
Trust-Serv: Model-Driven Lifecycle Management of Trust
Negotiation Policies for Web Services

Halvard Skogsrud
University of New South Wales
Sydney NSW 2052, Australia

halvards@cse.unsw.edu.au

Boualem Benatallah
University of New South Wales
Sydney NSW 2052, Australia

boualem@cse.unsw.edu.au

Fabio Casati
Hewlett-Packard Laboratories

Palo Alto, CA, 94304 USA

fabio.casati@hp.com

ABSTRACT
A scalable approach to trust negotiation is required in Web service
environments that have large and dynamic requester populations.
We introduce Trust-Serv, a model-driven trust negotiation frame-
work for Web services. The framework employs a model for trust
negotiation that is based on state machines, extended with security
abstractions. Our policy model supports lifecycle management, an
important trait in the dynamic environments that characterize Web
services. In particular, we provide a set of change operations to
modify policies, and migration strategies that permit ongoing ne-
gotiations to be migrated to new policies without being disrupted.
Experimental results show the performance benefit of these strate-
gies. The proposed approach has been implemented as a container-
centric mechanism that is transparent to the Web services and to the
developers of Web services, simplifying Web service development
and management as well as enabling scalable deployments.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection; H.3.5 [Information Storage and Re-
trieval]: Online Information Services

General Terms
Security, Management

Keywords
Conceptual modeling, Lifecycle management, Trust negotiation,
Web services

1. INTRODUCTION
Traditional access control models rely on knowing requester

identities in advance [8]. Web services typically have large and
dynamic requester populations. This means that requesters’ identi-
ties are seldom known in advance. Most existing Web applications
deal with strangers by requiring them to first register an identity
at the Web site. Such approaches do not fit into the Web service
philosophy of dynamically choosing services at run-time.

Trust negotiationis an access control model that addresses this
issue by avoiding the use of requester identities in access control
policies [17]. Instead, access is granted based on trust established
in a negotiation between the service requester and the provider. In

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

this negotiation — called a trust negotiation1 — the requester and
the provider exchangecredentials. Credentials are signed asser-
tions describing attributes of the owner. Examples of credentials
include membership documents, credit cards, and passports. The
attributes of these credentials are then used to determine access.
For instance, a requester may be given access to resources of a
company by disclosing a credential proving she is an employee of
that company. This example shows that the requester identity is
not always needed to determine access. Credentials are typically
implemented as certificates [11].

Although trust negotiation systems exist [3, 5, 12, 17], several
issues still need to be addressed:

• Trust negotiation policy specification.Trust negotiation poli-
cies specify which credentials — and other resources — to
disclose at a given state of the trust negotiation, and the con-
ditions to disclose them. Specifying these trust negotiation
policies using most existing policy languages is a complex
task that generally requires time-consuming and error-prone
low-level programming [9].

• Trust negotiation policy lifecycle management.Lifecycle
management of policies — that is, the creation, evolution,
and management of policies — is an often overlooked part
of policy model design. Policies are rarely set in stone when
first defined. Instead, they are modified and refined to reflect
changing business strategies [14]. Lifecycle management of
policies is especially valuable in the dynamic environments
that characterize Web services. Enterprise security policies
change because of mergers and acquisitions, internal reorga-
nization, emerging competitors, new products, updated pro-
cesses, changes to laws and regulations, etc.

Issues that must be considered in lifecycle management frame-
works include how to update trust negotiation policies in a consis-
tent manner and how to cope withdynamic policy evolution, that
is, the change to a policy while there are active negotiations based
on the policy being modified. The latter issue is particularly chal-
lenging, due to the need of minimizing the disruption to current
requesters while making sure that the new policy is applied.

In this paper we propose a model-driven approach to trust nego-
tiation in Web services. The framework, called Trust-Serv, fea-
tures a trust negotiation policy model based on state machines.
More importantly, this model is supported by both abstractions and
tools that permit lifecycle management of trust negotiation policies.
These are the salient features of the work:

1In the remainder, we will use the termstrust negotiationandne-
gotiation interchangeably.

53

• To specify trust negotiation policies, we provide modeling
abstractions that are used to extend the familiar state ma-
chine model. These abstractions provide the expressiveness
required for a trust negotiation policy model, such as repre-
sentations for the level of trust established, credential disclo-
sures, provisions, and obligations.

• Trust-Serv supports lifecycle management of trust negotia-
tion policies and instances. We introduce a set of change
operations that are used to modify policies. Strategies are
presented to allow not only evolution of policies, but also mi-
gration of ongoing negotiations to a new policy. To automati-
cally determine the appropriate strategy for each negotiation,
we use meta-policies. These meta-policies are specified in-
dependently of the negotiation policies. Additionally, since
negotiation migration may cause negotiated access rights of
requesters to be revoked, we present a scheme that is used to
compensate such requesters.

• Trust negotiation and access control are managed and au-
tomated by software components callednegotiation con-
trollers. Negotiation controllers intercept messages directed
to the Web service they control. They may accept or reject
operation invocation requests, or they may initiate an inter-
action with the negotiation controller of the other party to
negotiate trust before accepting the invocation. All this is
transparent to the Web services. At the service level, the in-
teraction only involves the business logic of the services, and
it appears to take place directly between the Web services.

The remainder of the paper is structured as follows. We start by
describing the trust negotiation policy model in Section 2. In Sec-
tion 3, we present a proposed lifecycle management model. Sec-
tion 4 describes the architectural support for policy evolution and
negotiation migration, as well as the implementation of Trust-Serv
and the results of experiments. In Section 5, we describe how our
model-driven approach to trust negotiation is beneficial to develop-
ers of composite Web services. We discuss related work in Sec-
tion 6 and conclude with a summary and directions for future work
in Section 7.

2. MODELING TRUST NEGOTIATION
POLICIES USING STATE MACHINES

Trust-Serv expresses trust negotiation policies as state machines,
because of their formal semantics, and because they are well suited
to describing the reactive behavior that characterizes trust negotia-
tions [15]. Figure 1 shows an example of a trust negotiation policy
for a bookshop service. We will refer to this policy in our examples.

