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ABSTRACT The Current Web service description languages howeveersuff

from the lack of their ability to provide constructs and cepts
that enable reasoning about runtime service behaviourguages
like WSDL [21] and BPEL4WS [24] do not have the provision for
specifying the conditions a service provider would wannpaose
on its environment to guarantee a valid service executionil&ly

Current ontological specifications for semantically désog prop-
erties of Web services are limited to their static interfdescrip-
tion. Normally for proving properties of service compamits, map-
ping input/output parameters and specifying the pre/pmstitions
are found to be sufficient. However, these properties aeriasss

only on the initial and final states of the service respebtivEhey there are Ir:jobways for the shervice provri]derbto describe deﬁras
do not help in specifying/verifying ongoing behaviour of iadi- tions would be true once the service has been executed. OWL-S

vidual service or a composed system. We propose a frameworkd?]es provide cgnf(_:epts like p:jecondition; gnd ](c:onditiqlff:;ES.
for enriching semantic service descriptions with two cosiponal The WSMF [5] defines pre- and post-conditions for servicéese

assertions:assumptionand commitmenthat facilitate reasoning Eontrlbute to /some exé?f‘t towa:jds f:he" behellquurgl d_ptfg.
about service composition and verification of their int¢éigra The Owever pre post-con |t|o_nS and effects are |m|t_e_ _tdu(s' ;
technique is based on Interval Temporal Logic(ITL): a soford scriptions. They are reqUIr_ed to hold only at the initial diml
malism for specifying and proving temporal properties cfteyns. states of the service execution.

Our approach utilizes the recently proposed Semantic Web Ru In a scenario where Web services are black boxes and the clien
Language. or the service requester (human/agent) has no control bgerar-

ious stages of service execution, it becomes necessaryrichen
. . . the service description with certain properties which wicethable
Categories and Subject Descriptors reasoning about service behaviour while it is in executidine
D.3.2 [Language Classifications Constraint and logic languages;  need for such rich specifications becomes evident whileoréag
F.4.1 Mathematical Logic]: Temporal Logic; D.3.3Programming  about the composition of services and verification of the pasi

Language$: General—standards tion. Current composition planners/engines [25, 22] upetiout-
put mapping, type characteristics of these parametersratial,i

General Terms final state predicates to _g_enerate _compositions/plans.elvato '
ensure a sound composition, services need to be composegausi

Languages, Theory, Verification specification technique that characterizes ongoing behawif the
service.

Keywords Further, since Web services abstract implementationldetaim-

posing agents (human/software) have no means to validab@-an
going composition and take appropriate measures in casp#oe
fications cease to be satisfied. Behavioural specificatigevices
should include assertions that not only validate theiiahand fi-

Semantic Web services, Web services, Interval Temporalcl.og
OWL, OWL-S, SWRL, Assumption - Commitment

1. INTRODUCTION AND MOTIVATION nal states, but also their intermediate states. Thesesstatdd be
Markup languages for specifications of Web services areoset t critical decision making stages during computation or tages at
play an important role in enabling dynamic service discp\ard which messages are exchanged between the services. Tore rati

composition by human users and software agents. Thereéttwph  ale for these additional observables become more appaitte w
of languages proposed by academic and industrial reseesapg composing services that execute concurrently as the plitysds

for service description, discovery and composition with Xlsis synchronization and communication between the servicés the
their backbone. The semantic web has contributed subsiigiia intermediate states as important as the initial and final Mare-
providing ontology description languages like OWL [12].0Ri- over with such properties in hand, verification of the conijms
nent efforts can be seen in the form of OWL-S [23]: an ontology at runtime is reduced to checking the assertions requireublib

for describing profile, process and grounding models forgice. by every service in the composition using an engine desigoed
Related work is also being done in the form of IRS (Internea-Re  handle temporal properties.

soning Services) [19]. We propose a methodology to augment the semantic desariptio

Copyright is held by the authorfowner(s). of a service with temporal properties formally callagsumption
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andcommitmerit The properties are specified in Interval Temporal
Logic(ITL) [17, 18, 16, 2], our underlying formalism for reaning
about service behaviour over periods of time. These aessréire
specified using predicates in first order logic with tempoyzra-
tors only over their observable behaviour and do not deparahg
additional knowledge about the underlying execution meism
of the services. Further, we show that such assertionalfg@ec
tions are compositional and this strategy can be effegtiapplied
for the verification of a composed service on the basis of plees
ification of the individual services. The formalism thus yides a
powerful technique for reasoning about service compaositixe-
cution and runtime verification of service behaviour.

