scoring technique as one of their prime
differentiators. FTScoreExpr thus only specifies two high-
level properties that every scoring mechanism should satisfy,
as required in [31].

� The score of a node in the search context should be 0 iff
the node does not satisfy the full-text condition speci-
fied in FTSelectionWithWeights. Otherwise, its
score should be in the interval (0,1].

� For the nodes in the search context, a higher value of
the score should imply a higher degree of relevance to
FTSelectionWithWeights.

An example of FTScoreExpr is given below.

//book ftscore ’usability’ && ’testing’

The above expression returns a sequence of scores for each
book in the search context. The scores are computed using the
FTSelectionWithWeights ’usability’ &&
’testing’. The following example shows how the user
can specify weights in the FTSelectionWithWeights to
control how scores are computed (DG6).

//book ftscore ’usability’ weight 0.8 &&
’testing’ weight 0.2

The above expression returns a sequence of scores for each
book in the search context, but the score is computed using a
weight of 0.8 for the search token ’usability’ and a weight of
0.2 for the search token ’testing’. The exact means by which
the scoring mechanism uses these weights is implementation-
defined, and FTScoreExpr just provides the necessary lan-
guage framework for specifying the weights.

Since the result of FTScoreExpr is a sequence of floating-
point items, it can be easily type-checked (DG14). Further,
since the result type is an instance of the XQuery data model,
it can be arbitrarily embedded in other XQuery expressions.
In particular, FTScoreExpr can be used in conjunction with
FLWOR to compute top-K search results (DG7 and DG11).
The following example illustrates how to compute the top-10
results for the previous query.

for $result at $rank in
for $node in //book
let $score := $node ftscore ’usability’

weight 0.8 && ’testing’ weight 0.2
order by $score descending
return <result score=

�
$score � >�

$node � </result>
where $rank <= 10
return

�
$result �

Finally, FTContainsExpr and FTScoreExpr can be
combined to search based on one condition and score based
on another condition (DG8). The following example illus-
trates how books can be filtered based on ’usability’
&& ’analysis’ and scored based on ’usability’ &&
’testing’.

for $book in
//book[. ftcontains ’usability’

&& ’analysis’]
let $score := $book ftscore ’usability’

weight 0.8 && ’testing’ weight 0.2
return <result score=

�
$score � >�

$book � </result>

3.3 FTSelections
As mentioned above, the full-text search conditions in

FTContainsExpr and FTScoreExpr are expressed in
terms of an FTSelection. An FTSelection can either
be a single search token (such as ’usability’), or can express
more complex full-text search including Boolean connectives
(and, or, not), scope of search tokens (whether they occur in
the same sentence, paragraph, or node), window predicates,
and number of occurrences of search tokens. In addition,
FTSelectionWithWeights can also specify weights used
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for scoring. We now illustrate some important FTSelections
through examples. We specify their formal semantics in the
next section. The full grammar production rules for
FTSelections can be found in [2].

Consider the following FTContainsExpr.

//book ftcontains ’usability’ &&
’testing’ same sentence window 5

The above expression returns true iff some book in the search
context contains the search tokens ’usability’ and ’testing’ in
the same sentence within a window of 5. Note how the simple
FTSelections (’usability’) and (’testing’) are com-
posed using a Boolean connective (&&) to get a more complex
FTSelection (’usability’ && ’testing’). This
FTSelection is then composed with a scope selection (same
sentence) and a window selection (window 5) to create
the final FTSelection used in the above expression. This
example thus illustrates how relatively complex FTSelections
can be constructed by composing basic full-text primitives.

The following example illustrates another important feature
of FTSelections.

//article ftcontains //book[./author =
’Richard Dawkins’]/title any

The above expression returns true if some article in the search
context contains a reference to a title of one of Richard Dawkins’
books. Note how an XQuery expression (//book[./author
= ’Richard Dawkins’]/title) is used to specify the
search tokens. This shows how an XQuery expression can be
embedded inside full-text search (DG10).

3.4 FTContextModifiers
FTContextModifiers can be applied on any

FTSelection to modify how the full-text search is performed.
FTContextModifiers specify aspects such as stemming,
stop-words, regular expressions, case (upper case or lower case),
diacritics, special characters, synonyms, languages, and ignor-
ing specified XML subtrees [3]. Again, we illustrate some
of the key context modifiers through examples, and refer the
reader to [2] for the full details.