2.1 States
States in the model represents the level of trust achieved by the

requester so far in the negotiation. By entering a new state, Trust-
Serv gives the requester access to more resources. Trust-Serv iden-
tifies two types of resources: operations of the Web service that
is protected and credentials owned by the provider. Instead of as-
signing these resources directly to states, we use the abstraction of
roles. Roles are semantic abstractions that describe some function
performed by people or processes (e.g.,authorandeditor). In role-
based access control, permissions are assigned to roles rather than
individual requesters [8]. In the Trust-Serv policy model, roles are
mapped to states, which means that the roles of a state may be ac-
tivated (i.e., acquired) by the requester once it reaches that state.
Roles are cumulative, so previously activated roles are not deacti-
vated when entering a new state.

C[ID]

C[Gold
Member]

C[Address ∧
Credit Card]

Customer

Reviewer

Gold Customer, Buyer

Buyer
P[Execute
‘Register’]

A

D

C

B

I
T[10min]

F

C: Credential disclosure P: Provision T: Timeout

Role Operation Credential
Customer Register, Search Verified by Visa
Reviewer Write review Elite Bookshops Member
Gold Customer Special offers
Buyer Purchase

Figure 1: A trust negotiation policy P.I for a bookshop service.

Example 2.1 (Roles).Consider the policy in Figure 1. If a re-
quester enters state A, that requester is allowed to activate the
Customer role. Upon activating this role, the requester is given
access to the service operationsRegister andSearch , as well
as the provider credentialVerified by Visa .

2.2 Transitions
In Trust-Serv, transitions are labeled with conditions that restrict

when they may be fired. Briefly, the semantics are as follows:
When the negotiation is in a state S, and an event occurs which sat-
isfies the condition of a transition T where S is the input state, then
the negotiation moves to the output state of T. Requesters explicitly
trigger events by invoking operations such as credential disclosure.

Transitions are extended beyond traditional state machines to
capture security abstractions necessary for trust negotiation. We
have identified three types of transition conditions:credential dis-
closures, provisionsor obligations, andtimeouts.

• Credential disclosureconditions require the requester to dis-
close one or more credentials. Additionally, they may con-
strain the permitted values of attributes of the credentials.
The transition labels that start withC are credential disclo-
sure conditions. These conditions may be specified in a
number of existing languages [3, 5, 9, 12]. Trust-Serv uses
TPL (Trust Policy Language) [10], because it is expressive
enough to describe credential disclosure conditions.

• Provisions and obligations.We represent provisions as ser-
vice operations that must be invoked before the negotiation
can proceed, while obligations are promises by the requester
to invoke an operation some time in the future [4]. The transi-
tion between state A and B in Figure 1 marked with a dashed
line, is a provision that requires the requester to invoke the
Register operation to satisfy the condition. The intention
is that requesters that do not possess anID credential may in-
stead register at the service and provide their identity through
theRegister operation.

• Timeoutsare used to specify timed transitions. If no action
is taken by the requester within a given time, a transition to
another state may be forced by using timed transitions. This
type of transition is used to abort abandoned negotiations by
forcing them to a final state. The transition between state

54

A and F in Figure 1 marked with a dotted line, is a timed
transition that requires the requester to take action within ten
minutes of entering state A.

2.3 Trust Negotiation Controllers
Trust negotiation policies are interpreted bynegotiation con-

trollers. Each service is associated with a negotiation controller that
interprets the service’s trust negotiation policy. When a requester
invokes an operation of the service, the invocation is intercepted by
the controller. The controller may then forward the invocation to
the service for processing, reject it, or it may initiate a negotiation
with the requester to allow it to establish sufficient trust to allow
the invocation.

Requesters may also deploy trust negotiation policies to protect
their credentials, instead of interacting directly with the negotia-
tion controller of the service. The task of the negotiation controller
would then be to try to achieve sufficient trust to allow the requester
to access the desired resource, within the limits of the requester’s
trust negotiation policy. Because the requester policy constructs
are a subset of those used for a provider policy (requesters may not
have service operations), we focus on provider policies.

Figure 2 illustrates how controllers are deployed to perform trust
negotiation on behalf of both requesters and providers. The advan-
tage of this architecture is that all the trust negotiation occurs at the
controller level. At the service level, the interaction appears to take
place directly between the requester and the service provider. This
eliminates the need to encode trust negotiation logic in the Web
service itself, which simplifies development and deployment.

Requester

Negotiation
Controller

Policy
Provider

Web Service

Negotiation
Controller

Service
Level

Controller
Level

Policy

Figure 2: Interaction between service requesters and providers.
Trust negotiation is managed and automated by the negotiation
controllers and takes place at the controller level.

3. LIFECYCLE MANAGEMENT IN TRUST
NEGOTIATION

In dynamic Web service environments, policies often need to be
modified to accommodate changing business strategies. Changes to
laws and regulations also force enterprises to update their policies.
Security holes may be discovered, which need to be rectified. In
general, lifecycle management has been recognized as an important
problem and has been studied in several different domains (see e.g.,
[6,13]). Our focus is to address the lifecycle management problem
in the context of trust negotiation policies and of Web services, both
conceptually and in terms of supporting tools and architectures.

Lifecycle management in trust negotiation policies is an impor-
tant issue since, if it is not properly addressed, it could lead to pol-
icy breaches or to lower service quality, such as slower response
time. Assume that a new policyP is defined for a service. All new
negotiations will start according toP. However, simply aborting
and restarting all current negotiations is not appropriate for sev-
eral reasons. A considerable amount of work may be lost, and
the number of ongoing negotiations may be so high that aborting
and restarting all would cause severe disruption to other dependent
services. For instance, if a popular Web site (e.g., Amazon.com)
suddenly aborted all customer transactions, all current customers

would have to repeat the steps of the purchasing process. This
could cause customer frustration and ultimately lead to loss of in-
come for the service as customers seek other services. The problem
is even more critical in the case of long-running services, such as
purchase order approval or employee relocation management, as
both the likelihood of having policy changes during each service
execution, as well as the amount of work lost by aborting the ser-
vice increase in a very significant way. Instead, it should be possi-
ble for the service to modify its policy without disrupting ongoing
negotiations.

Ad-hoc approaches to policy evolution and negotiation migra-
tion encounter scalability problems when used in Web service en-
vironments. Due to the potentially large requester populations, the
number of concurrent negotiations could be large. It is thus infeasi-
ble to manually manage policy evolution. To address the problem,
in the following we propose a framework that enables automated
policy lifecycle management, built on top of the trust negotiation
model presented earlier.