We choose OWL-S: an OWL ontology as our starting point for

specifying these properties. OWL-S scores highly in exgves

ness over other languages. OWL has well-defined semantics in

description logic. OWL-S has operational semantics defimed
Petri Nets [20] and subtype polymorphism [4]. Although otlaa-
guages for Web service descriptions claim to have semadéics
fined in Pi-calculus/Petri nets, there are no documentsastipg
the same. Recently a preliminary proposal for a rule langues
been put forward to express rules and constraints [9] inrdraé-

<—A—C>|
s &—0—@ o o o
DL

Figure 1: Assumption-Commitment

3. THE ASSUMPTION - COMMITMENT
PARADIGM

The A - C framework is a compositional specification method-
ology. It was first discovered by Jayadev Misra and Mani Cland
[13] as a proof technique for networks of processes exegatim-
currently via synchronous message passing. A relateditpahifor
shared variable concurrency was proposed by Cliff Jone&lih [
The objective is to specify a process within a network. Faiynaan
A - C formula has the following form:

(4,0) : {p}P{s} @

work of the OWL language. This allows us to express property Where P denotes a process aati ¢, ), C' denote predicates. In-
predicates as an OWL ontology. In this paper we show how the formally an A - C formula has the following meaning:
compositional properties of A - C can be expressed as a SWRL on if ¢ holds in the initial state, including the communicationtbiy

tology. This representation can be made a part of the procedsl|
in OWL-S. Our approach differs from conventional approachs
we consider validation and verification to be an integrat paser-
vice composition. This also makes it readily applicablent® ¢éxe-
cution monitoring model proposed in OWL-S.

The paper is structured as follows: Section 2 describesrtheip
ple of Compositionality. Section 3 discusses the “A - C” pgan.
Section 4 describes the ITL formalization of A - C and its &ppl

in which P starts its execution then

e (C'holds initially andC' holds after every communication pro-
vided A holds after all preceding communication and

e If P terminates and4 holds after all previous communica-
tion (including the last one) thetk holds in the final state
including the final communication history

cation to Web services. Section 5 discusses OWL-S and SWRL. o equivalent definition for (1) using induction (ref. Fig. dan be
Section 6 describes how the A - C properties can be expressed a yofined as -

a SWRL representation. Section 5 proposes compositios euld
their proof obligations for introducing compositionality service
specifications. Section 8 presents an example of an aucioits.
Section 9 discusses runtime verification techniques usimgradm-
pura. Section 10 outlines conclusion and future work.

2. COMPOSITIONALITY

Compositionality [6] refers to the technical property teatibles
reasoning about a composed system on the basis of its cramitit
parts without any additional need for information aboutithple-
mentation of those parts. The notion of compositionalityasy
important in computer science as it facilitates modulaigteand
maintenance of complex systems. Compositionality is alde-a
sired criterion for verification methodologies, partialyafor the
development and analysis of large scale systems. The idefirsia
formulated by Edsger W. Dijkstra [7]. For reasoning satitfa
rily about composed system, we only require that systemstaaid
components are specified usipgedicates The principle of com-
positionality can be readily applied to Web services. Rpegp
about compositions is facilitated using compositionahgiples,
rules and their proof obligations, on the predicates ddrivtem
service descriptions stored in some repository by a pressmr or
a reasoning engine.

lalso referred to as A - C.
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1. if ¢ holds initially in P thenC holds initially in P.

2. if ¢ holds initially in P and A holds upto thé:th point in P,
thenC' holds up to the + 1th point for allk > 0 and,

3. if ¢ holds initially in P and A holds at all times during®,
and P terminates, thery holds on termination.

Here A expresses an assumption describing the expected behaviour

of the environment oP. C' expresses a commitment which is guar-
anteed by the procedB as long as the environment does not vio-
late the assumption A antlandq express pre- and post-conditions
upon the state of. A andC are required to hold for both termi-
nated and nonterminated computation.

4. FORMALISING ASSUMPTION-
COMMITMENT IN ITL

ITL is a flexible notation for both propositional and firstder
reasoning about periods of time. Tempura: an executableesub
of ITL, provides a framework for developing, analysing and e
perimenting with suitable ITL specifications. The syntaxiDf
is defined in Fig. 2 wherg is an integer valueg is a static vari-
able (doesn’t change within an interval),is a state variable (can
change within an intervaly, a static or state variablg,is a func-
tion symbol andg is a predicate symbol.