//book ftcontains ’usability’ &&
’testing’ with stems

The above expression returns true iff some book in the search
context contains the search tokens ’usability’ and ’testing’,
using stemming (an FTContextModifier) to match the
search tokens. Therefore, a book that contains ’user’ and ’tests’
will also satisfy the full-text search condition because both
’usability’ and ’user’ have the same stem (’use’), while ’test-
ing’ and ’tests’ have the same stem (’test’). Note that the
FTContextModifier (with stems) applies to the en-
tire FTSelection (’usability’ && ’testing’) it
is applied on.

A more complex example is given below.

//book ftcontains ’usability’ &&
’testing’ with stems window 5
without stopwords

The above expression returns true iff some book in the search
context contains the search tokens ’usabilility’ and ’testing’,

using stemming to match the search tokens. Further, the search
tokens should appear within a window of 5, ignoring stop-
words FTContextModifierwhen computing this window.
Note how FTSelections and FTContextModifiers can
be seamlessly composed.

4. TEXQUERY SEMANTICS
We now specify the formal semantics of the TeXQuery lan-

guage. Our main contribution here is the FullMatch data model.
FullMatch contains enough information to guarantee that full-
text search primitives (FTSelections) can be closed under
this model. In other words, the semantics of each
FTSelection can be specified as a transformation of zero
or more input FullMatches to an output FullMatch. There-
fore, FullMatch serves as a powerful formalism for specifying
and reasoning about full-text search, similarly to the relational
model that is the foundation for relational querying. Although
there have been many efforts to express full-text search on
XML documents [11, 20, 1, 8, 26, 6, 18, 5, 12, 15, 26]),
we are not aware of any previous data model that is closed for
the same wide variety of full-text primitives.

FullMatch has the following benefits. First, it ensures that
FTSelections are fully composable (DG3). Second, it makes
TeXQuery extensible with respect to adding new
FTSelections, because each new primitive only needs to
specify its semantics in terms of FullMatch, and does not im-
pact the semantics of existing primitives (DG4). Third, Full-
Match presents a clean and elegant way to specify the se-
mantics of FTSelections. Finally, although beyond the
scope of this paper, we expect that FullMatch will provide a
principled framework for the optimization of full-text search
(DG15).

FullMatch has a hierarchical structure. Thus, a FullMatch
can be represented in XML. Consequently, the semantics of
each FTSelection can be specified as a transformation from
zero or more input XML FullMatches into an output XML
FullMatch. This XML-to-XML transformation can be speci-
fied in XQuery. Thus, the semantics of FTSelections can
be specified in XQuery itself! Specifying the semantics of
FTSelections in XQuery may enable the joint optimiza-
tion of XQuery queries and full-text search.

4.1 The FullMatch Data Model
XQuery is based on the “sequence of items” data model [32],

where an item is an XML node (or an atomic value). Since this
model is defined at the granularity of XML nodes, it is inade-
quate for the full composability of FTSelections (see Sec-
tion 2.2). We have thus developed the FullMatch data model
based on the positions of linguistic tokens within XML nodes.
We first introduce positions, before describing FullMatch.

4.1.1 Positions
A position represents the occurrence of a linguistic token in

an XML document. It contains the following:� The linguistic token� A unique identifier that captures the relative position of
the linguistic token in document order� The XML node directly containing the linguistic token� The relative position of the sentence containing the lin-
guistic token� The relative position of the paragraph containing the lin-
guistic token
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� The context of the linguistic token (e.g., tag name, at-
tribute name, attribute value, element content)

A position can thus be modeled as an XML element conform-
ing to the following DTD.

<!ELEMENT Position (Token, Identifier,
Node, Sentence, Para, Context)>

The XML document in Figure 2 has been annotated to il-
lustrate the position of each linguistic token (the positions are
within parenthesis). For readability, only the unique identifier
part of positions is shown.