3.1 Basic Definitions
This section introduces definitions that will be used throughout

the paper to describe our approach to lifecycle management in trust
negotiation. We describe a trust negotiation policyP by the tuple

ΣP = 〈StatesP , T ransitionsP , RolesP , θP , ρP 〉
whereStatesP is the set of states ofP , TransitionsP is the set
of transitions ofP , RolesP is the set of roles protected byP , θP

is the transition assignmentfunction, associating each transition
to a source state and a target state, andρP is therole assignment
function, associating each role to a set of states. The domains and
co-domains ofθ andρ are as follows (℘ denotes powerset):

θP : TransitionsP → StatesP × StatesP

ρP : RolesP → ℘(StatesP)
Notice that a role may be mapped to several states, and several

roles may be mapped to the same state. States C and D in the pol-
icy in Figure 1 show examples of these properties. Upon reaching
state C, requesters may activate both theGold Customer and
theBuyer role. Requesters may acquire theBuyer role either by
reaching state C or state D.

To be consideredlegal, i.e., syntactically correct, a negotiation
policy has to meet certain criteria. We introduce the following def-
initions to formally define legality of a negotiation policyP . In the
remainder, we will omit the policy identifierP where no ambiguity
arises from the context.

• Initial state: The policy has a single initial stateι, where
ι ∈ States.

• Successor function:The successor functionσ maps a state to
the set of states that succeeds it. It is defined as:
σ(s) = {t|t ∈ States ∧ (∃u : u ∈ Transitions ∧ θ(u) =
〈s, t〉)}

• Successor transitive closure:The transitive closure of the
successor function, denotedσ∗, maps a state to the set of its
successors recursively. It is defined as:
σ ∗ (s) = {p|p ∈ σ(s) ∨ (∃t : t ∈ σ(s) ∧ p ∈ σ ∗ (t))}

• Reachability:A states is reachableiff it is in the successor
transitive closure of the initial state, i.e.,s ∈ σ ∗ (ι).

• Incoming and outgoing transitions:The outgoing transitions
functionα maps a states to the set of transitions for which
s is the source. Similarly, the incoming transitions function
ω maps a states to the set of transitions for whichs is the
target. They are defined as:

55

α(s) = {tr|tr ∈ Transitions∧(∃t : t ∈ States∧θ(tr) =
〈s, t〉)}
ω(s) = {tr|tr ∈ Transitions∧(∃t : t ∈ States∧θ(tr) =
〈t, s〉)}

• Source and target states:The source stateθs and target
stateθt of a transitiontr are defined such thatθ(tr) =
〈θs(tr), θt(tr)〉.

With these definitions in place, we may define policy legality.

Definition 3.1 (Legality). A trust negotiation policyP is legal iff
every state is reachable from the initial state. Formally:
∀s ∈ StatesP : s = ι ∨ s ∈ σ ∗ (ι)

3.2 Policy Change Operations
To allow policy updates, it is necessary to provide a set of change

operations that can be applied to a policy. However, these opera-
tions need to be carefully constructed, to ensure they satisfy some
desirable properties.

Firstly, the set of operations should ensurestructural consis-
tency. This means that the result of applying an operation to a
legal policy should always result in a legal policy. Additionally,
it means that changes may not cause any ongoing negotiation to
end up in a situation such that it is not clear how to proceed, i.e.,
how to process incoming operation invocations. Secondly, the set
of operations should becomplete. This means that using only these
operations, it should be possible to transform any legal policyP.I
into any other legal policyP.F. Finally, the set of change operations
should beminimal. The set is minimal if no proper subset of it is
also complete.

An important result of the structural consistency requirement is
that removing states becomes a delicate process. Firstly, if a policy
developer wants to remove a state from a policy, she must first make
sure that all the remaining states are still reachable. Secondly, any
negotiations currently at that state would be left in an inconsistent
state, since the behavior of such instances would be undefined. To
handle the first problem, we specify the reachability requirement
as a precondition of the operation to remove states. The second
problem is handled by rolling back instances at that state to their
previous states.

Having a set of operators that is complete, minimal, and struc-
turally consistent guarantees that, through such operators, we can
make any changes to any policy while avoiding the generation of il-
legal policies. It also avoids burdening the model with unnecessary
change operations that would make the framework more complex
without adding value.

Based on these properties, we define the set of change opera-
tions, hereafter calledprimitives. The definitions below detail the
preconditions and effects of the primitives. We assume in the fol-
lowing that a policyP.I is modified, resulting in an updated policy
P.F .

• AddTransition (Transitiontr, States, Statet): This primi-
tive adds transitiontr to the policy with source states, and
target statet.

Precondition:s, t ∈ StatesP.I ∧ tr /∈ TransitionsP.I

Effect:

1. TransitionsP.F = TransitionsP.I ∪ {tr}
2. θP.F = θP.I ∪ {tr 7→ 〈s, t〉}

• RemoveTransition (Transitiontr): This primitive removes
transitiontr from the policy. The precondition states that

there must be at least one other transition to the target oftr.
This maintains structural consistency by ensuring that statet
is still reachable from the initial stateι.

Precondition: |ω(θt(tr)) − α(θs(tr))| ≥ 1 ∧ tr ∈
TransitionsP.I

Effect:

1. θP.F = θP.I − {tr 7→ θP.I(tr)}
2. TransitionsP.F = TransitionsP.I − {tr}

• MapRole (Roler, States): This primitive adds roler to the
policy and maps it to the states.

Precondition:s ∈ StatesP.I

Effect:

1. RolesP.F = RolesP.I ∪ {r}
2. ρP.F = ρP.I ∪ {r 7→ s}

• UnmapRole (Role r, States): This primitive removes the
mapping of roler to states. Becauser may be mapped to
other states, it is only removed fromRolesP.F if this is the
last mapping for that role.

Precondition:true

Effect:

1. ρP.F = ρP.I − {r 7→ s}
2. if ρP.F (r) = ?