ITL contains conventional propositional operators suchas
and first order ones such sisand =. There are temporal operators
like “; (chop), “* (chopstarj and “skip”. Additionally in ITL,



| Expressions e:= pla]Algler,...,en)|2a: f |

pler, - en) [f [fiAf2[Voe JTskip] fis 2 []7 ]
Figure 2: Syntax of ITL

| Formulae  f :

there are temporal operators likeandO. Expressions and For-  The assertions required for formulating A - C in this scemairie

mulae are evaluated relative to the beginning of an interval quite general. Conventionally, assumptions are prediaatguired
The informal semantics of the most interesting construesaa to be true by the environment of a service. For a service éxecu
follows: ing as part of a network, the environment is composed of hkiot
services executing in the network. In the original formalisas-
e ia: [ the value ofa such thatf holds. sumptions are predicates over the channel variables. \&f tfgils

notion and require assumption to be an ongoing temporakptpp
including constraints on the input parameters that a sepriavider

e f1; f> : holds if the interval can be chopped into a prefix and demands to be true as long as his service is in execution. §he a

e skip : unit interval ( length 1).

a suffix interval such thaf, holds over the prefix ang, over sertions for the commitment can be any temporal properthef t
the suffix. service which the provider wishes to expose as a guarantée to
assumption.
e f*: holds if the interval is decomposable into a number of . . .
intervals such that for each of thefrholds. 4.2 AnITL formalization of Assumption-
o o Commitment
_?;S:ff the frequently used abbreviations are listed in A Senvice, S in ITL is expressed as a quadruleAs, Co, w')
' where,
Table 1: Frequently used temporal abbreviations w  :state formula about initial state _
oF Zskp.f v As :atemporal formula specifying properties
~ ’ ) about the environment
more = Otrue non-empty interval Co : atemporal formula specifying properties
empty f —.more empty.mterval about the service
of - finite; f sometimes w  : state formula about final state
of - =not always Validity of an A-C formul
_ ~ _ y of an ormula,
fin f = O(empty D f) final state
@f =-0-f weak next . !
Of = f;true some initial subinterval = (As,Co) - {wpS{w }
of =-(®-f) all initial subintervals inductively defined in ITL, has the following intuitive mear:
@ f =finite; f ; true some subinterval
@f =-(e-f) all subintervals e if w holds in the initial state, in whicls' starts its execution
thenCo holds initially in S.
4.1 Application to Web services e if w holds initially in S and, As holds upto therth state in
Composed Web services are independently executing compo- S, thenC'o holds upto ther 1th state for allk > 0.
nents communicating via message passing to yield the ddsée
haviour. Since the A - C paradigm offers compositional ptech- e if w holds initially in S and, As holds at all previous states,

niques for specifying and verifying composed system, comimu
cating via message passing, it lends itself readily for iappibn
in the domain of Web services. For our purpose we need to use a

variant of the formalism which is somewhat different in ggdiom
the classical compositional reasoning. We redefine thedjgaraas “ k+1 >
k

beforeS terminates then’ holds on termination.

below:

The Assumption-Commitment paradigm is a composi- w @ w
tional specification and verification technique that can

be applied to services or networks of services, com-

posed to execute sequentially or concurrently. The

paradigm provides compositional rules whose proof

obligations ensures soundness of the composition. The Co

validity of the proof obligations or verification condi- Figure 3: ITL representation of Assumption-Commitment
tions can be checked at the design stage for static anal-

ysis of the composed system, and can also be checked

at runtime using a theorem prover with actual param- Formally in ITL, Fhe validity of the A - C representation (refig.
eters. The Assumption-Commitment paradigm thus 3) has the following form :

provides a powerful technique for reasoning about ser-

vices that can be composed and once they are com- (As,Co) : {w}s{w/} def ¢ D)

posed, it helps in validating the integrity of the com- ) o
position at runtime. wAT((As A Co) ; skip D Co) Afinw
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5. OWL-S AND SWRL

OWL-S is an OWL ontology for the specification of services. It
is structured to provide three types of information aboutrise.
The service profileprovides a representation of properties and ca-
pabilities that can be used by a service requester to sptwfy
needs and service providers to advertise their serviceésvimat” it
does. Theprocess modallescribes “how” the service “serves”. It
provides concepts for specifying the functional attrilsudé a ser-
vice in the form of Inputs, (Conditional)Outputs, Precdiutis and
(Conditional)Effects. It also provides constructs forvéez com-
position. TheGroundingmaps process parameters to correspond-
ing WSDL representation of inter-service communicatiopeas$s
of the service, in terms of the message formats, protocasam-
munication ports.