4.1.2 FullMatch Description
A FullMatch is essentially a propositional logic disjunctive

normal form (DNF) predicate specified using XML positions.
The predicate captures the precise condition that an XML node
needs to satisfy in order to be a result for a full-text search. We
now illustrate FullMatch using examples.

Consider the FTSelection
(’usability’ with stems) evaluated over the XML doc-
ument in Figure 2. The FullMatch corresponding to this
FTSelection is shown in Figure 3. Here, the FullMatch
corresponds to the entire DNF formula, each SimpleMatch cor-
responds to one of the disjuncts in the DNF formula, and each
StringInclude corresponds to an atom in the DNF formula.

Intuitively, each SimpleMatch in Figure 3 represents one
possible “solution” to the FTSelection. The “solution”
described by the first SimpleMatch are those nodes that con-
tain (represented as StringInclude) the linguistic token ’usabil-
ity’ in position 11. The “solution” represented by the second
SimpleMatch are those nodes that contain the linguistic token
’users’ in position 29. Note that ’users’ has the same stemmed
form as ’usability’ (namely ’use’) and is hence included in a
SimpleMatch. Figure 4 and Figure 5 show the FullMatches
corresponding to the FTSelections (’software’) and
(’Rose’), respectively.

Note that a FullMatch does not directly list the nodes that
satisfy an FTSelection. Rather, it specifies a position-
based predicate that XML nodes need to satisfy in order to sat-
isfy an FTSelection. By specifying a FullMatch in terms
of positions, rather than XML nodes, there is sufficient infor-
mation in a FullMatch to achieve full composability among
FTSelections. At the same time, the interpretation of a
FullMatch as a predicate on XML nodes enables the mapping
to the XQuery data model. In Figure 6, if an XML node in the
search context satisfies any of the SimpleMatches, it qualifies
as an answer.

Let us now consider a more complex example. Consider the
FTSelection (’usability’ with stems &&
’software’). The corresponding FullMatch is shown in
Figure 6. There are four possible “solutions” to this Full-
Match, and they are represented by the four SimpleMatches.
The first SimpleMatch matches ’usability’ at position 11 and
’software’ at position 13. The second SimpleMatch matches
’usability’ at position 11 and ’software’ at position 18, etc.

As a final example, consider the FTSelection
(’usability’ with stems && ’software’ &&
!’Rose’). Here “!” is the Boolean ’not’ operator used to
specify the absence of a search token (in this case ’Rose’).
The corresponding FullMatch is shown in Figure 7. As in

the previous example, there are four possible “solutions” (Sim-
pleMatches). However, besides StringIncludes, each
SimpleMatch also has a StringExclude corresponding to the
negated search token. A StringExclude specifies a position
that should not occur in an XML node for it to be a result; this
corresponds to a negated atom in the DNF formula.

4.1.3 Representing FullMatch in XML
Since FullMatch has a hierarchical structure, it can be repre-

sented as XML. As mentioned earlier, this allows us to specify
the semantics of FTSelections using XQuery itself. The
DTD of the XML representation of a FullMatch is given be-
low.

<!ELEMENT FullMatch (SimpleMatch)*>
<!ELEMENT SimpleMatch (StringInclude|

StringExclude)*>
<!ELEMENT StringInclude Position>
<!ELEMENT StringExclude Position>

4.2 Semantics of TeXQuery Expressions
We now specify the formal semantics of FTContainsExpr

and FTScoreExpr. In specifying the semantics, we make
use of the following two implementation-defined functions.

function fts:containsPos($node as node,
$position as fts:Position)

as xs:Boolean
function fts:score($node as node,

$ftselection as
fts:FTSelectionWithWeights)

as xs:double

The function fts:containsPos returns true iff the node
$node contains the position $position. The function
fts:score returns a floating point score in the interval (0,1]
for the node $node with respect to the
FTSelectionWithWeights ($ftselection). These
implementation-defined functions are designed to provide flex-
ibility to a TeXQuery implementation, while still ensuring pre-
cise semantics.