RolesP.F = RolesP.I − {r}
• AppendState(States, Stater, Transitiontr): This primitive

adds the states to the policy as a successor of the stater.
The transitiontr is added from stater to states. The formal
semantics are:

Precondition: r ∈ StatesP.I ∧ s /∈ StatesP.I ∧ tr /∈
TransitionsP.I

Effect:

1. StatesP.F = StatesP.I ∪ {s}
2. AddTransition(tr, r, s)

• RemoveState(States): This primitive removes the states
from the policy. Befores is removed, all roles mapped to
s are unmapped, and all transitions in and out ofs are re-
moved. The precondition states that all the target states of
outgoing transitions froms must be reachable even if the
outgoing transitions ofs are removed. The formal seman-
tics are:

Precondition:∀tr ∈ α(s) : |ω(θt(tr))− α(s)| ≥ 1

Effect:

1. for each Roler ∈ ρP.I(s) :
UnmapRole(r, s)

2. for each Transitiont ∈ αP.I(s) ∪ ωP.I(s) :
θP.F = θP.I − {t 7→ θP.I(t)}
TransitionsP.F = TransitionsP.I − {t}

3. StatesP.F = StatesP.I − {s}
Firstly, these primitives are complete because every trust nego-

tiation policy may be developed by initially transforming it into a
state machine with only an initial state. Secondly, the primitives
are minimal because they deal with insertion or removal of distinct
concepts (transitions, roles, and states). Finally, they are consistent,
since after applying any primitive to a legal policy, the policy re-
mains legal. As the proofs of these properties are lengthy, although
intuitive, they are omitted.

56

3.3 Lifecycle Management of Negotiation
Instances

Once a policy is changed, decisions must be taken on how to
handle ongoing negotiation instances (i.e., negotiations) that began
under a different policy. We identifystrategiesthat can be used to
manage the negotiation instances when policies are changed. These
strategies are designed such that different strategies may be applied
to each instance. We assume that an initial policyP.I is modified,
resulting in a final policyP.F. The two most obvious strategies ei-
ther allow the instances to complete according to the policy under
which they begun, or abort the instances and restart them under the
new policy. We detail these below:

• Concurrent to completion.The negotiation in progress ac-
cording toP.I is allowed to complete according toP.I. This
means the enforcement system might need to enforce more
than one policy at a time (e.g., bothP.I andP.F). This is done
by creating one negotiation controller instance for each pol-
icy. The controller instance enforcingP.I is destroyed once
all its negotiations have completed. This strategy is applica-
ble when the provider can tolerate existing negotiations com-
pleting according toP.I. However, in many cases the provider
may not allow this to happen. For instance, a change to appli-
cable laws means that the provider must modify its operation
to satisfy the new requirements. This strategy would be un-
acceptable in such situations.

• Abort. The negotiation instance is aborted, and all roles at-
tained by the requester are deactivated. Depending on the im-
plementation, a new negotiation instance followingP.F may
be created in place of the aborted instance. The main draw-
back of this strategy is that it may waste a lot of work that
has already been done. The requester and provider may have
already negotiated a high level of trust, but if this strategy is
applied, the negotiation would have to start all over again.

The inadequacy of the two previous strategies emphasizes the
need for better and more efficient solutions to this problem. This
involves allowing ongoing negotiation instances to bemigratedto
the new policy. However, care needs to be taken when migrating
negotiations, to avoid undesired results.

Example 3.1 (Compliance).Consider the policy in Figure 1. Sup-
pose that the credential disclosure transition between states A and
B was modified as follows: The requester must also submit a
Credit Card credential. At the same time, the condition of a
Credit Card credential is removed from the transition between
states B and D. The resulting policyP.F is shown in Figure 3 (the
provision transition and the timed transition are removed for clar-
ity of presentation). A requester may then have reached state B
according toP.I without disclosing aCredit Card credential.
If the policy is modified while this requester is at state B, and the
negotiation is migrated toP.F, this requester will be able to pro-
ceed to state D and activate theBuyer role without disclosing its
Credit Card . This may not be acceptable for the provider.

Example 3.1 suggests that negotiations have to satisfy some con-
dition in order to be effectively migrated toP.F. The condition is
that the negotiation instance so far according toP.I is compliantto
P.F. A negotiation instance is compliant to a negotiation policy if it
is a valid instance of the policy. To be able to define compliance,
we introduce the following variables relating to a negotiationN
according to a policyP :

• StateP
N denotes the state ofP that N is currently at. The

initial value of this variable is the initial state ofP .

C[Credit
Card ∧ ID]

C[Gold
Member]

C[Address]

Customer

Reviewer

Gold Customer, Buyer

Buyer
A

D

C

B

I

Figure 3: A modified trust negotiation policy P.F for a book-
shop service.

• V isitedStatesP
N denotes the ordered set of states ofP vis-

ited so far byN . This set is initialized to contain only the
initial state ofP . States are appended to this set as soon as
the requester enters them, thusStateP

N ∈ V isitedStatesP
N .

• RolesActivatedP
N denotes the set of roles that are currently

active forN .

• TransitionsF iredP
N denotes the transitions ofP taken by

N to reach theV isitedStatesP
N .

Definition 3.2 (Compliance). A trust negotiation instanceN is
compliantto a trust negotiation policyP if all of the following con-
ditions hold:

1. ∀s ∈ V isitedStatesN : s ∈ StatesP

2. ∀r ∈ RolesActivatedN : r ∈ RolesP ∧ ∃v : v ∈
V isitedStatesN ∧ v ∈ ρP (r)

3. ∀t ∈ TransitionsF iredN : t ∈ TransitionsP ∧ ∃x, y :
{x, y} ⊆ V isitedStatesN ∧ θP (t) = 〈x, y〉)

This definition states that the policyP must contain (i) all states
visited byN , (ii) all active roles ofN , which must be mapped to
states visited byN , and (iii) all transitions fired byN , of which the
source and target states must be visited byN .

Based on our definition of compliance, we present here two
strategies for migrating running negotiation instances to new poli-
cies.

• Migration to new policy.The negotiation is migrated toP.F.
If the negotiation instance is compliant toP.F, the migra-
tion is said to beunconditional. However, if the instance
is not compliant toP.F, the migration isconditional. Con-
ditional migrations require the negotiation instance to trace
back steps in the policy until it reaches a state where it is
compliant toP.F. If such a rollback is necessary, the appro-
priate roles are deactivated after the migration.

• Migration to hybrid policy. Instead of rolling back non-
compliant negotiation instances, temporary policies may be
defined for these negotiations. This ad-hoc policy will be a
hybrid of P.I andP.F. Its function is to modify existing ne-
gotiation instances to comply with the requirements causing
the policy change fromP.I to P.F. Such a strategy is useful if
the policy modification is critically important but a rollback
is considered too disruptive.

Example 3.2 (Negotiation migration). Consider the policy of
the bookshop service, shown in Figure 1. Suppose the provider

57

changed this policy as explained in Example 3.1, resulting in the
policy P.F shown in Figure 3. Suppose further that a current ne-
gotiation had reached state B and activated theReviewer role
when the policy change occurred.