Our interest lies in augmenting the Process model with A - C
properties. Since assumptions and commitments are tehfpora
mulae, we need an extension to the core ontology that allevis u
express them. SWRL [9] is a preliminary proposal for a rute la
guage designed to express rules and constraints in theirae
of the OWL language. Related work for specifying rules withi
the domain of Semantic web are initiatives like RuleML [3Han
DRS [8]. However SWRL gives us the flexibility to remain withi
the domain of OWL. A Concrete XML and RDF syntax are part of
the current specification of the language. In this paper vesgnt
our example using the RDF/XML encoding. It must be noted that
SWRL is evolving and significant changes can be expectedein th
near future.

SWRL is based on a combination of the OWL DL and OWL
Lite sublanguages of the OWL Web Ontology Language with the
Unary/Binary Datalog RuleML sublanguages of the Rule Marku
Language. It proposes the specification of rules in the fofm o
an implication. The Atoms within the body and the head of the
implication can be Class Predicat€$x) or Property Predicates
P(x,y). Within the body or head, multiple atoms are treated as a
conjunction. Here is a primitive way of how one could exprass
rule or a condition for a book buying service, “BBS”. Semaaliy,
the rule can be defined as,

if a buyer has a valid Account and a valid Credit Card, he can
buy a book from BBS.

We have the following variables as inputs to the book buying
service,

Account ID

Password

Creditcard number

Expiry date

ISBN number

The variables can be defined in SWRL as:

<Variable rdf:ID="acctID"/>
<Variable rdf:ID="password”#
<Variable rdf:ID="creditCardNumber ™
<Variable rdf:ID="expDate”5
<Variable rdf:ID="ISBNNumber”

The rule can now be stated as:

<Imp>
<body rdf:parseType="Collection*
<individualPropertyAtom-
<propertyPredicate
<argumentl rdf:resource="#acctiD">/
<argument2 rdf:resource="#password”™/
<individualPropertyAtom-
<individualPropertyAtom-
<propertyPredicate rdf:resource="#creditExists"/
<argumentl rdf:resource="#creditCardNumber /
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rdf:resource="#accountExists”/

<argument2 rdf:resource="#expdate ™/
<individualPropertyAtom-
<body>
<head rdf:parseType="Collection”

<individualPropertyAtom-
<propertyPredicate rdfiresource="#allowedToBuy/

<argumentl rdf:resource="#acctlD3/
<argument2 rdf:resource="#ISBNNumbers/
<individualPropertyAtom-
<head-
<Imp>

Many times it may be the case that we do not want to express an
implication, but simply a predicate or a conjunction of poates
[15]. This is the case for expressing “Condition”- which sed
in many places within the Process model. Within the fram&wor
of OWL-S, Conditions are required to be logical formulae.ef¥h
are part of the definition for “Precondition” - a kind of Cotidn
and also for Conditional outputs and effects. Currently SVdBRes
not specify any such constructs. Several proposals havedise
cussed for expressing Conditions in this format [15]. Thecmn
factor in all these proposals is having a top-level conceied
“For nul a” and defining ‘Condi t i on” to be of rdf:type
For mul a. Eventually, For mul a” is expected to be defined as
a part of SWRL. However for practical purposes it can be ddfine
within the Process model or DRS representation of the same ca
be used. In this paper we abstract the top -level represemtait
“For mul a”, as we believe that this is a matter of namespace rep-
resentation and express temporal properties as PropetijcBtes
using SWRL.

6. A SWRL REPRESENTATION OF A - C
PROPERTIES

A - C properties are Temporal formufae

<owl:Class rdf:ID="TemporalFormula®
<rdf:subClassOf rdf:resource="#Formula”
</owl:Class>

<owl:Class
<rdf:type
</owl:Class>

rdf:1D="Assumption®
rdf:resource="#TemporalFormula”

rdf:1D ="Commitment*
rdf:resource="#TemporalFormulz”

<owl:Class
<rdf:type
</owl:Class>

From the aspect of ontological representation, A - C can be re
garded as first-order logical formulae analogous to Camfitiand
augmented with temporal operators. We have modelled a basic
tology for expressing various temporal operators in ITL [When
the representation of Conditions is standardized, assampnd
commitments can be easily expressed by using the two onéslog
As an example consider the following temporal formula:

Ovalidl SBN Number(BookT'itle, [SBN)

Informally it means thaalwaysthe name of the book should cor-
respond to the given ISBN number. The ontological reprediamt
of the above is,

<individualPropertyAtom-
<prefixOperator rdf:resource="&itl ;Always”#
<propertyPredicate rdfiresource=
"#validISBNNumber” />
<argumentl rdf:resource="#bookTitle/
2We do not specify namespaces
Tenpor al For nul a at this stage.

ofFornula and



<argument2 rdf:resource="#ISBN%/
<lindividualPropertyAtom-

where,pr ef i xOper at or is a Class, representing temporal op-
erators liked, @, @, & and —. The O operator can be applied to
both formulae and variables.

7. COMPOSITIONAL RULES FOR SERVICE
COMPOSITION

In this section, we explain how A - C can be used to composi-
tionally reason about integrated services. Web servicagosi-
tions can be realised using several programming languaggeoto
constructs. Predominantly there are two forms of compmsiti
sequential and parallel. Other forms of compositions canddse
rived from these two forms using constructs lik¢hen-else, iter-
ate, repeat-until, while-do and choi¢®4].

We define compositional rules using A - C for the most inteitiv
form of composition i.e sequential and parallel compositidVe
provide the ontological representation for pre/post ctoé and
A - C predicates using SWRL. In following subsections:

LW, W represent pre/post conditions respectively.
. As1, Ass represent assumption for servife andSa.

. Co1, Cosy represent commitment for serviég andSs.

A W ON P

. As, Co represent assumption and commitment of the com-
position.

7.1 Sequential Composition

S1; S2

wll D w2
Figure 4: Sequential Composition

We consider the sequential composition (ref. Fig. 4) of teo s
vices. Servicess; and.S>. In case of sequential composition we

(As, Co) {wisSifwr} ()
(As,Co) : {w2}S2{wy} (2)
As = @As (3)
Co = Co* (4)
w, D wa R
(As,Co) = {wi}S1;92{w,}  (6)

require thatds andCo are respective fixpointsf the ITL opera-
tors@& andchopstar. For the commitment to hold over the interval
defined bysS:; Sz, we first require the assumption to hold over that
interval. Hence, if the assumption holds and if it is a fixpah®,

it guarantees to holds over the individual subintervalsntervals
defined byS; andS2 as well (semantics ddl). Now in response to
this assumption, if the services guarantee some commisiety
hold on the individual subintervals fa&%; andS». If we choose
these commitments such that they are fixpointsiafpstar(i.e a

3The fixed point of a functionf is any valueg for which f z = x.
A function may have any number of fixed points from none (¢.g.
x = z+1) to infinitely many (e.gf = = z).
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singular commitment), we can easily collapse the commitrten
hold for the interval defined by,; S2. The advantage of these
restrictions are ease in implementation and reduced cotypia
validating the composition.

We take an example of a global book searching service com-
posed in sequence with a book buying and shipping service. Th
composition engine requires all necessary user inputdSB&
number of the book, credit card details and shipping detailse
supplied to the composite service before engaging intodhgoo-
sition. Pre/post conditions can be defined as:

valid(ISBN) A validCreditCard(card Number)

cardBilled(cardNumber) A
book Shipped(shipping Address)

When expressed as a property predicate in SWRL, the Precondi
tion: can be defined as:

1

w

’
w

<conjuncts rdf:parseType="Collection”
<individualPropertyAtom-
<propertyPredicate
rdf:resource="#validISBNNumber™
<argumentl rdf:resource="#bookTitle3/
<argument2 rdf:resource="#ISBN%/
</individualPropertyAtom-
<individualPropertyAtom-
<propertyPredicate
rdf:resource="#validCreditCard™f
<argumentl rdf:resource="#cardNumbers/
<argument2 rdf:resource="#expDate*/
</individualPropertyAtom-
</conjuncts>

The post-condition can be expressed accordingly.

However, it can be observed that these assertions do not make
any statements about the credit card validity by the requéstough-
out the composition and the assurance that the card will ot b
billed till the transaction is complete by the service pdavi
A - C assertions are required to increase trustworthinetisecfer-
vice and to take corrective measures in case of any unexpbete
haviour. For e.g., it is likely that the requester’s creditccceases
to be valid during an ongoing transaction. Therefore thiefohg
temporal assertions are required to be made part of thefiggeci
tion.