4.2.1 Semantics of FTContainsExpr
As described in Section 3.2.1, a FTContainsExpr spec-

ifies a search context and an FTSelection, and returns true
iff some node in the search context satisfies the FTSelection.
Since the search context is an XQuery expression, it returns a
sequence of XML nodes. The FTSelection returns a Full-
Match. We now specify the semantics of FTContainsExpr,
which provides the “glue” between the sequence of items and
the FullMatch to produce a Boolean result. Since the Full-
Match can be represented as XML, we use an XQuery function
to specify this transformation.

function FTContainsExpr(
$searchContext as node*,
$fullMatch as fts:FullMatch)

as xs:Boolean
�

some $node in $searchContext
satisfies some $simpleMatch in

$fullMatch/simpleMatch
satisfies every
$stringInclude in
$simpleMatch/stringInclude

satisfies fts:containsPos(

589



<book(1) id(2)=‘‘1000(3)’’>
<author (4)>Elina(5) Rose(6)</author(7)>
<content(8)>

<p(9)> The(10) usability(11) of(12) software(13) measures(14) how(15)
well(16) the(17) software(18) provides(19) support(20) for(21)
quickly(22) achieving(23) specified(24) goals(25). </p(26)>

<p(27)>The(28) users(29) must(30) not(31) only(32) be(33) well-served(34),
but(35) must(36) feel(37) well-served(38).</p(39)>

</content(40)>
</book(41)> Figure 2: Positions Example

Pos:29

SimpleMatch

StringInclude
Token: users

StringInclude
Token: usability

SimpleMatch

FullMatch

Pos:11

Figure 3: FullMatch for ’usability’
with stems

SimpleMatch SimpleMatch

FullMatch

StringInclude
Token: software

StringInclude
Token: software

Pos:13 Pos:18

Figure 4: FullMatch for
’software’

StringInclude

Pos:6

SimpleMatch

FullMatch

Token: Rose

Figure 5: FullMatch for
’Rose’

$node,
$stringInclude/position)

and
every $stringExclude in

$simpleMatch/stringExclude
satisfies not fts:containsPos(

$node,
$stringExclude/position)

�

The above function returns true iff some node in the search
context satisfies at least one of the SimpleMatches. A node is
said to satisfy a SimpleMatch iff it satisfies all of the
StringIncludes, and satisfies none of the StringExcludes.

In the example in Figure 2, the FTContainsExpr
(//book ftcontains ’usability’ with stems
&& ’software’) will return true because the book node
satisfies at least one of the SimpleMatches in Figure 6 (in fact,
it satisfies all of the SimpleMatches in this particular example).
However, the FTContainsExpr (//book ftcontains
’usability’ with stems && ’software’ &&
!’Rose’) will return false because the book node does not
satisfy any of the SimpleMatches in Figure 7 (due to the pres-
ence of the StringExcludes).

4.2.2 Semantics of FTScoreExpr
As described in Section 3.2.2, an FTScoreExpr returns a

score for every node in the search context, which is computed
based on an FTSelectionWithWeights. Its semantics is
specified below.

function FTScoreExpr(
$searchContext as node*,
$fullMatch as fts:FullMatch,
$ftselection as

fts:FTSelectionWithWeights)
as xs:float

�
for $node in $searchContext
return if FTContainsExpr($node,

$fullMatch)

then fts:score($node,
$ftselection)

else 0
�

The function returns a score of 0 for a node in the search
context if the node does not satisfy the
FTSelectionWithWeights. Else it returns a score in the
interval (0,1] using a call to the implementation-defined func-
tion fts:score.

4.3 Semantics of FTSelections
In specifying the semantics of FTSelections, we use the

following implementation-defined functions.

function fts:getPositions(
$searchContext as node*,
$searchToken as xs:string)

as fts:Position*
function fts:posDistance(

$pos1 as Position,
$pos2 as Position,
$ignorepos as Position*)

as xs:integer

The function fts:getPositions returns the positions
in which a search token appears in the search context; this is
usually implemented using inverted lists [23]. The function
fts:posDistance returns the distance between two posi-
tions; this distance is the number of other search tokens that
occur between the two positions plus one. In computing this
distance, some intervening token positions are ignored if they
appear in $ignorepos.