If the provider uses the abort strategy, the negotiation is canceled
and must be restarted. This is simple, but it might be considered a
suboptimal solution because of the work lost.

The concurrent to completion strategy lets the negotiation con-
tinue according to the old policy. The provider must decide whether
to allow this. If this is unacceptable, the provider must choose an-
other strategy.

Using the migration to new policy strategy, the system first deter-
mines whether the negotiation is compliant to the new policy. The
transition between states A and B has been fired by this negotiation.
Since this transition was changed in the new policy, the negotiation
is not compliant to the new policy. Trust-Serv then rolls back the
negotiation to state A, and deactivates the roleReviewer before
the negotiation resumes following the new policy.

3.4 Strategy Selection
Because the number of concurrent negotiation instances could be

large, it is infeasible for the provider to manually examine each in-
stance to determine which strategy to apply. Instead, we use meta-
policies; sets of rules that describe the management of policies. The
result of the evaluation of a negotiation instance with this meta-
policy will determine the appropriate strategy for this instance. We
call these meta-policiesstrategy selection policies.

A strategy selection policy consists of a sequence of rules. Each
rule has two parts; a condition on variables of negotiation instances,
and a migration strategy with an associated policy. The condition
is a set of logic statements that state restrictions on the permissible
values of negotiation instance variables. The last rule of every pol-
icy has atrue condition. This rule is called the default rule, since
it is used if no other rules match. The strategy part of each rule
contains one of the evolution strategies presented above. It also
contains a reference to the policy to which the instance is migrated
if the condition evaluates totrue.

Negotiation instances are evaluated against each of the rules in
turn, until a match is found. Once a negotiation instance satisfies
the condition of a rule, matching ceases and the instance is migrated
to the specified policy using the specified strategy. Notice that the
rules define a partition of the set of ongoing negotiations, meaning
that for each ongoing negotiation there is exactly one strategy.

Example 3.3 (Strategy selection policy).Figure 4 shows an ex-
ample of a strategy selection policy. The policyP.I (Figure 1) is
modified to achieve policyP.F (Figure 3). Rule 1 states that in-
stances that have only visited state I and A are aborted. Rule 2
states that negotiation instances that have not visited state D are
migrated to the new policyP.F. Finally, rule 3 is the default rule
that specifies that all other instances are allowed to complete ac-
cording to their current policyP.I.

3.5 Honoring Obligations to Requesters
Issues regarding implicit agreements with requesters may arise

when policies are changed while a negotiation is underway. When
the provider informs the requester that it can acquire its desired role
R at stateS by providing a credentialC, this is an implicit obliga-
tion from the provider to the requester. Essentially, the provider
has just promised the requester that it only has to submit a single
credentialC to access roleR.

Now suppose that the provider wishes to change the policy by
removing the mapping of roleR to stateS (i.e., applying the prim-

<RULE ID="1">
<CONDITION>

<SUBSETEQ>
<VARIABLE>VisitedStates</VARIABLE>
<SET>I, A</SET>

</SUBSETEQ>
</CONDITION>
<STRATEGY NAME="Abort" POLICY="null"/>

</RULE>
<RULE ID="2">

<CONDITION>
<NOTIN>

<CONST>D</CONST>
<VARIABLE>VisitedStates</VARIABLE>

</NOTIN>
</CONDITION>
<STRATEGY NAME="Migrate to new policy"

POLICY="P.F"/>
</RULE>
<RULE ID="3" TYPE="default">

<STRATEGY NAME="Concurrent to completion"
POLICY="P.I"/>

</RULE>

Figure 4: A strategy selection policy.

itive UnmapRole(R, S)). If this negotiation instance is migrated
to the new policy after the requester has submitted credentialC
and activated roleR, R will be deactivated. Now the requester has
disclosedC to no avail, and it has not been able to acquireR, as
promised by the provider.

It is of vital importance that any lifecycle management model
provides ways to handle these issues. Using the Trust-Serv trust
negotiation policy model, the policy change that might cause such
a situation is the removal of role-to-state mappings. To avoid sit-
uations where promises to the requester are broken, it is necessary
to not deactivate roles activated by requesters, even if these role
mappings are moved or removed. By letting requesters keep their
roles, the promised resources are still available to requesters, and
the implicit agreement is not broken.

However, there might be situations where the policy upgrade is
considered vital by the service provider. For instance, it might be
discovered that the previous trust negotiation policy was too weak
and allowed some requesters to obtain resources that they should
not be able to obtain. Such violations could even be in breach of
laws in cases where it would allow access to privileged information.
It is thus not possible to always allow requesters to keep their roles
in the case of policy updates and instance migration.

To address this issue, we introduce a set of options that may be
taken whenever negotiation instances are migrated to a new policy
where role mapping have been removed. These options are exe-
cuted by the provider’s negotiation controllers. They permit role
deactivations to be delayed, or provides compensation to the re-
quester for obligations that are not upheld.

• Delay the role deactivation.The provider instructs the ne-
gotiation controller to delay all role deactivations by some
specified time. A notice is sent out to all affected instances,
informing them that some of their privileges will soon be
revoked because of a forced role deactivation. This gives re-
questers a “grace period”, during which they can adapt to the
change by exercising the privileges they have achieved so far
in the negotiation.

• Compensate the requester.The provider instructs the con-
troller to deactivate the affected roles immediately, and no-

58

tifications are sent to the affected requesters. To appease
these requesters, offers of compensations are issued by the
provider. This compensation can take many forms, including
financial compensation. In Trust-Serv, we associate acom-
pensation rolewith each role in the trust negotiation policy.
This means that if a role is deactivated due to migration to
another policy, the provider may offer membership in a com-
pensation role to the requester. This role may then give the
requester access to various forms of compensation offered by
the service.

Example 3.4 (Compensation).Figure 5 shows a fragment
of the definition of a role namedGold Customer . It spec-
ifies that if a requester is a member of this role, and this
membership is deactivated by a negotiation migration, then
that requester instead becomes a member of the compensa-
tion roleDiscount .

• Let the requester decide.This final option lets the requester
decide between the two previous options (i.e.,delay the role
deactivationor compensate the requester). The affected ne-
gotiations are suspended while the negotiation controller is-
sues notifications to the requesters asking for their preferred
way of dealing with the issue. Once the requester replies with
its choice, the instance is resumed and the controller takes the
action indicated by the requester’s reply.

<ROLE NAME="Gold Customer" ...>
<COMPENSATION ROLE="Discount"/>
...

</ROLE>

Figure 5: An example of the specification of a compensation
role.