As
Co

& validCreditCard(cardNumber)

(—cardBilled(amount, card Number))*

1

The commitment can be expressed as:

<individualPropertyAtom-
<suffixOperator rdf:resource="&itl; Chopstar/
<prefixOperator rdf:resource="&itl; Negate/
<propertyPredicate rdf:resource="#cardBilled*/
<argumentl rdf:resource="#amonut®/
<argument2 rdf:resource="#cardNumber®/
</individualPropertyAtom-

The assumption can be expressed accordingly.

7.2 Parallel Composition

A network of services executing concurrently consists oé& s
of services and a set of shared objects such as channelsgithro
which the services communicate via message passing. Thke spe
fication, proof obligations and the compositional rule fervices
executing in parallel are as defined below: For servicesutixer
concurrently, the environment of each service is governethe
environment of every other service in the network and by trex-o
all environment of the composition. Hence the proof oblmat



(As1,Co1) {w1}51{w;} (1)
(As2,Co2) {wa}Sa{wy} (2)
AsNCor D Assg (3)
AsNCoz D As 4)
(As,Co1 A Co2) (w1 Aw2)S1 || S2(wy Awsy)  (5)

for parallel composition, relates the environmedis() of a ser-
vice ((S1) with commitment C'o2) of the other service, (part of the
environment of §1)) as the observable influence and with the as-
sumption (As) of the overall composition. An example of parallel
composition is presented in the following section.

8. CASE STUDY: AN AUCTION SERVICE

An Auction service (ref. Fig. 5) is presented as an exampke of
composite service. The Auction service is a compositiowben
several buying services, a selling service and the auctiosdy ex-
ecuting in parallel with each other. Buyers and seller aassified

winBid

ler P

Figure 5: Composition of an Auction Service

as bidders in the auction process. Seller submitaskprice to
the auction house, buyers subritls as per the rules of the auc-
tion, the auction house validates the incoming bids and<ldee
auction, declaring the winning bid for each clearance. IKirtae
winner is announced and the auction is closed.

The auction process spans over an interval with intermediat
states being defined at the instants where communicatiovebat
the partners take place. The execution of the composedcservi
takes place concurrently as buyers can submit bids whiker diids

Beat-the-QuoteAt any time, the buyer cannot lower the cur-
rent highest amount.

Unique Bid At any time, a buyer has only one active bid.

Winning Bid At any time, only the winning bid is sent back
to the buyer.

Dominant Bid At any time, the latest bid submitted by a
buyer has to be higher than the last bid submitted by him.

e Unique Winner The auction house guarantees a unique win-

ner once the auction is over.

Registration for the auction ismeconditionfor every buying/selling
service. Thepostconditionis that the auction declares a unique
winner. The remaining rules are constraints on bids and &re r
quired to hold while the auction is in progress. They can besith
ered as the “assumption” of the auction house or “commitsient
by the buying service. As long as these assumptions ardisdtis
the auction house guarantees to admit the bidder for theroext
and consider the bid as a valid bid.

8.1 Formalization of the Auction Service

The auction spans over an interval (ref. Fig. 6) defined by-a se
quence ofn states. The ask price is submitted at sta@nd the
winning bid is declared at state Bids are submitted and the auc-
tion is cleared at all intermediate states i.e betweenssiaten—1.

The number of buyers registered for auctiokisCommunication
between the buying services and the auction house takes yikac
channels.

ask
Ol

We define observable variables for the auction service iteT2ab
below.

winBid = max(bidy, bidg, bids) winBid

1 2 n
® ® l
bidy bids

bidg
Figure 6: Observable States of the Auction House

Table 2: Observable variables
Ask price = ask
Bidder, i's bid =bid; :0<i<k
list of bids at any state = bidList
= {bid;|0 < i < k}
Winning Bid at any staté= max (bidList)
= winBid

Bid received by a buyer= bidrec

are being processed by the auction house. The Seller can also

change his ask price while the auction progresses, depgeraain
the market situation. However for simplicity we do not calesi
that case here and model the composition only between the Auc
tion house and the buying services.