We now specify the semantics of some key FTSelections.
The details of the other FTSelections can be found in [2].
It is important to note that these definitions in terms of Full-
Match DNF formulae is primarily for expressing the precise
semantics of FTSelections. An implementation can be
(and probably should be) more efficient so long as it preserves
this semantics.
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Figure 6: FullMatch for ’usability’ with stems && ’software’
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Figure 7: FullMatch for ’usability’ with stems && ’software’ && !’Rose’

4.3.1 Semantics of FTStringSelection
FTStringSelection is the basic FTSelection that

specifies search tokens. Its syntax is:

FTStringSelection ::= Expr

Expr is an XQuery expression that returns a sequence of
string items. These items are used as the search tokens in
the FTStringSelection. For ease of exposition, we limit
ourselves to the case where Expr is a string literal that corre-
sponds to a single search token (other cases are discussed in
[2]). The semantics of how FTStringSelection trans-
forms a search token into a FullMatch is specified by the fol-
lowing XQuery function.

function fts:FTStringSelection(
$searchContext as node*,
$searchToken as xs:string,
$contextModifiers as

fts:ContextModifier*)
as fts:FullMatch {

<fullMatch>
{for $newSearchToken in

fts:expandSearchToken(
$searchToken,
$contextModifiers),

$position in

fts:getPositions(
$searchContext,
$newSearchToken)

return <simpleMatch>
<stringInclude>

{$position}
</stringInclude>

</simpleMatch>}
</fullMatch>

}

First, the fts:expandSearchToken function (defined
precisely in [2]) takes in the given search token and the rele-
vant context modifiers, and produces an expanded set of search
token based on the context modifiers. For example, consider
the FTSelection
’usability’ with stems. The context modifier (with
stems) applies to the FTStringSelection
(’usability’). Therefore, the search token ’usability’
is expanded to include all search tokens that have the same
stem as ’usability’ (including ’usability’,’users’,
’useful’, etc.).

Given the new (expanded) set of search tokens, the posi-
tion of each of these search tokens in the search context is de-
termined using the getPositions implementation-defined
function. Finally, a SimpleMatch is created for each such po-
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sition, and these are nested under the result FullMatch.
As an illustration, the FTSelection (’usability’

with stems) produces the FullMatch shown in Figure 3.
The FTStringSelections (’software’) and (’Rose’)
produce the FullMatches in Figure 4 and Figure 5, respec-
tively.

Besides the stemming context modifier (discussed above),
the fts:expandSearchToken function is also defined for
other modifiers such as regular expressions, case, diacritics,
special characters, and thesauri (see [2]). It is important to
note that the notion of expanding search tokens is only used
for specifying the semantics of an FTStringSelection.
An actual implementation may not actually expand search to-
kens, so long as it produces the same results as the formal
semantics. For example, stemming may be implemented by
building inverted lists on stemmed forms of search tokens.

4.3.2 Semantics of FTNegation
FTNegation is an FTSelection that is used to specify

Boolean negation. It can be applied on any FTSelection
and has the following syntax.

FTNegation ::= ‘‘!’’ FTSelection

The semantics of FTNegation can be specified as a trans-
formation of the FullMatch associated with the input
FTSelection into the output FullMatch. This transforma-
tion is performed by negating the DNF formula of the input
FullMatch, and producing the resulting output FullMatch. This
transformation can be expressed naturally in XQuery, but since
this specification is straightforward but tedious and not par-
ticularly illustrative in the current context, it is omitted here
(see [2] for details). Instead, we illustrate the main idea using
an example.

Consider the FTNegation!’Rose’. The FullMatch cor-
responding to the FTStringSelection’Rose’ (Figure 5)
is negated to produce the resulting FullMatch in Figure 8.
Note how StringIncludes become StringExcludes (and vice versa);
this corresponds to the negation of atoms in the DNF formula
corresponding to a FullMatch.

4.3.3 Semantics of FTAndConnective
The FTAndConnective combines two FTSelections

with the semantics of a Boolean ’and’. It has the following
syntax.