Note that if the policy update does not involve removal of role-
to-state mappings (i.e., theUnmapRoleprimitive), this issue does
not arise. Also, even if role mappings are removed, if the chosen
strategy for an instance isconcurrent to completion, the update does
not affect that instance, and no further action is necessary.

4. ARCHITECTURE AND
IMPLEMENTATION

In order to support the trust negotiation model described in this
paper, we propose an architecture for Trust-Serv that is specifically
targeted at Web service environments.

4.1 Trust-Serv Architecture
The goal of the architecture is to substantially increase the level

of automation in Web service development and deployment with
respect to what is available today. We achieve this by factorizing
into the middleware those chores common to the development of
many Web services. The Trust-Serv architecture introduces the no-
tion of Web servicecontainersto manage the internal behavior of
the underlying service and its interactions with service requesters
and partners. Containers provide functionality necessary for Web
services to support trust negotiation, as well as other functional-
ities, such as conversation management and exception handling.
The run-time operation of the service container is directed by poli-
cies, such as trust negotiation policies, that may be defined for in-
dividual or groups of Web services. The advantage of this archi-
tecture is that developers who want to create a new service simply

need to implement the business logic of the service and specify
the trust negotiation policy. Tasks such as controlling negotiation
instances and verifying credentials are delegated to the container,
thereby considerably simplifying development. An overview of the
extended architecture is shown in Figure 6.

Requesters

Negotiation
Controllers

Negotiation
Modeler

Container

Role
Privileges

Negotiation
Policies

Web
Service

Provider
Credentials

Figure 6: The service container architecture.

The negotiation controllers are implemented as Web services that
provide the capabilities to participate in trust negotiations. At run-
time, the negotiation controllers are responsible for receiving ne-
gotiation messages such as credential disclosures and service re-
quests, determining if new negotiation instances should be created,
and triggering transitions if their conditions are met. Messages are
sent between negotiation instances and service instances as SOAP
requests and responses [7]. Information needed by controllers to
control trust negotiations is provided by translating the state ma-
chine representation of trust negotiation policies into rules. Due to
space reasons, we do not discuss this here. However, details on this
translation can be found in [15].

The negotiation controllers are able to intercept invocations to
the protected service by implementing all the operations defined in
the interface of the service (i.e., in the WSDL document [7]). How-
ever, for the operations of this interface, the negotiation controller
simply acts as a mediator. That is, after the invocation is permit-
ted, the implementations of these operations in the negotiation con-
trollers only consist of a call to the corresponding operation in the
protected service. Thus, requesters only interact with the protected
service indirectly through the negotiation controllers.

To support lifecycle management, Trust-Serv offers a negotiation
modeler, which is a CASE-like tool for Web service trust negotia-
tion policies. It assists developers in specifying and modifying ne-
gotiation policies. Additionally, it allows policy developers to de-
fine strategy selection policies as XML documents. A negotiation
policy is edited through a visual interface. This interface offers an
editor for describing a state machine diagram of a negotiation pol-
icy. It also provides means to describe the conditions of transitions.
The modeling functions available to the policy developer are the
members of the set of primitives defined in the policy model. Ad-
ditionally, the interface allows more complex functions to be built
using the primitives. Once constructed, these functions are avail-
able in the editor. Figure 7 shows a screenshot of the negotiation
modeler interface.

4.2 Implementation and Evaluation
The implementation of Trust-Serv is an extension to the Self-

Serv platform [1]. Self-Serv is a middleware supporting Web ser-
vice development based on standards such as SOAP, WSDL (Web
Service Description Language), and UDDI (Universal Description,

59

Figure 7: The Trust Negotiation Modeler interface.

Discovery, and Integration) [7]. To test the scalability of Trust-
Serv, we focused on the performance advantages of the lifecycle
management framework. The migration strategies migrates negoti-
ation instances to an updated policy. Without such strategies, trust
negotiation frameworks would be forced to abort all negotiation
instances and restart then following the new policy. To measure
the performance advantage, the experiments were implemented in
Java and run using Sun’s JDK 1.4 on an AMD Athlon 1 GHz with
256 MB memory.

Scaling well for a high number of negotiations is important for
Web services because they frequently have many requesters. Sim-
ilarly, scaling well for complex policies with many states is an im-
portant property, since Web service policies are often very com-
plex. This is because complicated laws and regulations often apply
to services offered, and the trust negotiation policy has to enforce
these laws.

To measure the benefits of migration strategies, we generated a
number of ongoing negotiations at various states of a policy P.I.
We then create another policy P.F by changing P.I using the prim-
itives. If no migration strategies are used, we assume that all cre-
dentials submitted so far by the requester are kept in a cache by
the provider. This information can then be used by the controller
of the new policy to advance the restarted negotiation through the
new policy, without any further credential disclosures by the re-
quester. We measured the time it took for the controller to evaluate
this information and move the negotiation as close as possible to
the target state using only the information already submitted by the
requester before the policy change.

To compare, we measured the time it took to evaluate the nego-
tiations against a strategy selection policy, migrating the instances
accordingly, and advancing them as close as possible to their tar-
get state using information already submitted, in a manner similar
to that used without migration strategies. Any performance advan-
tage would come from the fact that the policy evaluation would not
have to start from the initial state of the policy, but rather from the
state of the new policy to which the negotiation was migrated.

Of course, these measurements would be highly dependent on
what changes are made, and on the strategy selection policy. If the
strategy selection policy was set to abort nearly all the negotiation
instances, the performance with negotiation strategies would likely

be very similar to the performance without negotiation strategies.
Conversely, if most of the negotiation instances were allowed to
complete according to the old policy, the migration strategies would
seem to clearly give better performance.

To avoid favoring either of the two options (with or without
migration strategies), we focused on themigration to new policy
strategy. This strategy must determine if a negotiation instance
complies with the new policy. Compliant negotiations would be
easily migrated to the new policy. Non-compliant negotiations,
on the other hand, would have to be rolled back, then migrated
to the new policy, and finally advanced through the new policy as
far as possible using credentials already disclosed by the requester.
We designed the policy update to cause half of the active nego-
tiations to be migrated unconditionally, while the other half was
non-compliant and would have to be rolled back.

The graphs in Figure 8 show the performance with and without
migration strategies. The graph on the left shows the time taken
when negotiations are aborted and restarted, while the graph on the
right shows the time taken when negotiations are migrated. Each
approach was tested with policies with different number of states
and different number of negotiation instances. Each of the tests
was run 11 times, with the result of the first run thrown away, to
ensure that issues such as initialization would not affect the final
result. The times taken by the remaining runs were averaged to
achieve the times seen in the graphs.