In our design we assume the selling and buying services to be
thin clients of the auction house. The auction house itselfthick
computational server. It validates rules of the auction jrugber-
ties of the incoming bids. Some of these properties can baeatkfi
informally as below:

e Registration To trade via the Auction house bidders (sell-
er/buyers) have to register with the Auction house as mem-
bers.
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8.2 Specifying the Auction House

The initial-final state properties required to be validalbgdthe
auction house can now be defined as,

w = winBid = ask N
Vi:0 <t <k:isRegistered(i)
W 2 Fi0<i<k: isWinner ()

where,is Registered(i) andisWinner(i) are pre/postcondition
predicates, respectively. The assumptiaiz ;) for any bid sub-
mitted to the auction house by a bidder and the corresporuing
mitment by the auction houggo,; can be formally expressed as,



Vi:0<i<k
Asan = D((Obid; > bidi) A (Obid; > winBid))
Coqn, = O(bidrec = winBid)

We express the Assumption predicate in SWRL as below:

<Variable rdf:ID="bid"/>
<Variable rdf:ID="winBid"/>
<Variable rdf:ID="bidrec”/

<conjuncts rdf:parseType="Collection”
<individualPropertyAtom-
<prefixOperator rdf:resource="&itl ; Always™#
<propertyPredicate rdfiresource="#isGEQNext’/
<argumentl rdf:resource="#bid>
<prefixOperator rdf:resource="&itl; Next™
</argument®
<argument2 rdf:resource="#bid" >
<lindividualPropertyAtom-
<individualPropertyAtom-
<prefixOperator rdf:resource="&itl ; Always™#
<propertyPredicate rdf:resource="#isGEQWinBid*/

<argumentl rdf:resource="#bid" >/
<prefixOperator rdf:resource="&itl; Next"#
<argument2 rdf:resource="#winBid” ¥

<lindividualPropertyAtom-
</conjuncts>

Applying the A-C formalism for these compositional projpest
DO((Asan A Cogn) ; skip D Cogp)

to the auction house service specification, we have thevioilp
compositional ITL formula that is required to be validatedile
the auction is in progress.

m(O((Obid; > bid;) A (Obid; > winBid)A
(bidrec = winBid)) ; skip D O(bidrec = winBid))

8.3 Specifying the Buying Service

We focus on the A-C properties of the buying service. These
are informally described below. The compositional propert
assumption for any bid received by the buying service, from t
auction house, and the corresponding commitment by thenguyi
service, can be formally expressed@s; 0 < i < k

Asi
COZ'

O(bidrec = winBid)
O((Obid; > bids;) A (Obid; > bidrec))

1>

We express the Assumption predicate in SWRL as below:

<Variable rdf:ID="bid”/>
<Variable rdf:ID="winBid"/>
<Variable rdf:ID="bidrec”/

<individualPropertyAtom-
<prefixOperator rdf:resource="&itl ;Always™#
<propertyPredicate rdf:resource="#iseQ?/
<argumentl rdf:resource="#bidrec”>/
<argument2 rdf:resource="#winBid" >
<lindividualPropertyAtom-

Analogous to the auction house service we apply the A-C fbrma
ism,

O(0O((bidrec = winBid) A (Obid; > bid;)A\
(Obid; > bidrec)) ; skip D O((Obid; > bid;)A
(Obid; > bidrec)))
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8.4 Composing the Auction Service

The auction house, buying service and selling service égecu
concurrently. We simplify the scenario by considering cosifion
only between the buying service and the auction house. The en
vironment of the overall composition, i4s does not impose any
constraints on the composition and defaults to true. Thefmbli-
gations for services composed in parallel are recalled from
Section 7.2.

Cogy D Asy,Co1 D Asa

The proof obligations for the auction service can now be ifipelc
as,Vi: 0 < i<k,

Coah D) Asi
Co; D Asan

The validity of above proof obligations can be proved from
Section 8.2 and 8.3.

9. RUNTIME VERIFICATION USING
ANATEMPURA

An important area where compositional specifications cpubd
vide valuable assistance is verification of service comjuosi Tra-
ditional methods of verifying a composed system are nonasinp
tional and require a global examination of the entire syst&m-
proaches such as model checking also fail to scale up wedesin
the global state space that has to be explored grows expalhent
as components are added to the system. However, appliaation
these methods to verify the composition of web services abpr
lematic because the actual binding between various conmg®ie
dynamic and therefore there is no global system availableoai p
for applying these verification techniques. Compositioralfica-
tion, however, shifts the burden of verification from thetzgiblevel
to the local component level. Hence global properties ofcthra-
position can be established by composing together indepeiyd
verified component properties.