FTAndConnective ::=
FTSelection ‘‘&&’’ FTSelection

The following function specifies the semantics of
FTAndConnective in terms of how it transforms the two
input FullMatches into the output FullMatch.

function fts:FTAndConnective(
$fm1 as fts:FullMatch,
$fm2 as fts:FullMatch)

as fts:FullMatch {
<fullMatch>

{for
$simpleMatch1 in $fm1/simpleMatch,
$simpleMatch2 in $fm2/simpleMatch

return <simpleMatch>
{$simpleMatch1/*
$simpleMatch2/* }

<simpleMatch>}
</fullMatch>
}

Each SimpleMatch in the resulting FullMatch is a combi-
nation of one SimpleMatch from the first input FullMatch and
one SimpleMatch from the second input FullMatch. The intu-
ition is that each input FullMatch is satisfied iff at least one of
its SimpleMatches is satisfied. Therefore, an ’and’ of the input
FullMatches is satisfied iff at least one of the SimpleMatches
from the first input and one of the SimpleMatches from the
second input is satisfied.

The FullMatch for the FTAndConnective
(’usability’ with stems && ’software’) is shown
in Figure 6. This FullMatch is obtained by combining the
FullMatches for ’usability’ with stems (Figure 3)
and for ’software’ (Figure 4). Similarly, the FullMatch
in Figure 7 is obtained by combining the FullMatches in Fig-
ures 6 and 8.

4.3.4 Semantics of FTScopeSelection
FTScopeSelection limits the scope of an

FTSelection to a node, sentence, or paragraph. It has the
following syntax.

FTScopeSelection ::= FTSelection(
‘‘same’’|
‘‘different’’)

(‘‘node’’|
‘‘sentence’’|
‘‘para’’)

The FTScopeSelection takes the FullMatch correspond-
ing to its input FTSelection, and restricts the
SimpleMatches so that only those that have positions in the
same (or different) node, sentence or paragraph are selected
for the output FullMatch. The semantics for the
FTScopeSelection (’same para’) is given below.

function fts:FTParaScopeSelection(
$fullMatch as fts:FullMatch)

as fts:FullMatch {
<fullMatch>

{for $simpleMatch in
$fullMatch/simpleMatch

where
every $strInclude1 in $simpleMatch,

$strInclude2 in $simpleMatch
satisfies
$strInclude1/position/para =
$strInclude2/position/para

return
<simpleMatch>
{$simpleMatch/stringInclude}
{for $stringExclude in

$simpleMatch/stringExclude
where every

$stringInclude in
$simpleMatch/stringInclude
satisfies
$stringInclude/position/para =
$stringExclude/position/para

return $stringExclude}
</simpleMatch>}

</fullMatch>
}

592



StringExclude

Pos:6

SimpleMatch

FullMatch

Token: Rose

Figure 8: FullMatch
for !’Rose’

StringInclude
Token: usability

Pos:11 Pos:13

StringInclude
Token: software

StringInclude
Token: software

Pos:18

StringInclude
Token: usability

Pos:11

SimpleMatchSimpleMatch

FullMatch

Figure 9: FullMatch for ’usability’ with stems
&& ’software’ && !’Rose’ same para

Pos:13

Token: software
StringInclude

FullMatch

SimpleMatch

Pos:11

StringInclude
Token: usability

Figure 10: FullMatch for
’usability’ with stems
&& ’software’ && !’Rose’
same para window 5 without
stopwords

As shown above, only the SimpleMatches in which all the
StringIncludes are in the same paragraph are selected for the
output FullMatch. Further, the StringExcludes in the selected
SimpleMatches are also restricted to be in the same paragraph
as the StringIncludes in the output FullMatch.

Figure 9 shows the FullMatch for the FTScopeSelection
(’usability’ with stems && ’software’ same
para). This FullMatch is obtained by transforming the input
FullMatch corresponding to ’usability’ with stems
&& ’software’ (Figure 6). Note how the StringExcludes
do not appear in the result FullMatch because they do not ap-
pear in the same paragraph as the StringIncludes.