The times on the vertical axis show the performance benefit of
using migration strategies. As we can see from the graphs, increas-
ing the number of states causes only a linear increase in the time
taken to migrate the negotiation instances. Similarly, increasing the
number of negotiation instances causes a linear increase in the mi-
gration time. This shows that the migration strategies of Trust-Serv
scales well both for a high number of negotiations, and for complex
trust negotiation policies with many states.

5. JOINT ANALYSIS OF COMPOSITION
AND TRUST NEGOTIATION LOGIC

A model-driven approach to trust negotiation provides benefits
for developers of composite Web services. A composite Web ser-
vice is an umbrella structure that aggregates multiple other elemen-
tary and composite Web services. In the composition, these ser-
vices interact according to a given process model. For example, a
composite Web service “Travel Planner” may aggregate multiple
Web services for flight booking, travel insurance, accommodation
booking, car rental, itinerary planning, etc., which are executed se-
quentially or concurrently. The process model underlying a com-
posite service is specified using formalisms like state charts [1],
or emerging standard composition languages such as BPEL4WS
(Business Process Execution Language for Web Services) [16]. We
have identified three composition scenarios in which our trust ne-
gotiation model is helpful.

5.1 Generation of composite service trust
negotiation policy

In this scenario, we assume that a composition model is already
defined by a service developer. The problem lies in inferring the
trust negotiation policy of the composite service from the composi-
tion model and the trust negotiation policies of the component ser-
vices. This is useful in cases where the developer starts by defining
the composition model, and then needs to derive the trust negotia-
tion policy that the composite service supports.

For example, assume that operationOPC of the composite ser-
viceSC is implemented by invoking operationOP1 of serviceS1.

60

10
00 20

00 30
00 40

00 50
00

10

30

50 0

50

100

150

200

250

300

350

T
im

e
(m

s)

No. negotiations
No. states

Evaluation time vs. no. states and no. negotiations

10
00 20

00 30
00 40

00 50
00

10

30

50 0

20

40

60

80

100

T
im

e
(m

s)

No. negotiations
No. states

Migration time vs. no. states and no. negotiations

Figure 8: An evaluation of the performance advantages of migration strategies. The graph on the left shows the time taken to abort,
restart, and reevaluate negotiations with respect to the new policy. The graph on the right shows the time taken to evaluate the
negotiation instances against the strategy selection policy, determining which of the instances comply with the new policy, migrating
the negotiation instances, and reevaluating those instances that could not be migrated unconditionally from the state of the new
policy to which they were migrated.

If the condition of invokingOP1 from the trust negotiation policy
of S1 requires credentialCC to be disclosed, this condition is added
to the condition of invokingOPC in the policy ofSC .

5.2 Generation of composition model
An even more useful approach consists of guiding the service

developer in designing the composition model of the composite
service, based on the trust negotiation policy that the composite
service has to support. This is useful for instance in cases where
some standardization body has defined the characteristics (includ-
ing trust negotiation policies) that a certain service must support.
The developer is then faced with the problem of designing a compo-
sition model and choosing component services that can implement
the standardized trust negotiation policy. To assist the developer in
this effort, it is possible to automatically generate a skeleton of a
composition model starting from the trust negotiation policy that
the composite service has to support. The developer may then ex-
tend the skeleton with the business logic required to implement the
service functionality.

For instance, consider an operationOPC of a composite service
SC that is implemented by invoking operationOP1 of serviceS1

and operationOP2 of serviceS2 in parallel. If the standardized
trust negotiation policy ofSC states that the condition for invoking
OPC is CC , thenS1 andS2 must be chosen so thatCC = C1∧C2,
whereC1 andC2 are the conditions for invokingOP1 andOP2 in
the policies ofS1 andS2, respectively.

5.3 Composite service trust negotiation policy
validation

Given trust negotiation policies of a composite service and its
component services, as well as a composition model of the com-
posite service, abstractions of a trust negotiation model prove use-
ful for checking the correctness of the trust negotiation policy of a
composite service with respect to the composition model and the
trust negotiation policies of the component services. Essentially,
we want to avoid invocations of operations of the component ser-
vices by the composite service if the requester to the composite
service does not have the right to invoke those operations.

As an example, consider an operationOPC of a composite ser-
viceSC that is implemented by invoking operationOP1 of service
S1. If the trust negotiation policy ofS1 states that the condition for
invoking OP1 is C1, then the conditionCC for invoking OPC in
the trust negotiation policy ofSC must be eitherC1 or C1 ∧ C2,
whereC2 represents additional conditions for invokingOPC spec-
ified by the trust negotiation policy ofSC . If this is not the case, the
validation fails. If, for instance,CC = C1∨C2, the validation fails
because this would allowOP1 to be invoked without satisfyingC1.

6. RELATED WORK
Our work is related to efforts in providing policy languages for

trust negotiation. Existing languages include early works such
as PolicyMaker and KeyNote [9], as well as more recent efforts,
such as IBM’s TPL (Trust Policy Language) [10], theRT family
of role-based trust management languages [12], the portfolio and
service protection language presented in [5], as well asχ-Sec and
χ-TNL [3]. Trust-Serv is complementary to all these efforts, as we
use TPL to describe credential disclosure conditions. On the other
hand, Trust-Serv provides a lifecycle management framework to
support evolution of trust negotiation policies. To the best of our
knowledge, none of these existing policy languages includes sup-
port for dynamic policy evolution.

Our visual model for representing trust negotiation policies as
state machines is related to visualization efforts in IBM’s Trust Es-
tablishment (TE) framework [10]. TE allows policies to be speci-
fied as graphs, where the nodes represent roles and the edges show
which roles are accepted as issuers of credentials for membership
in other roles. The framework also includes an editor that allows
policies to be edited as graphs. However, since TE does not support
trustnegotiation, it does not support dynamic policy evolution.

The use of graphs to specify policies has also been studied by
Yu et al. [17]. The aim of this work is to use policy graphs to pre-
vent unnecessary policy disclosure during trust negotiation. In this
model, each resource is assigned a policy in the form of a graph. A
policy is attached to each node, and this policy is revealed upon the
client reaching the predecessor node. The policy specifies the cre-
dential disclosures that are required before the client may reach the

61

node and reveal more of the policy. There are three important dif-
ferences between the policy graph model and our policy state ma-
chine model. Firstly, each policy graph can only be used to protect
one resource, while state machine policies in Trust-Serv can protect
any number of resources. Secondly, our model extends traditional
state machines with security abstractions such as provisions and
obligations. Finally, our model supports lifecycle management of
both trust negotiation policies and negotiation instances.