The assumption-commitment paradigm, a deductive (prdaf- t
oretic) technique can be effectively applied as a compostiver-
ification technique for Web services composition. The ide#oi
prove the validity of the proof obligation for the compositiusing
the assertional specification of each service in the netwaditke
verification can be undertaken at two stages during senoce- c
position: (a) At the design stage where decisions regardimgh
services can be composed are to be made. Here the verification
be automated using a theorem prover;(b) At runtime, wherces
are actually wired with each other at the ports.

We are more interested in verifications of the second kincde Th
motivation for that stems from the fact that at runtime sez\Gom-
position can be influenced by several factors like networkdéo
tions, synchronization and availability of individual sies in the
network. Dynamic coordination can thus give rise to an eerg
behaviour which may not be desired. The purpose of verifica-
tion at runtime is therefore to gauge such unwanted behg\tioat
may lead to a “chaotic” composition. Since the assertionproe
pose are temporal properties of services and their envieotrthe
proof obligations for the specification of the compositicavé to
be validated by an engine capable of handling temporal ptiege
AnaTempura [2] (ref. Fig 7) is a tool for the runtime verifiicat of
systems. Itis an interpreter for executable Interval Teraldoogic
specifications written in Tempura: a subset of ITL. AnaTerapu
generates a state-by-state analysis of the system behagdhe
computation progresses. At any state during the computétibe
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| 1
| 1
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. 1
| 1
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! :
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Properties & Tempura 1
Check . Interpreter 1
. 1

Figure 7: Runtime verification using Anatempura

variable values cease to satisfy the Tempura formula, AmaUea
throws up an exception for that state.

For verification, the proof obligations that encode the terap
assertions are specified in Tempura. At runtime, the aesesrtire
validated, by passing the actual parameter values to theem
Program (ref. Fig. 8) at the initial state and at each ciititate
defined by the service provider. AnaTempura validates thefpr
obligations at these states. If the proof obligations céas®ld, it
implies that some form of unwanted or chaotic behaviour ltas o
curred. This kind of verification serves two purposes: (a@skists
in identifying the errors in service description as the fjeation
emerges from there. Conventional ways of verifying conmss
work at the implementation level using techniques like ptioa
handling;(b) Third party arbitration services can use tleelhanism
for monitoring quality-of-service parameters. This is &ese the
verification mechanism still works at the interface leved dnere-
fore no implementation details are required. We have deegl@a
preliminary implementation of the auction example usirig tech-
nigue which is currently in the testing phase.

10. CONCLUSION AND FUTURE WORK

In this paper we provide the much needed theoretical baakgiro
for applying compositionality to the domain of Semantic Véel-
vices. We believe that both specification and verificatioouth
be highly compositional allowing modular validation andifiea-
tion to be performed. We have shown how Semantic Web service
specifications written as OWL ontologies, can be reinforatth
temporal properties - Assumption and Commitment. We hage ch
sen OWL-S as it has an inbuilt provision for accommodatirgi-lo
cal formulae, which is missing in other languages. We hagaext
that apart from state predicates ongoing assertions areeisired
to fully capture the behaviour of a service, specified as ekiii@x.

We have shown how assumption and commitment can be specified
for compositional reasoning about semantic Web servicepoem
sition, using OWL-S and SWRL. We also show how the theory
can be applied in practice to the composition of an auctiovice

We have done a preliminary implementation of the auctioniser
which will be presented in a future paper.

Little work has been done in the area of compositional specifi
cation and verification of services as revealed from theditee
review done so far in the domain of semantic web services, inot
academia and industry. Semantics for the process modelewas b
defined by Narayan and Mcllraith [20] using axioms in sitoati
calculus, which are then mapped to Petri-net representathn
alternative Concurrent Execution semantics for the sarseatso
been proposed by Ankolekar et al [4]. However, these do rest di
cuss compositionality and verification techniques thatimgera-
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Service Ontology Repository

S1 - | = — | | S2
—  Service Composer/Planner

i

Pre -proccesor for transforming A -C
Ontology to Tempura code

Figure 8: Framework for service composition using Anaterapu

tive while composing services on-the-fly. Several indasefforts
to create service composition standards like BPELAWS [24] a
WSCI [10] provide syntactical means of describing and casapo
ing services. They however, lack the formal framework nddde
verification of services composed using such specifications

As part of our future goal, we aim to build a pre-processot. (re
Fig. 8) that converts assumption - commitment specificatiithin
an OWL-S ontology into executable Tempura specificatione Th
tool would be part of a larger framework for service componit
We have already designed the framework for the implemeantati
of such a tool. We also plan to extend our work on verificatibn o
services using AnaTempura.
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