4.3.5 Semantics of FTWindowSelection
FTWindowSelection specifies the maximum window

size for an FTSelection. Its syntax is:

FTWindowSelection ::=
FTSelection ‘‘window’’ xs:integer

The FTWindowSelection takes the FullMatch corre-
sponding to its input FTSelection, and restricts the Sim-
pleMatches so that only those that fit in the specified window
size are selected for the output FullMatch. This semantics is
specified below.

function fts:FTWindowSelection(
$fullMatch as fts:FullMatch,
$windowSize as xs:integer,
$contextModifiers

as fts:ContextModifier*)
as fts:FullMatch {

<fullMatch>
{let $ignorePos :=

fts:getIgnorePos(
$contextModifiers)

for $simpleMatch
in $fullMatch/simpleMatch

where
every $strInclude1 in $simpleMatch,

$strInclude2 in $simpleMatch
satisfies

fts:posDistance(
$strInclude1/position,
$strInclude2/position,
$ignorePos) < $windowSize

return
<simpleMatch>
{$simpleMatch/stringInclude}
{for $stringExclude in

$simpleMatch/stringExclude
where every

$stringInclude in
$simpleMatch/stringInclude
satisfies
fts:posDistance(

$stringInclude/position,
$stringExclude/position,
$ignorePos) < windowSize

return $stringExclude}
</simpleMatch>}

</fullMatch>
}

As shown above, only the SimpleMatches in which all the
StringIncludes occur within the specified window size are se-
lected. Further, the StringExcludes in the selected
SimpleMatches are also restricted to occur within the specified
window size in the output FullMatch. Certain search token
positions ($ignorePos) are ignored when computing the dis-
tance between two positions in a SimpleMatch. The positions
to be ignored depend on the stop-word and ignore XML sub-
tree context modifiers; this is computed using the
fts:getIgnorePos function (details are in [2]).

Figure 10 shows the FullMatch for the
FTScopeSelection (’usability’ with stems &&
’software’ && !’Rose’ same para window 5
without stopwords). This FullMatch is obtained by trans-
forming the FullMatch for
’usability’ with stems && ’software’
same para (Figure 9), and ignoring the positions of stop-
words when computing the window size.

5. RELATED WORK
The topic of combining full-text search with structured query-

ing has recently received a lot of attention, both in research
and in the industry. In research, many efforts have focused on
extending XML query languages with full-text search. How-
ever, unlike TeXQuery, previous solutions explore only a few
full-text search primitives at a time (e.g., Boolean keyword
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retrieval [11, 20, 1], keyword similarity [8, 26], proximity dis-
tance [6, 18], relevance ranking [5, 12, 15, 26]). Further, previ-
ous techniques do not develop a fully compositional model for
full-text search (such as FullMatch), and also do not provide a
seamless integration with XQuery.

In the industry, the W3C Full-Text Task force (FTTF) has
been specifically created to enhance XQuery and XPath with
full-text search [30, 31]. SQL/MM [18] was designed to ex-
tend SQL to express queries on text, images and spatial data
(see also [7] for a related ADT-based approach). Full-text
queries are expressed in a sub-language embedded in a func-
tion call. As discussed in Section 2, the function call approach
has some fundamental limitations when used in XQuery. Fur-
ther, SQL/MM does not provide a fully compositional full-text
data model, and does not consider integration with XQuery.

Various models have been proposed in the IR literature, in-
cluding the Vector space model [24] and probabilistic mod-
els [21, 27]. These models provide a systematic way to com-
pute the relevance of a document to a query. While TeXQuery
does not dictate the use of a particular relevance model, it is
flexible enough to accommodate the different models in the
context of the ftscore expression. In sum, TeXQuery primi-
tives span the space between pure Boolean search and com-
plex relevance search thereby providing expressive IR search
over XML documents.

6. CONCLUSION
We have presented TeXQuery, a full-text search language

extension to XQuery. TeXQuery supports a powerful set of
fully composable full-text search primitives, which can be seam-
lessly integrated into the XQuery language. We have also
developed the FullMatch data model for formally reasoning
about full-text searches. Using FullMatch we have formally
specified the semantics of TeXQuery in terms of XQuery it-
self. TeXQuery is the precursor of the full-text language ex-
tensions to XPath 2.0 and XQuery 1.0 currently being devel-
oped by the W3C.

In this paper, we have focused on the TeXQuery language
design and underlying formal model. We are currently devel-
oping a reference implementation of TeXQuery in Galax [13].
We are also exploring efficient query optimization and evalua-
tion techniques based on the interactions between the XQuery
and FullMatch data models. We are exploring methods to in-
tegrate existing ranking schemes [5, 12, 15, 26] in our model.
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