Our concept of trust negotiation borrows from TrustBuilder [17].
This framework focuses on trust negotiation strategies and proto-
cols. Negotiation strategies control which credentials to disclose,
when to disclose them, and when to terminate a negotiation. The
strategies are designed to work together with policies. If a policy
determines that a credential may be disclosed, the strategy deter-
mines whether the disclosure is necessary, and when it should take
place. Trust-Serv is complimentary to this work, as it adds sup-
port for dynamic policy evolution. In addition, our work features
a container-centric architecture and implementation designed for
Web services which permits scalable deployment of trust negotia-
tion infrastructure.

Bertino et al. [2] introduced a model for specifying and enforcing
authorization constraints in workflow management systems. While
our policy model uses state machines, a common representation for
process systems such as workflows, our model works on a differ-
ent level than this workflow authorization model. The model pro-
posed in [2] specifies authorizations on the individual tasks of the
business process. These processes are executed internally, possi-
bly with publicly exposed interfaces. Our model on the other hand,
considers these public interfaces exposed as Web services. There-
fore, state machines in our model do not represent business pro-
cesses, but rather policies to restrict access to exposed interfaces of
business processes. Another important difference is that the model
in [2] does not support lifecycle management of policies. Finally,
Trust-Serv provides a scalable implementation of trust negotiation
for Web service environments.

Dynamic evolution of trust negotiation policies presents some
unique and challenging issues. Firstly, because the number of
ongoing negotiations may be large, we introduced strategy selec-
tion policies to automatically determine the appropriate strategy
for each negotiation instance. Secondly, because the negotiation
involves two parties (the requester and the provider), we had to ad-
dress issues such as implicit obligations, and compensation if priv-
ileges were removed due to negotiation migration. In this regard,
Trust-Serv provides a novel architecture for scalable deployment of
trust negotiation with lifecycle management support in Web service
environments.

7. CONCLUSIONS AND FUTURE WORK
We have presented Trust-Serv, a trust negotiation framework for

access control in Web services. In particular, we have emphasized
lifecycle management, which is an important issue that to date has
not been addressed. We have shown how security abstractions can
be modeled as extensions to traditional state machines. Based on
a formalization of the model, we have presented policy evolution
primitives, negotiation instance migration strategies, and a strategy
selection policy language that allow running negotiations to be ef-
ficiently migrated to a new policy. Finally, we have shown how
this framework implements service containers to enable scalable
deployment. Although we have chosen Web services as our target
applications, many of the results presented in this paper are appli-
cable to other forms of services provided over networks.

A promising area for future includes expanding the model to han-
dle composition of Web services. The approach to composite Web

services will be based on the principles discussed in the joint analy-
sis of trust negotiation and service composition. To enable compo-
sition, it is also necessary to study compatibility between requester
and provider policies. That is, given the policies of a requester and
a provider, is it possible to establish sufficient trust between the two
parties to facilitate the desired interaction. This has been the sub-
ject of previous research, and we are investigating the application
of this work to our model.

8. REFERENCES
[1] B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv

Environment for Web Services Composition.IEEE Internet
Computing, 7(1):40–48, Jan./Feb. 2003.

[2] E. Bertino, E. Ferrari, and V. Atluri. The Specification and
Enforcement of Authorization Constraints in Workflow
Management Systems.ACM Trans. Information and System
Security (TISSEC), 2(1):65–104, Feb. 2002.

[3] E. Bertino, E. Ferrari, and A. C. Squicciarini.χ-TNL: An
XML-based Language for Trust Negotiations. InProc. 4th
Int’l. Workshop Policies for Distributed Systems and
Networks (POLICY’03), June 2003.

[4] C. Bettini et al. Provisions and Obligations in Policy
Management and Security Applications. InProc. 28th Conf.
Very Large Data Bases (VLDB’02), Aug. 2002.

[5] P. Bonatti and P. Samarati. A Unified Framework for
Regulating Access and Information Release on the Web.J.
Computer Security, 10(3):241–272, 2002.

[6] F. Casati et al. Workflow Evolution.Data and Knowledge
Eng., 24(3):211–238, Jan. 1998.

[7] F. Curbera et al. Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI.IEEE Internet
Computing, 6(2):86–93, Mar./Apr. 2002.

[8] D. Ferraiolo et al. Proposed NIST Standard for Role-Based
Access Control.ACM Trans. Information and System
Security (TISSEC), 4(3):224–274, Aug. 2001.

[9] T. Grandison and M. Sloman. A Survey of Trust in Internet
Applications.IEEE Comm. Surveys & Tutorials, 3(4), 2000.

[10] A. Herzberg et al. Access Control Meets Public Key
Infrastructure, Or: Assigning Roles to Strangers. InProc.
IEEE Symp. Security and Privacy, May 2000.

[11] R. Housley et al.Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. IETF RFC 2459, Jan. 1999.

[12] N. Li and J. Mitchell. RT: A Role-based Trust-management
Framework. InProc. 3rd DARPA Information Survivability
Conf. and Exposition (DISCEX’03), Apr. 2003.

[13] C.-T. Liu, S.-K. Chang, and P. Chrysanthis. Database schema
evolution using EVER diagrams. InProc. ACM Workshop
Advanced Visual Interfaces (AVI’94), June 1994.

[14] J. Rees, S. Bandyopadhyay, and E. H. Spafford. PFIRES: A
Policy Framework for Information Security.Comm. ACM,
46(7):101–106, July 2003.

[15] H. Skogsrud, B. Benatallah, and F. Casati. Model-Driven
Trust Negotiation for Web Services.IEEE Internet
Computing, 7(6):45–52, Nov./Dec. 2003.

[16] S. Thatte, ed.Business Process Execution Language for Web
Services (BPEL4WS), Version 1.1. www-106.ibm.com/
developerworks/library/ws-bpel, May 2003.

[17] T. Yu, M. Winslett, and K. Seamons. Supporting Structured
Credentials and Sensitive Policies through Interoperable
Strategies for Automated Trust Negotiation.ACM Trans.
Information and System Security (TISSEC), 6(1), Feb. 2003.

62

